
FAMU-FSU

College of Engineering

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 1

Towards a More General Model

of Reversible Logic Hardware

Invited talk presented Mar. 16th, 2012 at the Superconducting Electronics

Approaching the Landauer Limit and Reversibility (SEALeR) workshop

Michael P. Frank
Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering

& Dept. of Physics, Florida A&M University

A Simple Question
What is the simplest & most general universal set of primitive

digital elements for implementing (adiabatic) reversible

computing in CMOS?

A1: Fredkin gates (cSWAP)?

 * Restricted to conservative logic (or dual-rail)

A2: Toffoli gates (ccNOT)?

 * Still has six I/O terminals (3 input/3 output)

A3: cNOT?

 * Simpler, but not universal w/o also quantum gates

Also, all the above elements consume all of their inputs, & emit

an equal number of outputs each time they are applied…

 Is that truly the most general framework?

A4: CMOS (nFET & pFET) transistors!

 * Instances of a more general class of elements for reversible computing.

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 2

http://www.fsu.edu/

Transistors as Reversible Elements

• A (field-effect) transistor has 3 terminals only:

– 1 input-only terminal (gate)
• This input affects (but is not consumed by) the device

– 2 bidirectional terminals (source/drain)
• Generally these can act as inputs, or outputs, or both!

– Actually, there is also a 4th (body) terminal
• But we can ignore it for our present purposes

• Obviously, the operation of a transistor is not
always reversible…

– But, we’ll see, it can be conditionally reversible
• Under certain preconditions that we can define.

– & this is sufficient for building any (classical) reversible digital
computational functionality that we can imagine!

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 3

http://www.fsu.edu/

High-Impedance (Z) States

• In general, a given physical I/O terminal

between devices does not need to always be

supplying a bias from one side to the other.

– Another option: The terminal

can be configured (on either, or

both sides) as an open circuit.

• No voltage sourced / no current sunk

• ‘Z’ states are frequently used in digital design!

– Bidirectional I/O ports

– Shared buses

– Dynamic logic families, dynamic RAM

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 4

+

−

http://www.fsu.edu/

FET Potential Energy Surface
• A FET provides a controllable potential energy

surface for charge carriers, very similar to
Landauer’s bistable potential well model.

– For an n-type FET:
• Raise gate voltage  lower potential energy barrier for

electrons to pass between source and drain terminals.
– In pFET: effect is opposite, and for holes

– Apply bias voltage between
source & drain terminals
to “tilt” the potential
energy surface

• Off transistor = open circuit

– High-Z terminal (as seen from either side)

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 5

n p n

e e e e e

http://www.fsu.edu/

3/16/2012 6

Possible Well Transitions
• Catalog of all the possible transitions in

the bistable wells, adiabatic & not...
– We can characterize a wide variety of digital

logic and memory styles in terms of how their
operation corresponds to subgraphs of this diagram.

Direction of Bias Force

Barrier

Height

0 0 0

1 1 1

1 0 N

(Ignoring

superposition

states.)

leak

leak

“1”

states

“0”

states
∆E

∆E
k ln 2

http://www.fsu.edu/

3/16/2012 7

Erasing Digital Entropy
• Note that if the information in a bit-system is already entropy,

– Then erasing it just moves this entropy to the surroundings.
– This can be done with a thermodynamically reversible process, and does not

necessarily increase total entropy!

• However, if/when we take a bit that is known, and irrevocably
commit ourselves to thereafter treating it as if it were unknown,
– that is the true irreversible step,
– and that is when the entropy is

effectively generated!!

0 0

0 N

1

1

?
This state contains 1 bit
of physical entropy, but in
a stable, “digital” form

In these 3 states, there is no

entropy in the digital state;

it has all been pushed out

into the environment.

This state contains 1 bit

of decomputable information,

in a stable, “digital” form

Note: This transformation is reversible!!

3/16/2012 8

Logic & Memory Styles

• Irreversible styles:
– Input-barrier, constant-bias logic.

• E.g. standard static CMOS inverters & combinational gates.

– Input-bias, clocked-barrier latching.
• Standard static CMOS latches, dynamic RAM cells, etc.

• Reversible styles:
– Type 1: Input-bias, clocked-barrier latching.

