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Abstract of Talk (for reference)Abstract of Talk (for reference)

A widespread misconception about quantum computing is that simulating a quantum computer on 

a classical one requires exponential memory resources.  In fact, it has long been known that 

quantum simulation requires only polynomial space, due to general space-time complexity 

tradeoffs discovered in the early days of computing.  The basic approach essentially amounts to the 

numerical evaluation of a discretized path integral.  Furthermore, amplitudes calculated in this way 

can be used to stochastically evolve a single computational basis state forwards in time in 

accordance with the precise flow of probability mass through configuration space that is dictated by 

quantum statistics, in a manner reminiscent of Bohm's "pilot wave" interpretation of quantum 

mechanics.  In this way, we can properly account for  interference effects without ever having to 

compute and store a full state vector.

In this informal talk, we'll briefly review the history of this method, and then discuss some 

existing and planned future implementations of it.  We have already made available the C++ source 

code for a simple space-efficient quantum computer simulator based on these ideas.  A future 

version will offer a convenient "Qubit” class that automatically executes the space-efficient 

simulation method behind the scenes, to allow arbitrary quantum algorithms to be directly written 

in C++ and executed without concern for memory limitations.  We also are planning to develop an 

FPGA-based implementation of the core simulator which could offer speedups of 100x or more 

over CPU-based implementations.
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Talk AbstractTalk Abstract

� A widespread misconception re: quantum computing:
� “Simulating a quantum computer on a classical one takes exponential 

memory resources  as a function of the number of qubits”
� This is only true for a limited class of simulation techniques

� Computational complexity theorists have long known general ways 
to make space-intensive computations more space-efficient.
� Applying this general method to quantum computer simulation yields 

a discrete analogue to numerically evaluating a path integral.
� Can compute arb. amplitudes w/o ever storing a complete state vector!

� Computing amplitudes on-demand in this way lets us stochastically 
evolve just a single classical state over time in a way that exactly 
respects quantum statistics.
� Method reminiscent of Bohm’s “pilot wave” interpretation of QM.

� In this informal talk, we briefly review the history of this idea and 
discuss some existing & proposed implementations.
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What is a Quantum Computer?What is a Quantum Computer?

� A new, more powerful fundamental paradigm for computing 
within the laws of physics.
� Apparently exponentially faster on some problems.

� Key differences btw. Classical vs. Quantum Computation:
� State representations:

� Classical:  A sequence of n bit values, w ∈ Bn, where B = {0,1}.

� Quantum:  A function Ψ ∈ H, where H = Bn → C, mapping classical 
states to complex numbers (“amplitudes”).

� Logic operators (“gates”):
� Classical:  A function from several bits to one bit, g:Bk → B

� Quantum: A unitary (invertible, length-preserving) linear 
transformation U:S→ S, where S = Bk → C.

� Measurement of computation results:
� Classical: Measured value is exactly determined by machine state.

� Quantum: Probability of measuring state as being w is ∝|Ψ(w)|2.
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A Simple Quantum Circuit: Draper AdderA Simple Quantum Circuit: Draper Adder

Uses the quantum Fourier transform (QFT) and its inverse QFT−1 to add two 2-bit input 

integers in a temporary phase-based representation.  Here it is computing 1 + 1 = 2.
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A Larger Draper Adder (2A Larger Draper Adder (2××4 bits)4 bits)

� Some advantages of the Draper adder:
� Minimal quantum space usage:  Requires no ancilla bits for carries.

� A good simple, but nontrivial example of a quantum algorithm.

� A disadvantage of the Draper adder:
� Slow; requires Θ(n2) gates for an n-bit add!

� Unlikely to be used in practice, except when qubits are very expensive.

QCAD design tool 

& simulator, by 

Hiroshi Watanabe, 

University of 

Tokyo, available 

from 

http://apollon.cc.u-

tokyo.ac.jp/~wata

nabe/qcad/index.ht

ml
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Some Potential Applications Some Potential Applications 

of Quantum Computersof Quantum Computers

� If quantum computers of substantial size are built, 
known quantum algorithms can be applied to obtain:
� Polynomial-time cryptanalysis of popular public-key 

cryptosystems (e.g., RSA). (Shor’s factoring algorithm.)

� Polynomial-time simulations of quantum-mechanical 
physical systems.  (Algorithms by Lloyd and others.)

� Square-root speedups of simple unstructured searches of 
computed oracle functions. (Grover’s search algorithm.)

� And not a whole lot else, so far!

� A much wider variety of interesting & useful 
quantum algorithms is needed,
� But new quantum algorithms are very difficult to develop.

� Need flexible, capable simulation tools for design validation.
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A Problem with Nearly All Existing A Problem with Nearly All Existing 

Quantum Computer SimulatorsQuantum Computer Simulators

� They require exponential space as the number 
of bits in the simulated computer increases.

� Why: They update a state vector explicitly 
representing the full wavefunction Ψ: Bn → C.

� Vector represented as a list of 2n complex numbers

� 1 for each possible configuration of the machine’s n bits

� If the available memory holds 1G (230) numbers, 

� We can only simulate <30-bit quantum computers!

