FAMU-FSU
College of Engineering '

1551

Space-Efficient Quantum

Computer Simulators

Invited seminar talk presented Mar. 14%, 2012 at
Laboratory for Physical Sciences, University of Maryland, College Park

Michael P. Frank!, Liviu Oniciuc',
Uwe H. Meyer-Baese', Irinel Chiroescu?

'Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering
’National High Magnetic Field Laboratory, Florida State University

3/30/2012 M. Frank et al., Space-Eff. QC Sims., LPS Mar. ‘12 1

Abstract of Talk (for reference)

A widespread misconception about quantum computing is that simulating a quantum computer on
a classical one requires exponential memory resources. In fact, it has long been known that
quantum simulation requires only polynomial space, due to general space-time complexity
tradeoffs discovered in the early days of computing. The basic approach essentially amounts to the
numerical evaluation of a discretized path integral. Furthermore, amplitudes calculated in this way
can be used to stochastically evolve a single computational basis state forwards in time in
accordance with the precise flow of probability mass through configuration space that is dictated by
quantum statistics, in a manner reminiscent of Bohm's "pilot wave" interpretation of quantum
mechanics. In this way, we can properly account for interference effects without ever having to
compute and store a full state vector.

In this informal talk, we'll briefly review the history of this method, and then discuss some
existing and planned future implementations of it. We have already made available the C++ source
code for a simple space-efficient quantum computer simulator based on these ideas. A future
version will offer a convenient "Qubit” class that automatically executes the space-efficient
simulation method behind the scenes, to allow arbitrary quantum algorithms to be directly written
in C++ and executed without concern for memory limitations. We also are planning to develop an
FPGA-based implementation of the core simulator which could offer speedups of 100x or more
over CPU-based implementations.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 2

Talk Abstract

A widespread misconception re: quantum computing:

» “Simulating a quantum computer on a classical one takes exponential
memory resources as a function of the number of qubits”
o This is only true for a limited class of simulation techniques

Computational complexity theorists have long known general ways
to make space-intensive computations more space-efficient.

= Applying this general method to quantum computer simulation yields
a discrete analogue to numerically evaluating a path integral.

o Can compute arb. amplitudes w/o ever storing a complete state vector!

Computing amplitudes on-demand in this way lets us stochastically
evolve just a single classical state over time in a way that exactly
respects quantum statistics.

m Method reminiscent of Bohm’s “pilot wave” interpretation of QM.

In this informal talk, we briefly review the history of this idea and
discuss some existing & proposed implementations.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 3

What is a Quantum Computer?

O A new, more powerful fundamental paradigm for computing
within the laws of physics.

Apparently exponentially faster on some problems.

O Key differences btw. Classical vs. Quantum Computation:

3/30/2012

State representations:
o Classical: A sequence of n bit values, w € B”, where B = {0,1}.

0 Quantum: A function ¥ € H, where H = B" — C, mapping classical
states to complex numbers (“amplitudes’).

Logic operators (“gates”):
o Classical: A function from several bits to one bit, g:B* — B

0 Quantum: A unitary (invertible, length-preserving) linear
transformation U:S — S, where S = B — C

Measurement of computation results:
o Classical: Measured value is exactly determined by machine state.
O Quantum: Probability of measuring state as being w is o<|¥(w)I?.

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

A Simple Quantum Circuit: Draper Adder .'

Uses the quantum Fourier transform (QFT) and its inverse QFT-! to add two 2-bit input
integers in a temporary phase-based representation. Here it is computing 1 + 1 = 2.

b=101,) b 10) T 0)

- | by 1) /L 1)
(4, 10) %\ ? 1)y

a=101,) | H \9*\1/ H a =110,)
=1 _
L 1D)-H 2y H-) 0) =
N AN J)
Y Y Y
a:= QFT(a) add b into a = OFT Y(a)
phase of a
_ -/ ‘1 0 0 0 |
11 1 s 010 0
H=—— a:=(a+ b) mod 4 %=1 0 1 0
J2[1 -1
0 0 0 exp(im2™)
Hadamard gate i

Co_ntrolled-phase gate

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 5

- Bx QCAD design tool

File Wiew Edit Calc Help .