– Type 2: Input-barrier, clocked-bias logic.

– Type 3: Input-barrier, clocked-bias latching logic.

• All of these are available in a very wide variety of
different physical instantiations of the bistable well.
– E.g., CMOS, superconducting, quantum-dot, Y-branch

switches, mechanical implementations, etc.

All describable within the potential-well paradigm!

http://www.fsu.edu/

Rules for (Asymptotically)

Reversible Operation of a FET
• Rule 1: Never turn on a transistor when there is a (non-

negligible) voltage between source & drain terminals.
– Leads to sudden order-CV2 losses.

• Rule 2: (Obviously) never apply different biases
simultaneously to source & drain of an “on” transistor.
– Causes a (dissipative) short-circuit current across the device.

• Rule 3: Never change the voltage applied to any given
terminal too rapidly (relative to RC of signal path)…
– Especially to the source or drain of an “on” transistor!

• Keeps the VDS voltage drop (and the Q2R/t losses) small

• Rule 4: Never turn off a transistor when there is a (non-
negligible) current between source & drain terminals.
– Exception: If there’s an alternate path between the same nodes!

– Several early “adiabatic” logic families unwittingly failed to obey this
rule  not truly/fully adiabatic!

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 9

http://www.fsu.edu/

3/16/2012 10

Finding Safe Adiabatic Transitions

• Given a set of

logic levels,

– And linear ramps

between them,

• We can determine

which combinations

of gate/source/drain

transitions are

adiabatic.

– Made easier because level-crossings can only

occur at certain discrete times.

• A discrete circuit simulator was developed at UF that

checks arbitrary 3-level circuits for full adiabaticity.

Vdd

Vdd/2

0 (gnd)
t0 = 0 t0+

∆ttick

∆ttick

/2

∆ttick

/3

2∆ttick

/3

‘1’

‘0’

‘N’

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Possible Linear Transitions in a Semi-Tick

for Three-Level Logic at an n-FET with Vth ≈ (Vdd – Vss)/8

Semi-tick #

Vdd

Vss

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Examples of Adiabatic Transitions: Example #1

Semi-tick #

Vdd

Vss

VG

(Always adiabatic – Source & drain remain connected throughout transition)

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Examples of Adiabatic Transitions: Example #2

Vdd

Vss

VG

VS = VD

Semi-tick #

(Always adiabatic – Source & drain become disconnected, but only while IDS = 0)

VS, VD

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Examples of Adiabatic Transitions: Example #3

Vdd

Vss

Semi-tick #

(Possibly adiabatic – But only if source & drain are

separately being driven along identical trajectories)

VG

VS, VD

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Examples of Adiabatic Transitions: Example #3

Vdd

Vss

Semi-tick #

(Always adiabatic – Source & drain disconnected throughout transition)

VG

VD

VS

http://www.fsu.edu/

 0

 1

-1

½

-½

0 1 2 3

Examples of Non-Adiabatic Transitions: Example #1

Vdd

Vss

Semi-tick #

(Never adiabatic – Transistor turns on when VDS ≠ 0)

VG

VD

VS

http://www.fsu.edu/

3/16/2012

Reversible Set (rSET) & Clear (rCLR)

• rSET operation semantics: Given assurance that a bit is initially 0,
unconditionally change it to 1.

– To implement: Traverse the adiabat (reversible trajectory) shown below.

• Reverse this path to perform rCLR.

Direction of Bias Force

Barrier

Height

0 0

1 1

1 0 N

“1”

states

“0”

states

(1)

(2)

(3) (4)

(5)

(6)

Get work
out

Put work
back in

http://www.fsu.edu/

3/16/2012 18

Taking rSET/rCLR out of context
• What happens if we attempt to perform rSET on a bit that is already a 1?

– It still ends up with the right value (1), but…

– Irreversible dissipation occurs in step 2 (when barrier is lowered), as shown
below.

• Similarly if we try to rCLR a 0.

Direction of Bias Force

Barrier

Height

1 1

1 0 N

“1”

states

“0”

states

1
(1)

(2)

(3) (4)

(5)

(6)

(takes

work to

raise 1)

(dissipates

it as heat)

(takes

work to

raise 1)

http://www.fsu.edu/

3/16/2012 19

rSET/rCLR transition tables
• Note that these tables are not logically reversible

(invertible) according to the strict traditional definition…
– Since they don’t represent a one-to-one transformation of all

possible initial states. (Some final states have >1 predecessor.)

