
FAMUFAMUFAMUFAMUFAMUFAMUFAMUFAMU--------FSUFSUFSUFSUFSUFSUFSUFSU

College of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sims., LPS Mar. ‘12 1

SpaceSpace--Efficient Quantum Efficient Quantum

Computer SimulatorsComputer Simulators
Invited seminar talk presented Mar. 14th, 2012 at

Laboratory for Physical Sciences, University of Maryland, College Park

Michael P. Frank1, Liviu Oniciuc1 ,
Uwe H. Meyer-Baese1, Irinel Chiroescu2

1Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering
2National High Magnetic Field Laboratory, Florida State University

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 2

Abstract of Talk (for reference)Abstract of Talk (for reference)

A widespread misconception about quantum computing is that simulating a quantum computer on

a classical one requires exponential memory resources. In fact, it has long been known that

quantum simulation requires only polynomial space, due to general space-time complexity

tradeoffs discovered in the early days of computing. The basic approach essentially amounts to the

numerical evaluation of a discretized path integral. Furthermore, amplitudes calculated in this way

can be used to stochastically evolve a single computational basis state forwards in time in

accordance with the precise flow of probability mass through configuration space that is dictated by

quantum statistics, in a manner reminiscent of Bohm's "pilot wave" interpretation of quantum

mechanics. In this way, we can properly account for interference effects without ever having to

compute and store a full state vector.

In this informal talk, we'll briefly review the history of this method, and then discuss some

existing and planned future implementations of it. We have already made available the C++ source

code for a simple space-efficient quantum computer simulator based on these ideas. A future

version will offer a convenient "Qubit” class that automatically executes the space-efficient

simulation method behind the scenes, to allow arbitrary quantum algorithms to be directly written

in C++ and executed without concern for memory limitations. We also are planning to develop an

FPGA-based implementation of the core simulator which could offer speedups of 100x or more

over CPU-based implementations.

FAMU-FSU College of Engineering

Talk AbstractTalk Abstract

� A widespread misconception re: quantum computing:
� “Simulating a quantum computer on a classical one takes exponential

memory resources as a function of the number of qubits”
� This is only true for a limited class of simulation techniques

� Computational complexity theorists have long known general ways
to make space-intensive computations more space-efficient.
� Applying this general method to quantum computer simulation yields

a discrete analogue to numerically evaluating a path integral.
� Can compute arb. amplitudes w/o ever storing a complete state vector!

� Computing amplitudes on-demand in this way lets us stochastically
evolve just a single classical state over time in a way that exactly
respects quantum statistics.
� Method reminiscent of Bohm’s “pilot wave” interpretation of QM.

� In this informal talk, we briefly review the history of this idea and
discuss some existing & proposed implementations.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 3

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 4

What is a Quantum Computer?What is a Quantum Computer?

� A new, more powerful fundamental paradigm for computing
within the laws of physics.
� Apparently exponentially faster on some problems.

� Key differences btw. Classical vs. Quantum Computation:
� State representations:

� Classical: A sequence of n bit values, w ∈ Bn, where B = {0,1}.

� Quantum: A function Ψ ∈ H, where H = Bn → C, mapping classical
states to complex numbers (“amplitudes”).

� Logic operators (“gates”):
� Classical: A function from several bits to one bit, g:Bk → B

� Quantum: A unitary (invertible, length-preserving) linear
transformation U:S→ S, where S = Bk → C.

� Measurement of computation results:
� Classical: Measured value is exactly determined by machine state.

� Quantum: Probability of measuring state as being w is ∝|Ψ(w)|2.

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 5

A Simple Quantum Circuit: Draper AdderA Simple Quantum Circuit: Draper Adder

Uses the quantum Fourier transform (QFT) and its inverse QFT−1 to add two 2-bit input

integers in a temporary phase-based representation. Here it is computing 1 + 1 = 2.

H

a0

a1

b0

b1

φ1 H

φ0

φ0

φ1

H φ1
−1

H|0〉

|0〉

|1〉

|1〉

a = |012〉
= 1

b = |012〉
= 1

|0〉

|1〉

|1〉

|0〉

a := QFT(a) a := QFT −1(a)add b into
phase of a

a := (a + b) mod 4

a = |102〉
= 2

1 11

1 12
H

 
=  

− 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 exp(iπ2)

q

q

ϕ

−

 
 
 =
 
 
 

Hadamard gate
Controlled-phase gate

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 6

A Larger Draper Adder (2A Larger Draper Adder (2××4 bits)4 bits)

� Some advantages of the Draper adder:
� Minimal quantum space usage: Requires no ancilla bits for carries.

