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A Simple Question 
What is the simplest & most general universal set of primitive  

digital elements for implementing (adiabatic) reversible 

computing in CMOS? 

A1:  Fredkin gates (cSWAP)? 

   * Restricted to conservative logic (or dual-rail) 

A2:  Toffoli gates (ccNOT)? 

   * Still has six I/O terminals (3 input/3 output) 

A3:  cNOT? 

   * Simpler, but not universal w/o also quantum gates 

Also, all the above elements consume all of their inputs, & emit 

an equal number of outputs each time they are applied… 

 Is that truly the most general framework? 

A4:  CMOS (nFET & pFET) transistors! 

   * Instances of a more general class of elements for reversible computing. 
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Transistors as Reversible Elements 

• A (field-effect) transistor has 3 terminals only: 

– 1 input-only terminal (gate) 
• This input affects (but is not consumed by) the device 

– 2 bidirectional terminals (source/drain) 
• Generally these can act as inputs, or outputs, or both! 

– Actually, there is also a 4th (body) terminal 
• But we can ignore it for our present purposes 

• Obviously, the operation of a transistor is not 
always reversible… 

– But, we’ll see, it can be conditionally reversible 
• Under certain preconditions that we can define. 

– & this is sufficient for building any (classical) reversible digital 
computational functionality that we can imagine! 
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High-Impedance (Z) States 

• In general, a given physical I/O terminal 

between devices does not need to always be 

supplying a bias from one side to the other. 

– Another option:  The terminal  

can be configured (on either, or  

both sides) as an open circuit. 

• No voltage sourced / no current sunk 

• ‘Z’ states are frequently used in digital design! 

– Bidirectional I/O ports 

– Shared buses 

– Dynamic logic families, dynamic RAM 
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FET Potential Energy Surface 
• A FET provides a controllable potential energy 

surface for charge carriers, very similar to 
Landauer’s bistable potential well model. 

– For an n-type FET: 
• Raise gate voltage  lower potential energy barrier for 

electrons to pass between source and drain terminals. 
– In pFET: effect is opposite, and for holes  

– Apply bias voltage between 
source & drain terminals 
to “tilt” the potential 
energy surface 

• Off transistor = open circuit 

– High-Z terminal (as seen from either side) 

3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. ‘12 5 

n p n 

e e e e e 

http://www.fsu.edu/


3/16/2012 6 

Possible Well Transitions 
• Catalog of all the possible transitions in  

the bistable wells, adiabatic & not... 
– We can characterize a wide variety of digital 

logic and memory styles in terms of how their 
operation corresponds to subgraphs of this diagram. 

Direction of Bias Force 

Barrier 

Height 

0 0 0 

1 1 1 

1 0 N 

(Ignoring  

superposition  

states.) 

leak 

leak 

“1” 

states 

“0” 

states 
∆E 

∆E 
k ln 2 
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Erasing Digital Entropy  
• Note that if the information in a bit-system is already entropy,  

– Then erasing it just moves this entropy to the surroundings. 
– This can be done with a thermodynamically reversible process, and does not 

necessarily increase total entropy! 

• However, if/when we take a bit that is known, and irrevocably 
commit ourselves to thereafter treating it as if it were unknown,  
– that is the true irreversible step,  
– and that is when the entropy is 

effectively generated!! 

0 0 

0 N 

1 

1 

? 
This state contains 1 bit 
of physical entropy, but in 
a stable, “digital” form 

In these 3 states, there is no  

entropy in the digital state;  

it has all been pushed out  

into the environment. 

This state contains 1 bit 

of decomputable information,  

in a stable, “digital” form 

Note: This transformation is reversible!! 
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Logic & Memory Styles 

• Irreversible styles: 
– Input-barrier, constant-bias logic. 

• E.g. standard static CMOS inverters & combinational gates. 

– Input-bias, clocked-barrier latching. 
• Standard static CMOS latches, dynamic RAM cells, etc. 

• Reversible styles: 
– Type 1: Input-bias, clocked-barrier latching. 

– Type 2: Input-barrier, clocked-bias logic. 

– Type 3: Input-barrier, clocked-bias latching logic. 

• All of these are available in a very wide variety of 
different physical instantiations of the bistable well. 
– E.g., CMOS, superconducting, quantum-dot, Y-branch 

switches, mechanical implementations, etc. 

 

All describable within the potential-well paradigm! 
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Rules for (Asymptotically) 

Reversible Operation of a FET 
• Rule 1:  Never turn on a transistor when there is a (non-

negligible) voltage between source & drain terminals. 
– Leads to sudden order-CV2 losses. 