• However, if we restrict our use of these operations so as
to always avoid the input states that actually result in
dissipation,
– Then, we obtain a one-to-one transformation of the subset of the

possible initial states that are actually used in the design,

– And that is the correct statement of the minimum logical
requirement for avoiding Landauer’s limit!

Before
rSET

After
rSET

0 1

1

Before
rCLR

After
rCLR

0

1 0

http://www.fsu.edu/

3/16/2012 20

rSET/rCLR in spacetime diagram

• Here is a suggested graphical notation for
rSET/rCLR in the spacetime diagram picture.

– However, keep in mind that the spacetime diagram
formalism omits representation of the control signal
that determines exactly when the operation occurs.

Time

L
o
ca

ti
o
n

01

10

0

0

1

1

rSET

rCLR

http://www.fsu.edu/

3/16/2012 21

Type 1: Input-Bias Clocked-Barrier

Reversible Latching (& Logic)
• Cycle of operation:

– (1) Data input applies bias

• Add forces to do majority logic

– (2) Clock signal raises barrier

– (3) Data input bias removed

0 0

1 1

1 0 N

(Can amplify/restore input signal

in the barrier-raising step.)

Can reset latch

reversibly (4)

given copy of

contents.

Examples: Adiabatic

QCA, SCRL latch, Rod

logic latch, PQ logic,

Buckled logic, Helical logic

(1) (1)

(2)

(2)

(3)

(3)

(4)

(4)

(4) (4)

(4)

(4)

http://www.fsu.edu/

3/16/2012 22

1-transistor Adiabatic
rSET/rCLR/latch/DRAM cell

(1)

Apply

input

bias

(2)

Raise

barrier

I M

I M

I M

I M

I M

I M

I M

(3)

Remove

input

bias

(Reverse steps

to reversibly

unlatch M)

on

on

on off

off off

off

Voltage color scheme:

Low / Medium / High

Can similarly use a

CMOS transmission

gate (nFET/pFET pair)

to latch a full-swing

signal if necessary.

rS
E

T

rC
L

R

rLatch

rUnlatch

http://www.fsu.edu/

A Simple Reversible CMOS Latch
• Uses a single standard CMOS transmission gate (T-gate).

• Sequence of operation:

 (0) input level initially tied to latch ‘contents’ (output);

 (1) input changes gradually  output follows closely;

 (2) latch closes, charge is stored dynamically (node floats);

 (3) afterwards, the input signal can be removed.

P

P

in out

Before Input Input

input: arrived: removed:

in out in out in out

0 0 0 0 0 0

 1 1 0 1

(0) (1) (2) (3)

• Later, we can reversibly
 “unlatch” the data with
 an exactly time-reversed
 sequence of steps.

“Reversible latch”

http://www.fsu.edu/

3/16/2012 24

Reversible latch in spacetime

diagram

I

M

Time

L
o
ca

ti
o
n

Outside
influence causes
I to possibly
change here

Arrow to dotted line denotes that change

to I is reversibly carried through (without

gain) to location M at this time (energy

transferred into I is also fanned out to M)

I may be restored to
neutral again later
without necessarily
affecting value of M

Barrier is raised some time

afterwards (end of shaded area)

Dotted lines denote that these

nodes contain no information
at these times (they are in

a predetermined state)

Barrier is lowered some time

in here (start of shaded area)

I

M

Unlatching

sequence:

Note this operation is

adiabatic only if I and M

match up exactly when they

are first connected together!

Time

http://www.fsu.edu/

3/16/2012 25

Icon for Latch
• Extremely simple notation:

– Just draw a short orthogonal line across the wire to
indicate the presence of a latch at that point.

• Control of latch timing is implicit.

• Note the same latch hardware can actually be
used to latch signals being passed in either
direction.  It’s symmetric in space and time.

P

P

in out in out

http://www.fsu.edu/

3/16/2012 26

rCOPY - Spacetime Diagram
• Suppose the signal on the input node I was produced

as a temporary copy of some origin node O.
– We will see how to implement this reversibly later.