� A good simple, but nontrivial example of a quantum algorithm.

� A disadvantage of the Draper adder:
� Slow; requires Θ(n2) gates for an n-bit add!

� Unlikely to be used in practice, except when qubits are very expensive.

QCAD design tool

& simulator, by

Hiroshi Watanabe,

University of

Tokyo, available

from

http://apollon.cc.u-

tokyo.ac.jp/~wata

nabe/qcad/index.ht

ml

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 7

Some Potential Applications Some Potential Applications

of Quantum Computersof Quantum Computers

� If quantum computers of substantial size are built,
known quantum algorithms can be applied to obtain:
� Polynomial-time cryptanalysis of popular public-key

cryptosystems (e.g., RSA). (Shor’s factoring algorithm.)

� Polynomial-time simulations of quantum-mechanical
physical systems. (Algorithms by Lloyd and others.)

� Square-root speedups of simple unstructured searches of
computed oracle functions. (Grover’s search algorithm.)

� And not a whole lot else, so far!

� A much wider variety of interesting & useful
quantum algorithms is needed,
� But new quantum algorithms are very difficult to develop.

� Need flexible, capable simulation tools for design validation.

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 8

A Problem with Nearly All Existing A Problem with Nearly All Existing

Quantum Computer SimulatorsQuantum Computer Simulators

� They require exponential space as the number
of bits in the simulated computer increases.

� Why: They update a state vector explicitly
representing the full wavefunction Ψ: Bn → C.

� Vector represented as a list of 2n complex numbers

� 1 for each possible configuration of the machine’s n bits

� If the available memory holds 1G (230) numbers,

� We can only simulate <30-bit quantum computers!

� The large space usage also imposes a significant
slowdown to access these large data sets

� Relatively slow access to main memory (or even disk).

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 9

A Way to Solve This ProblemA Way to Solve This Problem

� We can reformulate quantum mechanics in an
equivalent framework without any state vectors.
� Feynman (1942): Any desired quantum amplitude

(value of propagator between initial/final states) can
be computed using a “path integral” expression
summing over possible classical trajectories.

� Bohm (1952): Can time-evolve a classical (i.e.
position basis) state under the influence of only those
amplitudes in its immediate neighborhood in
configuration space.

� The only real requirement is to obtain the right
probability of arriving at each final state!

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 10

A Complexity TheoristA Complexity Theorist’’s View of s View of

FeynmanFeynman’’s Path Integrals Path Integral

� Consider any computation with a wide dataflow
graph (uses more space than time)

� E.g. the graph at right uses 4 variables
at time t=1, but only takes 2 time steps.

� We can make the algorithm
more space-efficient by
computing intermediate
variables dynamically when
required, instead of storing them.

� Bernstein & Vazirani, 1993: Can apply this generic
tradeoff to simulating quantum computers.

t=0

t=1

t=2

∴ BQP ⊆ PSPACE.

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 11

SEQCSim: The SEQCSim: The SSpacepace--EEfficient fficient

QQuantum uantum CComputer omputer SimSimulatorulator

� Core idea was conceived circa 2002 at UF.

� Add Bohm updates to Feynman recursion.

� Avoids having to enumerate all possible final states.

� A working C++ software prototype was

developed and demonstrated at FSU in 2008.

� Future versions of the simulator will have a more

expressive programming interface.

� A performance-optimized FPGA-based

implementation is currently being developed.

FAMU-FSU College of Engineering

Elements of the ApproachElements of the Approach

� Two basic categories of quantum gates:
� Trivial gates are those that perform only a classical

reversible transformation or phase rotation of a
computational basis state.
� I.e., operation matrix is diagonalizable in the computational

basis.

� Examples: NOT, CNOT, CCNOT, φn, etc.

� These gates can be executed immediately (& deterministically)
w. no time or space penalty.

� Nontrivial gates are those that combine amplitudes of
multiple basis states.
� Non-diagonalizable in comp. basis.

� Examples: Hadamard gate, NOT1/2, etc.