� The large space usage also imposes a significant 
slowdown to access these large data sets

� Relatively slow access to main memory (or even disk).
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A Way to Solve This ProblemA Way to Solve This Problem

� We can reformulate quantum mechanics in an 
equivalent framework without any state vectors.
� Feynman (1942): Any desired quantum amplitude 

(value of propagator between initial/final states) can 
be computed using a “path integral” expression 
summing over possible classical trajectories.

� Bohm (1952):  Can time-evolve a classical (i.e. 
position basis) state under the influence of only those 
amplitudes in its immediate neighborhood in 
configuration space.

� The only real requirement is to obtain the right 
probability of arriving at each final state!
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A Complexity TheoristA Complexity Theorist’’s View of s View of 

FeynmanFeynman’’s Path Integrals Path Integral

� Consider any computation with a wide dataflow 
graph (uses more space than time)

� E.g. the graph at right uses 4 variables
at time t=1, but only takes 2 time steps.

� We can make the algorithm
more space-efficient by 
computing intermediate 
variables dynamically when 
required, instead of storing them. 

� Bernstein & Vazirani, 1993: Can apply this generic 
tradeoff to simulating quantum computers.

t=0

t=1

t=2

∴ BQP ⊆ PSPACE.
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SEQCSim:  The SEQCSim:  The SSpacepace--EEfficient fficient 

QQuantum uantum CComputer omputer SimSimulatorulator

� Core idea was conceived circa 2002 at UF.

� Add Bohm updates to Feynman recursion.

� Avoids having to enumerate all possible final states.

� A working C++ software prototype was 

developed and demonstrated at FSU in 2008.

� Future versions of the simulator will have a more 

expressive programming interface.

� A performance-optimized FPGA-based 

implementation is currently being developed.



FAMU-FSU College of Engineering

Elements of the ApproachElements of the Approach

� Two basic categories of quantum gates:
� Trivial gates are those that perform only a classical 

reversible transformation or phase rotation of a 
computational basis state.
� I.e., operation matrix is diagonalizable in the computational 

basis.

� Examples:  NOT, CNOT, CCNOT, φn, etc.

� These gates can be executed immediately (& deterministically) 
w. no time or space penalty.

� Nontrivial gates are those that combine amplitudes of 
multiple basis states.
� Non-diagonalizable in comp. basis.

� Examples:  Hadamard gate, NOT1/2, etc.

� Require computing amplitude(s) of neighboring predecessor 
state(s) (slow) & stochastically choosing a successor state.
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SEQCSim Input Files SEQCSim Input Files 

for 2for 2××22--Bit Draper AdderBit Draper Adder

qconfig.txt format version 1

bits: 4

named bitarray: a[2] @ 0

named bitarray: b[2] @ 2

qinput.txt format version 1

a = 1

b = 1

qoperators.txt format version 1

operators: 4

operator #: 0

name: H

size: 1 bits

matrix:

(0.7071067812 + i*0)(0.7071067812 + i*0)

(0.7071067812 + i*0)(-0.7071067812 + i*0)

operator #: 1

name: cZ

size: 2 bits

matrix:

(1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0) 

(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0) 

(0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0) 

(0 + i*0) (0 + i*0) (0 + i*0) (-1 + i*0)

... (two additional operators elided for brevity)

Input values to add

Quantum circuit (sequence of gate applications)

Gate

definitions

qopseq.txt format version 1

operations: 9

operation #0: apply unary operator H to bit a[1]

operation #1: apply binary operator cPiOver2 to bits a[1], a[0]

operation #2: apply unary operator H to bit a[0]

operation #3: apply binary operator cZ to bits b[1], a[1]

operation #4: apply binary operator cZ to bits b[0], a[0]

operation #5: apply binary operator cPiOver2 to bits b[0], a[1]

operation #6: apply unary operator H to bit a[0]

operation #7: apply binary operator inv_cPiOver2 to bits a[1], a[0]

operation #8: apply unary operator H to bit a[1]

Declare registers
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SEQCSim Core AlgorithmSEQCSim Core Algorithm

// Bohm-inspired iterative state updating.

procedure SEQCSim::run():

curState := inputState;    // Current basis state

curAmp := 1;                   // Current amplitude

for PC =: 0 to #gates,      // Current gate index

(w.r.t. gate[PC] operator and its operands,)

for each neighbor nbri of curState,

if nbri = curState, amp[nbri] :=curAmp;

else amp[nbri] := calcAmp(nbri);

amp[] := opMatrix * amp[]; // Matrix prod.

// Calculate probabilities as normalized

//      squares of amplitudes.

prob[] := normSqr(amp[]);   

// Pick a successor of the current state.

i := pickFromDist(prob[]);

curState := nbri;  curAmp := amp[nbri].