• Then for simplicity of our diagrams, we may wish to
omit explicit representation of the intermediate node I.
– However, we must keep in mind that there is then a small

additional space usage not explicitly shown in the diagram.

O

M

Time

I

O

M

Time

“Reversible

copy”

3/16/2012 27

Operation Naming Conventions

• Clarification of our naming conventions for
operations:
r – “reversible”

• Means operation is a conditionally-reversible variant of an
operation that would traditionally have been irreversible.

l – “latching”
• Operation includes latching of result; i.e., input operands

aren’t required to be held after output operand is modified.

c – “controlled”
• First operand is a “control” input; operation is only

performed if it is a 1.

Un – “undo”
• Operation does the time-reversal of the operation without

the “Un” prefix.

3/16/2012 28

Operations Encountered So Far
• Ordinary irreversible operations:

– CLR(a): a := 0. Clear operation.
– Invert(a, b): b := a. Inverter operation.
– AND(a, b, c): c := ab. AND gate operation.
– OR(a, b, c): c := a+b. OR gate operation.
– XOR(a, b, c): c := ab. XOR gate operation.

• Unconditionally reversible operations:
– NOT(a): a := a. In-place NOT operation.
– cNOT(a, b): b := ab. Controlled-NOT operation.
– ccNOT(a, b, c): c := abc. Toffoli gate operation.
– SWAP(a, b): a ↔ b. Swap operation.
– cSWAP(a, b): if a, a ↔ b. Fredkin gate operation.

• Conditionally reversible operations:
– rCLR(a): (a) a := 0. Reversible clear operation.
– rcSET(a, b): (a + b) if a, b := 1. Controlled rSET operation.
– rCOPY(a, b): (b) b := a. Reversible copy operation.

3/16/2012 29

Type 2: Input-Barrier, Clocked-Bias

Reversible Retractile Logic

• Cycle of operation:
– (1) Inputs raise or lower barriers

• Do logic w. series/parallel barriers

– (2) Clock applies bias force, which changes state, or not

0 0 0

1 0 N

• Barrier signal is amplified!

 Gain, restoring logic, fan-out.

• Must reset output prior to

 changing input.

• Combinational logic only!

(1) Input barrier height

(2) Clocked bias force applied 

Examples:

Hall’s logic,

SCRL gates,

Rod logic interlocks

3/16/2012 30

Type 2 example: Adiabatic CMOS

“buffer” (really, a cSET/cCLR gate)
• Controlled-SET / controlled-CLEAR.

– Using dual-rail signaling, we can
reversibly set or clear a bit on an
unoccupied logic node (pair of voltage
nodes),

• conditionally on an input node.

• Structure: Two CMOS transmission gates
– 2 transistors each;
– 4T total

• Features:
– Amplifies input signal.
– Fully restores logic levels.

InN

InP

DriveN

OutN

(And similarly for OutP)

InN InP

DriveN

OutN
Voltage color scheme:

Low / High

off InN InP

DriveN

OutN

InN InP

DriveN

OutN

InN InP

DriveN

OutN

on on

off off

3/16/2012 31

Transition Table for cSET
• It is not always reversible,

– Not a one-to-one transformation of all possible local states,

• But, it is conditionally reversible
– I.e., on condition that input state 1,1 is avoided.

• Transition table for cCLR is similar.

Before cSET After cSET

Source Destination Source Destination

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

3/16/2012 32

Icon for cSET/cCLR gate

• Represents a gate that can perform either cSET

or cCLR on the Out node, with either operation

conditioned on InNP being a logic 1.

• Constraints on use (in simple CMOS impl.):
– Input must be a dual-rail pair.

– The Drive control signal must have the same bus

width as the Out signal.

InNP Out
Drive

3/16/2012 33

Spacetime diagram for buffer
• Subscript NP notation denotes shorthand for dual-rail NP pair of wires.

– Still denotes a single logical bit.

• Diagram emphasizes that the buffer copies InNP’s value to a new location.
– The value simultaneously remains available in the old location.

• Dotted horizontal line shows that OutNP is empty prior to the operation.
– The absence of “×” icon shows that the operation is reversible.

• Buffer icon indicates that the input signal is being amplified and restored.
– Note that the input comes from InNP, not from previous value of OutNP.