TR & simulator, by

DEWE BR[2 X 2] o ’

; Hiroshi Watanabe,
I o T L T S . University of
o p+—ttttt | Tokyo, available
0 {o+—+——+—+—+—+—+—+— froo—+——{ao}+{os} +—+—+—+—+—+—+—+—+—+—+—+— from
¢ Lt A+—————+——+—+— e @Lﬂ ssHeed—————+—+—+—+—+—+— | http://apollon.cc.u-
o5 (o] [« o eed—— ’ l 2w} n B | tokyo.ac.jp/~wata
o {io] W Hao s+ . | l -+ T A nabe/qcad/index.ht
m@::l : e e — . e e R e R : l::@ ml
as@:::¢::l%:::¢::::::E—F?l::qp:::@

O Some advantages of the Draper adder:
= Minimal quantum space usage: Requires no ancilla bits for carries.
®m A good simple, but nontrivial example of a quantum algorithm.

O A disadvantage of the Draper adder:

= Slow; requires O(n?) gates for an n-bit add!
0 Unlikely to be used in practice, except when qubits are very expensive.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 6

Some Potential Applications
of Quantum Computers

O If quantum computers of substantial size are built,
known quantum algorithms can be applied to obtain:

= Polynomial-time cryptanalysis of popular public-key
cryptosystems (e.g., RSA). (Shor’s factoring algorithm.)

» Polynomial-time simulations of quantum-mechanical
physical systems. (Algorithms by Lloyd and others.)

m Square-root speedups of simple unstructured searches of
computed oracle functions. (Grover’s search algorithm.)

= And not a whole lot else, so far!

O A much wider variety of interesting & useful
quantum algorithms 1s needed,

» But new quantum algorithms are very difficult to develop.
O Need flexible, capable simulation tools for design validation.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009

A Problem with Nearly All Existing
Quantum Computer Simulators

0 They require exponential space as the number
of bits 1n the sitmulated computer increases.

3/30/2012

Why: They update a state vector explicitly
representing the full wavefunction ¥: B* — C.

O Vector represented as a list of 2 complex numbers
m | for each possible configuration of the machine’s n bits

If the available memory holds 1G (23Y) numbers,
0O We can only simulate <30-bit quantum computers!

The large space usage also imposes a significant
slowdown to access these large data sets

0 Relatively slow access to main memory (or even disk)

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

8

A Way to Solve This Problem

O We can reformulate quantum mechanics in an
equivalent framework without any state vectors.

Feynman (1942): Any desired quantum amplitude
(value of propagator between initial/final states) can
be computed using a “path integral” expression
summing over possible classical trajectories.

Bohm (1952): Can time-evolve a classical (i.e.
position basis) state under the influence of only those
amplitudes 1n 1ts immediate neighborhood in
configuration space.

0O The only real requirement 1s to obtain the right
probability of arriving at each final state!

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 9

A Complexity Theorist’s View of
Feynman’s Path Integral

O Consider any computation with a wide datatflow
graph (uses more space than time)

E.g. the graph at right uses 4 variables
at time =1, but only takes 2 time steps.
O We can make the algorithm
more space-efficient by
computing intermediate
variables dynamically when
required, instead of storing them. =1

O Bernstein & Vazirani, 1993: Can apply this generic

tradeoff to simulating quantum computers.
. BQP c PSPACE.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 10

SEQCSim: The Space-Efficient
Quantum Computer Simulator

O Core 1dea was conceived circa 2002 at UF.

Add Bohm updates to Feynman recursion.
0 Avoids having to enumerate all possible final states.

0 A working C++ software prototype was
developed and demonstrated at FSU 1n 2008.

Future versions of the simulator will have a more
expressive programming interface.
0 A performance-optimized FPGA-based
implementation 1s currently being developed.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009

11

Elements of the Approach

O Two basic categories of quantum gates:

3/30/2012

Trivial gates are those that perform only a classical
reversible transformation or phase rotation of a
computational basis state.