� Require computing amplitude(s) of neighboring predecessor
state(s) (slow) & stochastically choosing a successor state.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 12

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 13

SEQCSim Input Files SEQCSim Input Files

for 2for 2××22--Bit Draper AdderBit Draper Adder

qconfig.txt format version 1

bits: 4

named bitarray: a[2] @ 0

named bitarray: b[2] @ 2

qinput.txt format version 1

a = 1

b = 1

qoperators.txt format version 1

operators: 4

operator #: 0

name: H

size: 1 bits

matrix:

(0.7071067812 + i*0)(0.7071067812 + i*0)

(0.7071067812 + i*0)(-0.7071067812 + i*0)

operator #: 1

name: cZ

size: 2 bits

matrix:

(1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (0 + i*0) (-1 + i*0)

... (two additional operators elided for brevity)

Input values to add

Quantum circuit (sequence of gate applications)

Gate

definitions

qopseq.txt format version 1

operations: 9

operation #0: apply unary operator H to bit a[1]

operation #1: apply binary operator cPiOver2 to bits a[1], a[0]

operation #2: apply unary operator H to bit a[0]

operation #3: apply binary operator cZ to bits b[1], a[1]

operation #4: apply binary operator cZ to bits b[0], a[0]

operation #5: apply binary operator cPiOver2 to bits b[0], a[1]

operation #6: apply unary operator H to bit a[0]

operation #7: apply binary operator inv_cPiOver2 to bits a[1], a[0]

operation #8: apply unary operator H to bit a[1]

Declare registers

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 14

SEQCSim Core AlgorithmSEQCSim Core Algorithm

// Bohm-inspired iterative state updating.

procedure SEQCSim::run():

curState := inputState; // Current basis state

curAmp := 1; // Current amplitude

for PC =: 0 to #gates, // Current gate index

(w.r.t. gate[PC] operator and its operands,)

for each neighbor nbri of curState,

if nbri = curState, amp[nbri] :=curAmp;

else amp[nbri] := calcAmp(nbri);

amp[] := opMatrix * amp[]; // Matrix prod.

// Calculate probabilities as normalized

// squares of amplitudes.

prob[] := normSqr(amp[]);

// Pick a successor of the current state.

i := pickFromDist(prob[]);

curState := nbri; curAmp := amp[nbri].

// Feynman-inspired recursive

// amplitude-calculation procedure.

function SEQCSim::calcAmp(Neighbor nbr):

curState := nbr;

if PC=0 return (curState = inputState) ? 1 : 0;

(w.r.t. gate[PC−1] operator and its operands,)

for each predecessor predi of curState,

PC := PC − 1;

amp[predi] = calcAmp(predi);

PC := PC + 1;

amp[] := opMatrix * amp[];

return amp[curState];

Complete C++ console app has

24 source files, total size 115 KB

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 15

Illustration of SEQCSim Illustration of SEQCSim

Operation on 2Operation on 2××22--Bit Draper AdderBit Draper Adder

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

b1 b0 a1 a0

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71i

0

0

0

0

0

0

0

0

−.5

−.5i

H
(a

1
)

φ
1
(a

1
,a

0
)

H
(a

0
)

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

−.5

−.5i

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

.5

.5i

0

0

0

0

.5

−.5

0

0

0

0

0

0

0

0

.5

−.5

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

8

φ
0
(b

1
,a

1
)

φ
0
(b

0
,a

0
)

φ
1
(b

0
,a

1
)

H
(a

0
)

φ
1
−

1
(a

1
,a

0
)

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

9

H
(a

1
)

State on

Bohmian

trajectory

State

visited

in final

recursion

Step number ����

P
o

ss
ib

le
 b

as
is

 s
ta

te
s

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 16

Complexity AnalysisComplexity Analysis

� Defining the following parameters:

� a = const. = max. arity of quantum gate operators

� s = width (# of qubits) in simulated circuit

� t = time (# of operations) in simulated circuit

� k (< t) = # of nontrivial operations in sim’d circ.

� For a straightforwardly-optimized
implementation of SEQCSim, we can have

� Space complexity: O(s + t)

� Time complexity: O(s + t·2ak)

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 17

SEQCSim OutputSEQCSim Output

on 2on 2××22--Bit Draper AdderBit Draper Adder

Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.

(C++ console version)

By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.

Copyright (C) 2008 Florida State University Board of Trustees.

All rights reserved.

SEQCSim::run(): Initial state is 3->0101<-0 (4 bits) ==> (1 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=0)

The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=1)

The new current state is 3->0111<-0 (4 bits) ==> (0 + i*0.707107).

... (5 intermediate steps elided for brevity) ...

SEQCSim::Bohm_step_forwards(): (tPC=7)

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=8)

The new current state is 3->0110<-0 (4 bits) ==> (1 + i*0).