• Downward wedges remind us the output remains dependent on the input.
– Input can’t be changed without (possibly) irreversibly destroying output.

• Fortunately, the buffer’s entire operation sequence is reversible!
– So, sometime later on, we can unbuffer the output,

• and then we are free to change the input.

InNP

OutNP

Time

InNP

OutNP

Time

Input value

can be

changed

afterwards.

Restored to null.

…

3/16/2012 34

Reversible Buffered Latch

• Uses two dual-rail T-gates.

• Combines a buffer and latch.
– Reversibly copies InNP to

MemNP when operated.

InNP

DriveNP

LatchNP

IntNP

MemNP

Spacetime diagram for operation sequence:

InNP

MemNP

IntNP

A

B

CNP

This is our icon for a

CMOS transmission

gate (T-gate). It says

that nodes A and B

are connected whenever

the control signal

CNP has logic value 1.

Implements “reversible copy”:

InNP

MemNP

Physical structure:

3/16/2012 35

Hardware Icon for Buffered Latch

• Looks a little bit like a diode icon, but isn’t.

• Composed of our previous icons for:
– Reversible buffer

– Reversible latch

• This gate properly implements the rlcSET(in,out)

and rlcCLR(in,out) operations!
– The buffer alone does not quite do it, because of the

constraint that in must be stable while out is driven.

in out int

3/16/2012 36

Three Ways to Use a Transmission

Gate Reversibly

• rSET/rCLR – Drive signal and gate
signals are both considered to be control.
– Unconditional, not data-dependent.

• rLatch/rUnlatch – Drive signal is
a data input, gate signals are control.
– rLatch(in,out) just isolates in from out

• cSET/cCLR – Drive signal is a control
signal, gate signals comprise data input.
– cSET(in,out) presents a copy of in on out

• What if everything is a data input?
– Some data transitions are reversible, others not

data

connN
drive

connP

connN

connP

in out

InN InP

DriveN

OutN

3/16/2012 37

Reversible & Irreversible T-gate

Transitions

• When drive and gate are both data-dependent
– Certain data transitions must be avoided…

off

on

off

off

off

on
drive

drive

drive drive

drive

drive

out

out

out out

out

out

0

0

0

0 0

0 1 1

1

1 1 1

3/16/2012 38

Type 2 example: SCRL inverter (w/o latch)
• Same structure as static CMOS inverter, but used reversibly.
• Produces a fully-restored, amplified output signal.
• Inverters can be cascaded, but need latches to get feedback.

In Out

In Out

In Out

off

off on

off

off

on

driveH

driveL

driveL

driveH

driveH

driveL

In Out

on

off

driveH

driveL

In Out

off

on

driveL

driveH

Voltage color scheme:

Low / Medium / High

SCRL = “Split-level Charge

Recovery Logic” (Younis &

Knight, 1993)

3/16/2012 39

SCRL Inverter Transition Table

Before

SCRL-Inv

After

SCRL-Inv

In Out In Out

0 0

0 ½ 0 1

0 1

½ 0

½ ½

½ 1

1 0

1 ½ 1 0

1 1

Before

SCRL-Inv

After

SCRL-Inv

In Out In Out

0 ½ 0 1

1 ½ 1 0

• Conditionally reversible, if input

 is valid and output is ½ just

 before drivers do their thing.

• No point in even listing the

 table entries that don’t occur;

 can summarize operation below.

3/16/2012 40

Spacetime Diagram for SCRL Inverter

• Note that the notation shows that Out is being

computed from In on a separate wire.
– In is explicitly not being inverted “in place.”

• Wedge symbols show ongoing dependence.
– Of course, we can always undo the op later.

In

Out
…

3/16/2012 41

Icon for SCRL Inverter

• Same as normal inverter icon
– Can (optionally) also show control (drive) bus.

• Note we can build a latched SCRL inverter very

easily:

DriveHL

In Out

In Out

Internal node (might not be labeled)

3/16/2012 42

rsCopyInv(In,Out)

Reversible Split-level Copy with Inversion

• Preconditions:
– Out is initially clear (logic N - neutral).

• Semantics:
– Out := ¬ In

• Gate icon in hardware diagrams:
– (same gate also performs rUnCopyInv.)