O le., operation matrix is diagonalizable in the computational
basis.

o Examples: NOT, CNOT, CCNOT, ¢, etc.

0 These gates can be executed immediately (& deterministically)
W. No time or space penalty.

Nontrivial gates are those that combine amplitudes of

multiple basis states.

O Non-diagonalizable in comp. basis.

o Examples: Hadamard gate, NOT!2, etc.

0 Require computing amplitude(s) of neighboring predecessor
state(s) (slow) & stochastically choosing a successor state.

M. Frank et al., Space-Eff. QC Sim., SPIE 2009 12

SEQCSim Input Files

for 2x2-Bit Draper Adder

gconfig.txt format version 1
bits: 4 Declare registers
named bitarray: al[2] @ O
named bitarray: b[2] @ 2

goperators.txt format version 1
operators: 4

operator #: 0

name: H

ginput.txt format version 1
a =

. Input values to add

Quantum circuit (sequence of gate applications)

size: 1 bits

matrix:

(0.7071067812 + i*0) (0.7071067812 + 1i*0)
(0.7071067812 + i*0) (-0.7071067812 + 1i*0)

operator #: 1

gopseq.txt format version 1

operations: 9

operation #0: apply unary operator H to bit al[l]
operation #1: apply binary operator cPiOver2 to bits

operation #2: apply unary operator H to bit al[0]

name: cZz Gate operation #3: apply binary operator cZ to bits b[l],
size: 2 Dbits 111 i . i i

. deflnltIOIlS operation #4: apply binary operator cZ to bits b[0],
matrix: operation #5: apply binary operator cPiOver2 to bits
(L + i*0) (0 + i*0) (0 + i*0) (0 + 1i*0) operation #6: apply unary operator H to bit al[0]
(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0) operation #7: apply binary operator inv_cPiOver2 to bits a[l], alO0]
(0 + i*0) (0 + i*0) (1 + 1i*0) (0 + i*0) operation #8: apply unary operator H to bit a[l]
(0O + 1*0) (0O + 1*0) (0 + i*0) (-1 + 1i*0)
... (two additional operators elided for brevity)

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 13

SEQCSim Core Algorithm

// Bohm-inspired iterative state updating.
procedure SEQCSim::run():

curState := inputState; [/ Current basis state
curAmp = 1; /I Current amplitude
for PC =: 0 to #gates, // Current gate index
(w.r.t. gate[PC] operator and its operands,)
for each neighbor nbri of curState,
if nbri = curState, amp[nbri] :=curAmp;
else amp[nbri] := calcAmp(nbri);
ampl] := opMatrix * ampl]; // Matrix prod.
/I Calculate probabilities as normalized
/I squares of amplitudes.
prob[] := normSqr(ampl]);
/] Pick a successor of the current state.
i := pickFromDist(probl]);

curState := nbri; curAmp := amp|nbri].

// Feynman-inspired recursive

/[amplitude-calculation procedure.

function SEQCSim::calcAmp(Neighbor nbr):
curState := nbr;
if PC=0 return (curState = inputState) ? 1 : 0;

(w.r.t. gate[PC—1] operator and its operands,)
for each predecessor predi of curState,

PC=PC-1;
amp|predi] = calcAmp(predi);
PC:=PC+1;

amp(] := opMatrix * ampl];

return amp|curState];

Complete C++ console app has
24 source files, total size 115 KB

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 14

State on
Bohmian
trajectory

State
visited
in final

recursion

1
0
0 |
0 |
0
0
0
0 |
0
0

9_0000007_

vwml g T e (om
CTITILTTT T v
;e

(O 0g)00

wn
SIS ¢

[5i]
| —.Si

0

0

0

0

0

0

0

0

(1014)%0

K Oom

>
>
’.=
=
=

-5 |
-.5i

0

0

0

0

0

0

0

0

=
&
O
&
fa
7
e
=
=
S
ﬁ
=
&
<~
92
=
=

TITTLLTTITTTTTT e

Q2)z

Operation on 2x2-Bit Draper Adder

Step number -
1

§
5
i
i

[—] K=l k=] | Re}| e =] |Nel| Je) | o) | o) | Ruo) | Juo] | Feo) | Fa)
IO " O~ O~ O~ D =D —
S o ==~ o0o =300 =—=3 0 = —
S S oo =—=—S3S 00 = — — —
S SSS 00O ==~~~ — — —