SEQCSim::done(): The PC value 9 is >= the number of operations 9.

We are done! a = 1+1 = 2 = 102

b=1 a=1

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 18

Empirical MeasurementsEmpirical Measurements

of Space Complexityof Space Complexity

QCAD vs. SEQCsim memory usage

1,000

10,000

100,000

1,000,000

10,000,000

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

P
e

a
k
 m

e
m

o
ry

 u
s
a
g

e
 (
K

B
)

QCAD

SEQCsim

Linear growth of SEQCsim memory usage with size of

quantum circuit

y = 0.1656x + 1895.9

R
2
 = 0.9282

1892

1896

1900

1904

1908

1912

1916

1920

1924

1928

1932

1936

1940

1944

1948

1952

1956

1960

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

P
e
a
k
 m

e
m

o
ry

 u
s
a
g
e
 (

K
B

)

E
xp

on
en

ti
al

!

(Note: QCAD crashed on the 28-bit circuit, due to
insufficient memory available on the test PC.)

Linear

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 19

Empirical MeasurementsEmpirical Measurements

of CPU Time Utilizationof CPU Time Utilization

� SEQCSim is ~10× faster
than QCAD on small
circuits.
� This is probably largely just

because QCAD has a GUI
and SEQCSim doesn’t.

� SEQCSim is currently ~2×
slower than QCAD on
large circuits.
� But, there is much room for

performance improvement.
� Take better advantage of

available memory.

� Reimplement in special-
purpose hardware

QCAD vs. SEQCsim CPU time usage

0.01

0.1

1.

10.

100.

1,000.

10,000.

100,000.

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

C
P

U
 t
im

e
 (

s
e

c
s
.)

QCAD

SEQCsim

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 20

Next StepsNext Steps

� Software implementation:
� Implement a special cache for state amplitudes, to boost performance

� Develop a new simulator API around a “Qubit” class that mimics the
(ideal) real statistical behavior of quantum bits
� Invokes SEQCSim engine “behind the scenes”

� Allows coding quantum algorithms directly in C++

� FPGA-based hardware implementation:
� Design custom register structures for faster bit-manipulation, and

custom memory units for hardware caching of state amplitudes

� Develop efficient adders/multipliers on FPGA platform for floating-
point numbers in a simplified custom format

� Use these as the basis for a custom parallel arithmetic datapath for
quickly computing inner products of complex vectors

� Design an optimized special-purpose iterative FSM for the graph
traversal, to replace the recursive calcAmp() procedure

FAMU-FSU College of Engineering

EXTRA SLIDES

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 22

What is a FPGA?What is a FPGA?

EP2C35F672C6ES

35K Logic Elements

35 embedded

18x18 bit multipliers

105 M4K memory

blocks

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 23

FPGA Tools (1 of 5):FPGA Tools (1 of 5):

AlteraAltera SOPC BuilderSOPC Builder

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 24

FPGA Tools (2 of 5):FPGA Tools (2 of 5):

NIOS II SoftNIOS II Soft--Core ConfigurationCore Configuration

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 25

FPGA Tools (3 of 5):FPGA Tools (3 of 5):

Custom Hardware Generation with C2HCustom Hardware Generation with C2H

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 26

FPGA Tools (4 of 5):FPGA Tools (4 of 5):

LISA Processor Design CycleLISA Processor Design Cycle

FPGA

Implementation

Size, speed, power

FPGA

Implementation

Size, speed, power

Design

tool

generation

Design

tool

generation

Assembler, linker,

profiling,

ISS, C-

compiler

Architecture

exploration

Architecture

exploration

ISA, cache,

Co-

proces

sor

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 27

FPGA Tools (5 of 5):FPGA Tools (5 of 5):

LISA Development ToolsLISA Development Tools

Disassembler

Memory

monitor

Profiler
regs

FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 28

ConclusionConclusion

� We have implemented in C++ and validated a
working prototype of a quantum computer simulator
that uses only linear space.
� This tool can be useful to help students & researchers

validate quantum algorithms.
� Online resources at http://www.eng.fsu.edu/~mpf/SEQCSim

� Contact michael.patrick.frank@gmail.com with questions about
source code

� A future version will provide a more expressive quantum
programming language based on C++.

� We are also designing an FPGA-based hardware
implementation to boost simulator performance.
� This approach is made much more feasible by the extreme

memory-efficiency of our algorithm.