In Out

3/16/2012 43

Simple Logic Example:

Adiabatic NMOS OR gate

• Input barriers along two parallel paths

Out
A

B

Out
A

B

Out
A

B

Out
A

B

Out
A

B

Drive

Drive

Drive

Drive

Drive

Out
A

B

Out
A

B

Out
A

B

Out
A

B

Drive

Drive

Drive

Drive

Out = A  B

• Reverse sequence

 decomputes Out.
• Can’t change A,B

 freely until then.

• With NMOS, Out

 is weak (orange).

• Can use an SCRL

 inverter to restore

 the signal levels.

• If appropriately

 biased…

• Or, just use CMOS

 transmission gates

 instead (8T OR)

3/16/2012 44

Type 3: Input-Barrier, Clocked-Bias

Latching Logic

0 0 0

1

1 0 N

● Cycle of operation:
1. Input conditionally lowers barrier

• Do logic w. series/parallel barriers

2. Clock applies bias force; conditional bit flip

3. Input removed, raising the barrier &

locking in the state-change

4. Clock

bias can

retract

Examples: Mike’s

4-cycle 2-level adiabatic

CMOS logic (2LAL)

(1)

(2) (2)

(2) (2)

(3)

(4)

(4)

3/16/2012 45

2LAL: 2-level Adiabatic Logic

• Use simplified T-gate symbol:

• Basic buffer element:
– cross-coupled T-gates:

• need 8 transistors to

buffer 1 dual-rail signal

• Only 4 timing signals 0-3 are

needed. Only 4 ticks per cycle:
– i rises during ticks t≡i (mod 4)

– i falls during ticks t≡i+2 (mod 4)

TN

TP

T

:

in

out

1

0

0 1 2 3 …
Tick #

0

1

2

3

A pipelined fully-adiabatic logic invented at UF (Spring 2000),

implementable using ordinary CMOS transistors.

2

(implicit

dual-rail

encoding

everywhere)
Animation:

3/16/2012 46

2LAL Cycle of Operation

in

in1

in=0

01

01

10

11

out1

out=0

00

00

in0

11

out0

Tick #0 Tick #1 Tick #2 Tick #3

3/16/2012 47

A Schematic Notation for 2LAL

≡
PN

PP

PP

PN

A B BA≡
P

PN

A B

tin out ≡ in

φt mod 4

PN
out

in0 out5

t
A

B

t
in out ≡

t

int-1
outt

t-1

1 2 3 4 5

≡AB

A tA A

B

AB

t
A

B ≡A+B

t

t

A

B

A+B

A ~A ≡ A
2

A=0

A=1

~A=0

~A=1

2
~A

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

t

A

A

B
AB ≡

t
A=1

B=1
AB=1

A=1

t AB=0
A=0

B=0

PN

PN

3/16/2012 48

2LAL Shift Register Structure

• 1-tick delay per logic stage:

• Logic pulse timing and signal propagation:

in@0

1

0

2

1

3

2

out@4

0

3

inN

inP

0 1 2 3 ... 0 1 2 3 ...

Animation:

3/16/2012 49

More Complex Logic Functions
• Non-inverting multi-input Boolean functions:

• One way to do inverting functions in pipelined

logic is to use a quad-rail logic encoding:
– To invert, just

swap the rails!
• Zero-transistor

“inverters.”

A0

B0

0

A1

(AB)1

A0 B0



(AB)1

AN

AP

AN

AP

A = 0 A = 1

AND gate

(plus delayed A)
OR gate

3/16/2012 50

cNOT hardware diagram
• Here is an implementation of in-place
cNOT(a,b) (controlled-NOT)

– In terms of reversible AND or OR,

reversible buffers, reversible latches,

and (0T dual-rail) complement bubbles.

• As you can see, it is rather

complicated!
– Illustrates that cNOT might not be

a very good primitive for reversible CMOS!