• Rule 2:  (Obviously) never apply different biases 
simultaneously to source & drain of an “on” transistor. 
– Causes a (dissipative) short-circuit current across the device. 

• Rule 3:  Never change the voltage applied to any given 
terminal too rapidly (relative to RC of signal path)… 
– Especially to the source or drain of an “on” transistor! 

• Keeps the VDS voltage drop (and the Q2R/t losses) small  

• Rule 4:  Never turn off a transistor when there is a (non-
negligible) current between source & drain terminals. 
– Exception:  If there’s an alternate path between the same nodes! 

– Several early “adiabatic” logic families unwittingly failed to obey this 
rule  not truly/fully adiabatic! 
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Finding Safe Adiabatic Transitions 

• Given a set of 

logic levels, 

– And linear ramps 

between them, 

• We can determine 

which combinations 

of gate/source/drain 

transitions are 

adiabatic. 

– Made easier because level-crossings can only 

occur at certain discrete times. 

• A discrete circuit simulator was developed at UF that 

checks arbitrary 3-level circuits for full adiabaticity. 

Vdd 

Vdd/2 

0 (gnd) 
t0 = 0 t0+ 

∆ttick 

∆ttick 

/2 

∆ttick 

/3 

2∆ttick 

/3 

‘1’ 

‘0’ 

‘N’ 

http://www.fsu.edu/


 0 

 1 

-1 

½ 
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Possible Linear Transitions in a Semi-Tick  

for Three-Level Logic at an n-FET with Vth ≈ (Vdd – Vss)/8 

Semi-tick # 

Vdd 

Vss 
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Examples of Adiabatic Transitions:  Example #1 

Semi-tick # 

Vdd 

Vss 

VG 

(Always adiabatic – Source & drain remain connected throughout transition) 
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Examples of Adiabatic Transitions:  Example #2 

Vdd 

Vss 

VG 

VS = VD 

Semi-tick # 

(Always adiabatic – Source & drain become disconnected, but only while IDS = 0) 

VS, VD 
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Examples of Adiabatic Transitions:  Example #3 

Vdd 

Vss 

Semi-tick # 

(Possibly adiabatic – But only if source & drain are  

separately being driven along identical trajectories) 

VG 

VS, VD 
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Examples of Adiabatic Transitions:  Example #3 

Vdd 

Vss 

Semi-tick # 

(Always adiabatic – Source & drain disconnected throughout transition) 

VG 

VD 

VS 
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Examples of Non-Adiabatic Transitions:  Example #1 

Vdd 

Vss 

Semi-tick # 

(Never adiabatic – Transistor turns on when VDS ≠ 0) 

VG 

VD 

VS 
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Reversible Set (rSET) & Clear (rCLR) 

• rSET operation semantics:  Given assurance that a bit is initially 0, 
unconditionally change it to 1. 

– To implement: Traverse the adiabat (reversible trajectory) shown below. 

• Reverse this path to perform rCLR. 

Direction of Bias Force 

Barrier 

Height 

0 0 

1 1 

1 0 N 

“1” 

states 

“0” 

states 

(1) 

(2) 

(3) (4) 

(5) 

(6) 

Get work 
out 

Put work 
back in 
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Taking rSET/rCLR out of context 
• What happens if we attempt to perform rSET on a bit that is already a 1? 

– It still ends up with the right value (1), but… 

– Irreversible dissipation occurs in step 2 (when barrier is lowered), as shown 
below. 

• Similarly if we try to rCLR a 0. 

Direction of Bias Force 

Barrier 

Height 

1 1 

1 0 N 

“1” 

states 

“0” 

states 

1 
(1) 

(2) 

(3) (4) 

(5) 

(6) 

(takes 

work to 

raise 1) 

(dissipates 

it as heat) 

(takes 

work to 

raise 1) 
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rSET/rCLR transition tables 
• Note that these tables are not logically reversible 

(invertible) according to the strict traditional definition… 
– Since they don’t represent a one-to-one transformation of all 

possible initial states.  (Some final states have >1 predecessor.) 

• However, if we restrict our use of these operations so as 
to always avoid the input states that actually result in 
dissipation, 
– Then, we obtain a one-to-one transformation of the subset of the 

possible initial states that are actually used in the design, 

– And that is the correct statement of the minimum logical 
requirement for avoiding Landauer’s limit! 