Sa1e)S SISeq 9[qISSO]

15

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

3/30/2012

Complexity Analysis

O Defining the following parameters:

a = const. = max. arity of quantum gate operators
s = width (# of qubits) in stmulated circuit

t = time (# of operations) 1n simulated circuit

k (< t) = # of nontrivial operations in sim’d circ.

O For a straightforwardly-optimized
implementation of SEQCSim, we can have

Space complexity: O(s + 1)

= Time complexity: O(s + 1-29)

3/30/2012

M. Frank et al., Space-Eff. QC Sim., SPIE 2009 16

SEQCSim Output
on 2x2-Bit Draper Adder

Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.

(C++ console version)
By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.
Copyright (C) 2008 Florida State University Board of Trustees.

All rights reserved.

b=1 a=1

SEQCSim::run(): Initial state is 3—>5381<—O (4 bits) ==> (1 + 1*0).
SEQCSim: :Bohm_step_forwards(): (tPC=0)

The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + 1i*0).
SEQCSim: :Bohm_step_forwards(): (tPC=1)

The new current state is 3->0111<-0 (4 bits) ==> (0 + 1i*0.707107).
... (5 intermediate steps elided for brevity) ...
SEQCSim: :Bohm_step_forwards(): (tPC=7)

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).
SEQCSim: :Bohm_step_forwards(): (tPC=8)

The new current state 1is 3—>Ol&g<—0 (4 bits) ==> (1 + i*0).

SEQCSim: :done () : The PC value 9 isNii the number of operations 9.

a=1+1=2=10,

We are done!

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009

17

Peak memory usage (KB)

Empirical Measurements
of Space Complexity

10,000,000

QCAD vs. SEQCsim memory usage
Linear growth of SEQCsim memory usage with size of
1960 quantum circuit

1956
QCAD
- 1952 y=0.1656x + 1895.9

1948 2
1944 R™=0.9282

1940
1936
1932
1928
1924
1920
1916
1912
1908
] 1904
Linear 1900

e 1896

1,000 1892

1,000,000 —o— SEQGsim

\-
3
o
&
S
100,000 "VQ
9

Peak memory usage (KB)

10,000

4 6 8 10 12 14 16 18 20 22 24 26 28 0 100 200 300 400
QFT adder circuit width (qubits) QFT adder circuit size (# of 1- and 2-qubit operations)

(Note: QCAD crashed on the 28-bit circuit, due to
insufficient memory available on the test PC.)

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 18

Empirical Measurements
of CPU Time Utilization

O SEQCSim is ~10x faster

than QCAD on small 100,000.
circuits. 0000

» This is probably largely just

because QCAD has a GUI 1,000.

and SEQCSim doesn’t.

O SEQCSim is currently ~2x
slower than QCAD on
large circuits.

m But, there 1s much room for
performance improvement.

0 Take better advantage of
available memory. 0.01

0 Reimplement in special-
purpose hardware

100.

CPU time (secs.)

o
a

—
©

QCAD vs. SEQCsim CPU time usage

_m— QCAD

—o— SEQCsim

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009

19

Next Steps

O Software implementation:

Implement a special cache for state amplitudes, to boost performance

Develop a new simulator API around a “Qubit” class that mimics the
(ideal) real statistical behavior of quantum bits

0 Invokes SEQCSim engine “behind the scenes”

0o Allows coding quantum algorithms directly in C++

O FPGA-based hardware implementation:

3/30/2012

Design custom register structures for faster bit-manipulation, and
custom memory units for hardware caching of state amplitudes

Develop efficient adders/multipliers on FPGA platform for floating-
point numbers in a simplified custom format

Use these as the basis for a custom parallel arithmetic datapath for
quickly computing inner products of complex vectors

Design an optimized special-purpose iterative FSM for the graph
traversal, to replace the recursive calcAmp() procedure

M. Frank et al., Space-Eff. QC Sim., SPIE 2009 20

EXTRA SLIDES

What is a FPGA?