• This structure can be properly called a cNOT

gate (as opposed to a cNOT operation)

a
b

i

x

j

3/16/2012 51

cNOT operation sequence

• Steps to implement cNOT(a,b): a b i x j

 a b 0 0 0
1. rlXOR(a, b, x):

1a. rUnLatch(i, x) a b (0) 0
1a. rAND(a, b, i), rAND(a, b, i) a b (ab) 0
1b. rLatch(i, x) a b ab ab 0
1c. rUnAND(a, b, i), rUnAND(a, b, i) a b 0 ab 0

2. rAND(a, x, b), rUnAND(a, x, b) a ab 0 ab 0

3. rUnCopy(b, x):
3a. rcSET(b, j) a ab 0 ab ab

3b. rUnLatch(j, x) a ab 0 (ab)
3c. rcUnSet(b, j) a ab 0 (0)
3d. rLatch(j, x) a ab 0 0 0

• Note it takes 9 full steps!

3/16/2012

M. Frank, IEEE DCAS

Workshop, Oct. 2006 52

Shift Register Simulation Results (Cadence/Spectre)

• Graph shows power
dissipation vs. frequency

– in 8-stage shift register.

• At moderate frequencies
(1 MHz),

– Reversible uses
< 1/100th the power of
irreversible!

• At ultra-low power
(1 pW/transistor)

– Reversible is 100× faster
than irreversible!

• Minimum energy dissip.
per nFET is < 1 eV!

– 500× lower than best
irreversible!

• 500× higher
computational energy
efficiency!

• Energy transferred is still
~10 fJ (~100 keV)

– So, energy recovery
efficiency is 99.999%!

• Not including losses in
power supply, though

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E+031.E+041.E+051.E+061.E+071.E+081.E+09

Frequency, Hz

A
v
e
ra

g
e
 p

o
w

e
r

d
is

s
ip

a
ti

o
n

 p
e
r

n
F

E
T

,
W

Standard
 CMOS

E
n

e
rg

y
 d

is
s
ip

a
te

d
 p

e
r n

F
E

T
 p

e
r c

y
c
le

2LAL = Two-level adiabatic logic (invented at UF, ‘00)

3/16/2012

M. Frank, IEEE DCAS

Workshop, Oct. 2006 53

With this recursive structure,

we can do a 2n-bit add in 2(n+1)

logic levels.

Hardware

overhead is

< 2× regular

ripple-carry!

Θ(log n)-time Recursive Adiabatic

Wired-OR Carry-Skip Adder

(8 bit segment shown)

Pms Gls Pls

Cin GCout

P

P

Pms Gls Pls

Cin GCout

P

MS LS

LS

Pms Gls Pls

G

Pms Gls Pls

G

P

P

Pms Gls Pls

Cin GCout

P

MS LS

MS

Pms Gls Pls

G

Pms Gls Pls

Cin GCout

P

LS

GCoutCin

S A B

P

G Cin

S A B

P

GCoutCin

S A B

P

S A B

P

GCoutCin

S A B

P

S A B

P

GCoutCin

S A B

P

S A B

P

G Cin G Cin G Cin

Cin

3/16/2012

M. Frank, IEEE DCAS

Workshop, Oct. 2006 54

32-bit Adder Simulation Results

32-bit adder power vs.

frequency

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E+041.E+051.E+061.E+071.E+08

Add Frequency (Hz)

P
o

w
e

r
(W

)

CMOS pwr

Adia. pwr

32-bit adder energy vs.

frequency

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E+041.E+051.E+061.E+071.E+08

Add Frequency (Hz)

E
n

e
rg

y
/A

d
d

 (
J
)

CMOS energy

Adia. enrgy

1V CMOS

0.5V CMOS

(Results are normalized to a

throughput level of 1 add/cycle)

20x better perf.
@ 3 nW/adder

Further improvements may be attainable through more pipelining, carry-save adders, etc.

3/16/2012 55

Reversible and/or Adiabatic Full-Custom

VLSI Chips Designed @ MIT, 1996-1999
By EECS grad students Josie Ammer, Mike Frank, Nicole Love, Scott Rixner,

and Carlin Vieri under CS/AI lab members Tom Knight and Norm Margolus.

Things to Do

• Explore whether this more-general paradigm

for conditionally-reversible logic primitives

might be helpful in developing reversible

designs in technologies other than CMOS.
– In particular, superconducting technologies.

• May facilitate porting designs between domains.

• Build up a much more comprehensive variety

of larger functional-unit designs based on this

general approach.
– And teach more designers how to work with it!

3/16/2012 56

