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1.  Energy-Storage (Dynamic) Circuit Elements (a.k.a. Reactances) 

[Textbook §4.1] 

1.1.  (Ideal) Capacitors 

Classical capacitor structure:   

Two parallel conductive plates, each with surface area A (on each side), 

separated from each other at distance d by air or other dielectric (insulator) 

with permittivity ε. 

Capacitance of this structure (for small d, i.e., ignoring fringe capacitances) is:   
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Standard unit of capacitance:  1 Farad (F) = 1 C/V.  Also commonly used:  µF, nF, pF. 

Example: 

Two (1 m)×(1 m) thin square metal plates, spaced 1 mm apart, with air between them 

(permittivity ε = 8.854×10−12 F/m) would have an overall capacitance (ignoring fringes) of: 
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Capacitor equations.  The quantity Q of separated charge (of each sign, + and −) stored on the plates of 

capacitor when the voltage across it is V is: 

    . 

The same relation also holds instantaneously in the case of time-varying voltages: 

           . 

Taking the derivative of that equation with respect to time yields an equation for the instantaneous 

current intensity i(t) through the capacitor: 
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Thus, the current through a capacitor is proportional to the time derivative of the voltage, as opposed to 

(in the case of a resistor) the voltage itself. 

If we let the capacitor’s voltage at some initial time t0 be V0, then we can integrate both sides of 

the above equation to find its voltage at any other time t, as a functional of the time-varying current i(t) 

through the capacitor over times between t0 and t:  
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Series/parallel combination of capacitors.  Capacitances in parallel add.  The reciprocal of capacitance is 

called elastance (E), and its (unofficial) unit is sometimes called the “daraf” (D = 1/F).  We can write the 

equation V = EQ for a capacitor with elastance E charged up with charge Q.  For capacitors in series, 

current is the same for all (due to KCL) and thus Q is the same for all (if initially uncharged, Q=0), and by 

KVL the voltages add in series, and thus the elastances of capacitors in series add, so that capacitances 

in series combine like resistances in parallel: 

  
 

 
  

 
 
  

   
 
  

  

Energy storage in capacitors.  Using W to denote the work performed in charging up a capacitor from 

voltage 0 at time 0 to voltage V at time t, we can find it by integrating the instantaneous power 

transferred to the capacitive load: 
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And the same amount of energy is transferred out of the capacitor (work performed by the capacitor on 

the environment) when discharging the capacitor from voltage V back to 0.  The direction of power flow 

is always into the capacitor when its voltage is moving away from 0 (in either direction), and out of the 

capacitor when its voltage is moving back towards 0 (from either direction).  No power is dissipated in 

an ideal capacitor when it is charged or discharged.  (Real capacitors, however, always have some 

parasitic resistance in their leads, and thus there is non-zero dissipation when charging 

them at finite rates.)  

1.2.  (Ideal) Inductors 
Classical inductor structure:    Coil of thin metal wire embedded in an insulating medium 

(e.g., air).  With N turns, cross-sectional area A, length  , and permeability of medium µ, 

the inductance of the coil is: 

  
    

 
  

Standard unit of inductance:   1 Henry (H) = 1 V∙s/A. 

 Also commonly used:  mH, µH. 

Example: 

Consider a wire of length      , coiled in vacuum (µ = µ0 = 4π∙10−7 H/m).  If the 
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coil has N turns, then the circumference of the (assumed circular) coil is      , 

its radius is        , and so its cross-sectional area is             ⁄ .  

So the formula for its inductance simplifies to just       ⁄              . 

Inductor equations:   

      
      

   
  

The voltage across the inductor is proportional to the rate of change of current through it.  Note the 

symmetry with the corresponding capacitor equation. 
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The instantaneous current i(t) through an inductor can be calculated from the initial current and the 

time-integral of the voltage. 

  
 

 
     

Work to “boost up” an ideal inductor with inductance L from zero current to to a current intensity of I.  

The same amount of work will be provided by the inductor when its current falls from I back to 0.   

2. Time-Dependent Sources [§4.2] 

Symbols.  Pictured at right are a general time-dependent voltage 

source, a general time-dependent current source, and a sinusoidal 

source, which may be defined in terms of either a time-varying 

voltage v(t) or current i(t). 

Periodic signals.  A (voltage or current) signal x(t) that is periodic (not necessarily sinusoidal) obeys the 

following equation for all integers n and all values of t: 

             

where T is the repetition period (or just period) of the signal x(t).  The frequency of repetition (or just 

frequency) of the signal is then just the reciprocal of the period; it can be expressed as cycles per unit 

time, or simply in inverse time units: 

  
      

 
 

 

 
   

Meanwhile, the angular frequency or radian frequency ω(t) is just f times 2π, the number of radians in a 

cycle; it is in units of angle per unit time, although the angular units are often omitted: 
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When working with angular units, keep in mind the following identity: 

                   

Thus, the following unitary ratios of angular units can be used as convenient conversion factors: 

     

      
 

     

    
 

      

     
 

      

    
 

    

     
 

    

      
    

Types of periodic signals.  Some commonly-encountered periodic signals, in addition to the sinusoid, are 

the square wave,  the sawtooth wave, the triangle wave, and a (periodic) pulse train of square pulses.  

See p. 168 for illustrations.  (Also fairly common are trapezoidal waves with nonzero rise/fall times, and 

pulse trains of trapezoidal pulses.) 

Some terminology associated with periodic signals: 

 cycle – One repetition of the signal, whose duration is the period T. 

 amplitude – The signal value on each cycle having the greatest absolute magnitude. 

 peak-to-peak amplitude – Difference between maximum & minimum signal values. 

 duty cycle – For a pulse train, % of time the signal is over the halfway point btw. min & max 

values. 

 pulse width – For a pulse train, the length of time the signal is over the halfway point between 

min & max values on each cycle. 

 rise time/fall time – For a trapezoidal wave or pulse train, time for the signal to go between 

min & max values. 

Sinusoidal waveforms.  A sinusoidal signal has the general form: 

                , 

where A is the amplitude, ω the angular frequency, and φ the phase or phase offset of the signal, in 

angular units.  This can also be related to a time offset ∆t through: 

   
 

   
 
     

      
     

 

      
 

  

  
  

Of course, we can also express φ in terms of the time offset: 

     
  

 
        

To shift between sine and cosine representations at will, we can simply adjust the phase offset by 90°: 
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Phase offsets can also be defined for non-sinusoidal periodic signals relative to each other, based on  

their time offsets. 

Mean value of a signal.  The average or mean value of a periodic signal x(t) is defined as: 
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RMS value of a signal.  To find the overall strength of a sinusoidal signal or other signal that is 

symmetric across the x axis, the average is not appropriate since it is always 0.  Instead, we use the 

root-mean-square or RMS value.  It is appropriate for calculating average power.  It’s defined as: 
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Suppose a periodic signal has an instantaneous current of i(t).  Then the average power dissipation of 

this current when passing through a resistance of R is just: 

〈 〉      
    

Likewise, if the instantaneous voltage is v(t), then the power dissipation is 〈 〉      
     

The RMS value of a sinusoidal signal is: 
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where A is the signal amplitude.  You can easily check this using your calculus.  