N o o

Embedded Multipliers

35K Logic Elements

Logic Array

A i e | |

35 embedded
18x18 bit multipliers

[|| i

M4K Memory Blocks EP2C35F672C6ES

Side 1/0 Elements with
Support for PCI/PCI-X & —
Memory Interfaces

105 M4K memory
blocks

J i e

“

T | ooom

1[lalala i alalilalaalaalalala e e alala)

_JJ_I_LLl 1 T o O o o | |

Top & Bottom 1/0 Elements Phase-Locked
with Support for Memory Interfaces Loops

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 22

FPGA Tools (1 of 5):

Altera SOPC Builder

8 Altera SOPC Builder - nios_system.sopc {C:\AlteraDEZ2%DE2_DMA_tutorial\nios_system.sopc) 10| x|
File Edit Module System “iew Toolz Miosll Help
System Contents | System Generation |
1] Atera SOPC Builder o] | [Teveet Clock Setings
few @ Mios Il Processar ’7Device Family:lm Mame Source hiHz Al
[#-Bridoes and Adapters clk_1 External 50.0 ——
E--imerface Protocols Femas
-85
‘Ethernet
High Speed
#-PCl Usze |Conne. . Maciule Mame Description Clock Baze Encl IR
E}-Serial !
v Bvalon-5T JTAG | — instruction_master Avalon Memory Mapped Master clk_1
3 Avalon-5T Serial | — data_master Avalon Memory Mapped Master IEQ O IRQ 31—
o JTAG UART N ftaa_debug_module Avalon Memory Mapped Slave 001002800 [Ox0100Zf£f
+ SPI(S3 Wire Serial] I = onchip_memory2_0 on-Chip Memory (RAK or RObk)
o UART (RE-232 e — =1 Axvalon Memory Mapped Slave clk_1 0301001000 |[0x01001££ff
[#-Legacy Components I~ Bl Switches PIC (Parallel 100
[S-Mlemaries and Memary Contro [— a1 Axvalon Memory Mapped Slave clk_1 0301003020 |[0x010030Z£
¥-Dhi, v E LEDs PIC (Parallel 1100
[—s =1 Avalon Memory Mapped Slave clk_1 0301003030 |0x0100303f
I~ E jtag_uart_0 JTAG UART
+ Avalon-=T Dual C — avalon_jtag_slave Avalon Memory Mapped Slave clk_1 0301003040 |(0x01003047 >—ﬁ|
o Avalon-ST Multi-C I E =dram_0 SDRAM Contraller
o Avalon-ST Round ¥ — =1 Avalon Memory Mapped Slave clk_1 Oxc00800000 [OxO0Ef£E£££
g rd B sys_clk_timer Interval Timer
— a1 Axvalon Memory Mapped Slave clk_1 0301003000 |[0x0100301 £ >—ﬂ
Mewy... | Edlit.... | Al | Remaore | Edlit... | & Mave g | F Move Down | Address Map.. Filter ... |

o, Warning: Switches: PIC inputs are not hardwired in test bench. Undefined values will be read fram PIO inputs during simulation.

Exit | Help |

4 Preyv | Mext | |

Generate

3/30/2012

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

23

FPGA Tools (2 of 5):

NIOS II Soft-Core Configuration

3/30/2012

rCore Mios |l

nced Featu

Select a Hios Il core:

. Rl
Nios Il 32-bit
Selector Guide
Faily: Cyclone |l

fsvmm: 50.0 MHz

cpuid: 0

Performance st 50.0 MHz Up to 5 DMIPS
Logic Usage BO0-700 LEs
Memary Usage Twvio Mk (oF ecuiv.)