// Feynman-inspired recursive 

//       amplitude-calculation procedure.

function SEQCSim::calcAmp(Neighbor nbr):

curState := nbr;

if PC=0 return (curState = inputState) ? 1 : 0;

(w.r.t. gate[PC−1] operator and its operands,)

for each predecessor predi of curState,

PC := PC − 1;

amp[predi] = calcAmp(predi);

PC := PC + 1;

amp[] := opMatrix * amp[];

return amp[curState]; 

Complete C++ console app has

24 source files, total size 115 KB



FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 15

Illustration of SEQCSim Illustration of SEQCSim 

Operation on 2Operation on 2××22--Bit Draper AdderBit Draper Adder
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Complexity AnalysisComplexity Analysis

� Defining the following parameters:

� a = const. = max. arity of quantum gate operators

� s = width (# of qubits) in simulated circuit

� t = time (# of operations) in simulated circuit

� k (< t) = # of nontrivial operations in sim’d circ.

� For a straightforwardly-optimized 
implementation of SEQCSim, we can have

� Space complexity: O(s + t)

� Time complexity: O(s + t·2ak)
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SEQCSim OutputSEQCSim Output

on 2on 2××22--Bit Draper AdderBit Draper Adder

Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.

(C++ console version)

By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.

Copyright (C) 2008 Florida State University Board of Trustees.

All rights reserved.

SEQCSim::run(): Initial state is 3->0101<-0 (4 bits) ==> (1 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=0)

The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=1)

The new current state is 3->0111<-0 (4 bits) ==> (0 + i*0.707107).

... (5 intermediate steps elided for brevity) ...

SEQCSim::Bohm_step_forwards(): (tPC=7)

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=8)

The new current state is 3->0110<-0 (4 bits) ==> (1 + i*0).

SEQCSim::done(): The PC value 9 is >= the number of operations 9.

We are done! a = 1+1 = 2 = 102

b=1 a=1
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Empirical MeasurementsEmpirical Measurements

of Space Complexityof Space Complexity

QCAD vs. SEQCsim memory usage
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Linear



FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 19

Empirical MeasurementsEmpirical Measurements

of CPU Time Utilizationof CPU Time Utilization

� SEQCSim is ~10× faster 
than QCAD on small 
circuits.
� This is probably largely just 

because QCAD has a GUI 
and SEQCSim doesn’t.

� SEQCSim is currently ~2×
slower than QCAD on 
large circuits.
� But, there is much room for 

performance improvement.
� Take better advantage of 

available memory.

� Reimplement in special-
purpose hardware

QCAD vs. SEQCsim CPU time usage

0.01

0.1

1.

10.

100.

1,000.

10,000.

100,000.

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

C
P

U
 t
im

e
 (

s
e

c
s
.)

QCAD

SEQCsim



FAMU-FSU College of Engineering

3/30/2012 M. Frank et al., Space-Eff. QC Sim., SPIE 2009 20

Next StepsNext Steps

� Software implementation:
� Implement a special cache for state amplitudes, to boost performance 

� Develop a new simulator API around a “Qubit” class that mimics the 
(ideal) real statistical behavior of quantum bits
� Invokes SEQCSim engine “behind the scenes”

� Allows coding quantum algorithms directly in C++

� FPGA-based hardware implementation:
� Design custom register structures for faster bit-manipulation, and 

custom memory units for hardware caching of state amplitudes

� Develop efficient adders/multipliers on FPGA platform for floating-
point numbers in a simplified custom format

� Use these as the basis for a custom parallel arithmetic datapath for 
quickly computing inner products of complex vectors

� Design an optimized special-purpose iterative FSM for the graph 
traversal, to replace the recursive calcAmp() procedure
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EXTRA SLIDES
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What is a FPGA?What is a FPGA?

EP2C35F672C6ES

35K Logic Elements

35 embedded

18x18 bit multipliers 

105 M4K memory

blocks
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FPGA Tools (1 of 5):FPGA Tools (1 of 5):

AlteraAltera SOPC BuilderSOPC Builder
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FPGA Tools (2 of 5):FPGA Tools (2 of 5):

NIOS II SoftNIOS II Soft--Core ConfigurationCore Configuration
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FPGA Tools (3 of 5):FPGA Tools (3 of 5):

Custom Hardware Generation with C2HCustom Hardware Generation with C2H
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FPGA Tools (4 of 5):FPGA Tools (4 of 5):

LISA Processor Design CycleLISA Processor Design Cycle
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FPGA Tools (5 of 5):FPGA Tools (5 of 5):

LISA Development ToolsLISA Development Tools

Disassembler

Memory

monitor

Profiler
regs
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ConclusionConclusion

� We have implemented in C++ and validated a 
working prototype of a quantum computer simulator 
that uses only linear space.
� This tool can be useful to help students & researchers 

validate quantum algorithms.
� Online resources at http://www.eng.fsu.edu/~mpf/SEQCSim

� Contact michael.patrick.frank@gmail.com with questions about 
source code

� A future version will provide a more expressive quantum 
programming language based on C++.

� We are also designing an FPGA-based hardware 
implementation to boost simulator performance.
� This approach is made much more feasible by the extreme 

memory-efficiency of our algorithm.