ONios Ilfe ONios Ilfs |®Nios IlF
SC RISC RISC
32-hit 32-hit
Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Harchaare Divicle
Barrel Shifter
Data Cache

Up to 25 DMIPS
1200-1400 LEs
Twwo Mdks + cache

Harchavare Mutiply: IEmbedded Muttipliers

;I [~ Harcware Divide

Dynamic Branch Prediction
Upto 51 DMIPS

1400-1800 LEs

Thres Maks + cache

Reset “ector: Memory: Isdram i

LI Offzet: IUXD

000500000

Exception Yector: Memory: Igdram_n

[Incluce MU

LI Offget: Inxgn

Cnly include the ML when using an opersting system that explicitly supports an MU

000500020

Fast TLE Mizs Exception Vector: Memory:

I Inclucs MPU

LI Offset: IDxD

d|

Cancel | <Back| Mext = | Finish |—
-

|2

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

FPGA Tools (3 of 5):

Custom Hardware Generation with C2H

Nios II C/C++ - dma_cZh_tutorial.c - Mios II IDE =10l x|
File Edit Refactor Mavigate Search Project Tools Run Window Help
[N o |- - G- H-0-Q%-|®@ 5 |-G 5 | Mios 11 o+
-Nios II CfC++ Proj.. &4 = O/ [€ dma_czh_tutorial.c &2 = 0| 5= outline 22 =0
=y = q><b = #include <stdio.h> - 1-"12 }{{ ‘Q\S e -
-5 altera,components ﬂ?nclucle <string. h> shdic.h -
EIUC DMA_butor i}?nclucle <sys/alt_cache.h> string.h
= Debug #include "sys/alt_slarm.h” sysialt_cache.h
E@ dma_czh_tutorial.c . sysfalk_alarm.h
_____ [#idefine TRANSFER_LENGTH 1048576 PR 5V
_____ U ing.h #idefine ITERATIONS 100 e AT =]
_____ .-lsys,l'alt_alarm.h ildef:!.ne Jwitches (volatile char *) 0Ox01003020 ® Make Targets 53 =g
_____ .-lsys,l'alt_cache.h #idefine LED= (char *) 0Ox01003030 =
----- # ITERATIONS)) _) _) fi =
_____ # LEDs int Mt int * _ restrict_ dest_ptr, int ¥ _ restrict_ source_ptr, int length IgCDMA_tutor
----- # Switches c S DMA_tutor _syslib
----- # TRAMNSFER_LENGTH (s
----- @ do_dma o L. =
_____ ® main ‘Ifort i 0; 1 < (length >> 21; i++) _pl_l
- |=| application,stf
""" readme, txk Problems|C0nsole|Pr0perties m] | Refresh (% = =0
=% DA _tutor_syslib [nios_system] B 1= DMA_tutor (Debug)
O Use software implementation For all accelerators
O Use the existing accelerators
O Analyze all accelerators
2 Build software and generate SOPC Builder system
@ Build software, generate SOPC Builder system, and run Quartus 1T compilation
== do_dmai)
@ Use hardware accelerator in place of software implementation. Flush data cache before each call.
O Use hardware accelerator in place of software implementation
O Use software implementation
=8 Build report cannot be displayed. Build the project.
4] |]
Iflr J
3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 25

FPGA Tools (4 of 5):
LISA Processor Design Cycle

3/30/2012

vvvvvv

ISA, cache,

Co-
proces
sor

Assembler, linker,

profiling,
ISS, C-

compiler

I = 5|

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

26

FPGA Tools (5 of 5):

LISA Development Tools

Clprocessor Debugger: 'meyerbaese /models, = = |
File Program Debug Miew Profiling Windows Extras Help
EE=EE = E R =11 =N =R ===
||lsymbol set [Eimage Symbols | Goto symbol | =] Goto Address [0-00000000 =3z = [2pp1icatio =]|
= = _ O] =] - x|
L [00000000] HOR - . | :Snume —
| [00000001] HOP
™ ao|e[efT Memor Range: 000000000, 00000001 [lFiles
; R[Z] has pointer to coefficients operands Size: 00000100, Mative Bitsize: 16 Search Director...
> {gggggggg} Lo 2{3} ﬁEJ}’:g & g;*ff) Endianess, Mative: little, Display: litle ther ’;il'eil
== B - > = ssembly Files
= ; RI3] is pointer to x data array Elroes U £ £ g 4 E @ O eader Filas
Lz [00000004] LOL R[3], #{_x0 & OxFf) oooooooooa| oooo1fooooz] oooo3] oooo4] oooos| oooos| aooLofonozo /Cas Files
= [00000005] LOH R[2], #{_x0 >> 8) 0000000008 00040| 000E0| 00160| 00320| 00E40| 01280[02560 05120
= {ggggggg?} e 0000000016 00000 a0oon anoon
it oo00oo00z4| ooooo| ooooo 00000
T i R[4]1=R[4]+ SR[3]++ * SR[2]++ ooooooooaz| ooooo[ooooo Memor 00000
{gggggggg} MAC H{j}J R{g}, R{S} 0000000040 ooooo[ooooo ; 0oooo Fiios MEITEEE
MAC R . R . R [\ Files A Symbols /—
[o0000004] MAC R [4] gl nooooooo4g| ooooo| ooooo 0ooon L
no00o000se| ooooo| ooooo . 00000
; Test progrd ° 0000000064 | 00000[00000 monl Or 00000
. o x| Disassembler || oo o |1
o{oooonoo;} T 0000000080 0000] D000 TS | 000 ﬂ ARG
0000000e HOP oonoooooga] onoon[noonol aonnol oononl onooal noooo| oooool anonol |+ FPC
[1
ol : 1 < | | EPC
dobe nem Jprog wem peo_valid
on Prafile R[0O]
Symbaols Address Instruction Disassembly [Mame Calls Calls/Total E[1]
[00000001] 00000 HOP B T T.06% R[2]
[00000002] 01200 LOL R[2],#0 [|decods Ll 17.72% E[3]
[00000003] 02200 LDH R[2], #0 T‘Bity'pe [NTIE R[4]
[00000004] 01306 LOL R[3],#6 T |0_type (IS E[5]
[0000000S] 02300 LOH R[2],#0 [[f_tve= rO l er 3.80%
[00000008] 00000 HOP | _tvee C0E%
[00000007] 00000 HOP [[F_tvee o 0.00% reg
[00000008] 1h324 MaC R[4],R[3].R[2] [|direct_addressing i 0.00%
[00000002] 1h324 MaC R[4],R[3].R[2] + |indirect_addressing o [INTiES —
[0000000a] 1Th324 MAC R[4],R[3].R[Z] (| indirects_addressing] I E0= R[11]
[0000000b] 00000 HoP R[12]
> o [0000000c] 00000 HOP | | ’|_II R[13]
rannnannAl annn T i in pi in ni in ni RI141
a MOE, _'l—l Mo Pipe AG in pipe EX in pipe FD in pipe | Registers
|
5' nNoTnlng To do -
Nothing to do
Hothing to do
000& + 0001 + 0000 = O00&
0014 + 0002 + O00A = 0032
0028 + 0003 + 0032 = O0AA

Hothing to do
Nothing to do

-

Y stdout A stderr f

[Source: mactestasm 56 [Step : 14 | Simulation Mode : JIT-CCS | (c) CoWare LISATek Yersion 2005.2.1 Linus —— Fehruary, 2006 Al

3/30/2012

M. Frank et al., Space-Eff. QC Sim., SPIE 2009

27

Conclusion

O We have implemented in C++ and validated a

working prototype of a quantum computer simulator

that uses only linear space.

» This tool can be useful to help students & researchers
validate quantum algorithms.

O Online resources at http://www.eng.fsu.edu/~mpf/SEQCS1m

0o Contact michael.patrick.frank @ gmail.com with questions about
source code

m A future version will provide a more expressive quantum
programming language based on C++.
O We are also designing an FPGA-based hardware
implementation to boost simulator performance.

» This approach 1s made much more feasible by the extreme
memory-efficiency of our algorithm.

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 28