Before 
rSET 

After 
rSET 

0 1 

1 

Before 
rCLR 

After 
rCLR 

0 

1 0 
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rSET/rCLR in spacetime diagram 

• Here is a suggested graphical notation for 
rSET/rCLR in the spacetime diagram picture. 

– However, keep in mind that the spacetime diagram 
formalism omits representation of the control signal 
that determines exactly when the operation occurs. 

Time 

L
o
ca

ti
o
n

 

01 

10 

0 

0 

1 

1 

rSET 

rCLR 
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Type 1: Input-Bias Clocked-Barrier  

Reversible Latching (& Logic) 
• Cycle of operation: 

– (1) Data input applies bias 

• Add forces to do majority logic 

– (2) Clock signal raises barrier 

– (3) Data input bias removed 

0 0 

1 1 

1 0 N 

(Can amplify/restore input signal 

in the barrier-raising step.) 

Can reset latch  

reversibly (4)  

given copy of 

contents. 

Examples: Adiabatic 

QCA, SCRL latch, Rod  

logic latch, PQ logic, 

Buckled logic, Helical logic 

(1) (1) 

(2) 

(2) 

(3) 

(3) 

(4) 

(4) 

(4) (4) 

(4) 

(4) 
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1-transistor Adiabatic 
rSET/rCLR/latch/DRAM cell 

(1)  

Apply  

input 

bias 

(2) 

Raise 

barrier 

I M 

I M 

I M 

I M 

I M 

I M 

I M 

(3)  

Remove  

input 

bias 

(Reverse steps 

to reversibly 

unlatch M) 

on 

on 

on off 

off off 

off 

Voltage color scheme:   

Low / Medium / High 

Can similarly use a  

CMOS transmission 

gate (nFET/pFET pair)  

to latch a full-swing  

signal if necessary. 

rS
E

T
 

rC
L

R
 

rLatch 

rUnlatch 
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A Simple Reversible CMOS Latch 
• Uses a single standard CMOS transmission gate (T-gate). 

• Sequence of operation: 

 (0) input level initially tied to latch ‘contents’ (output); 

 (1) input changes gradually  output follows closely;  

 (2) latch closes, charge is stored dynamically (node floats); 

 (3) afterwards, the input signal can be removed. 

P 

P 

in out 

Before Input Input 

input: arrived: removed: 

in out in out in out 

0 0 0 0 0 0 

  1 1 0 1 

(0) (1) (2) (3) 

• Later, we can reversibly 
   “unlatch” the data with 
   an exactly time-reversed 
   sequence of steps. 

“Reversible latch” 

http://www.fsu.edu/
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Reversible latch in spacetime 

diagram 

I 

M 

Time 

L
o
ca

ti
o
n

 

Outside 
influence causes 
I to possibly 
change here 

Arrow to dotted line denotes that change 

to I is reversibly carried through (without  

gain) to location M at this time (energy 

transferred into I is also fanned out to M) 

I may be restored to 
neutral again later  
without necessarily 
affecting value of M 

Barrier is raised some time 

afterwards (end of shaded area) 

Dotted lines denote that these 

nodes contain no information 
at these times (they are in 

a predetermined state) 

Barrier is lowered some time 

in here (start of shaded area) 

I 

M 

Unlatching 

sequence: 

Note this operation is  

adiabatic only if I and M  

match up exactly when they  

are first connected together! 

Time 
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Icon for Latch 
• Extremely simple notation: 

– Just draw a short orthogonal line across the wire to 
indicate the presence of a latch at that point. 

• Control of latch timing is implicit. 

 

 
 
 
 

 

 

 

• Note the same latch hardware can actually be 
used to latch signals being passed in either 
direction.   It’s symmetric in space and time. 

P 

P 

in out in out 
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rCOPY - Spacetime Diagram 
• Suppose the signal on the input node I was produced 

as a temporary copy of some origin node O. 
– We will see how to implement this reversibly later. 

• Then for simplicity of our diagrams, we may wish to 
omit explicit representation of the intermediate node I. 
– However, we must keep in mind that there is then a small 

additional space usage not explicitly shown in the diagram. 

O 

M 

Time 

I 

O 

M 

Time 

“Reversible  

copy” 
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Operation Naming Conventions 

• Clarification of our naming conventions for 
operations: 
r – “reversible” 

• Means operation is a conditionally-reversible variant of an 
operation that would traditionally have been irreversible. 

l – “latching” 
• Operation includes latching of result; i.e., input operands 

aren’t required to be held after output operand is modified. 

c – “controlled”  
• First operand is a “control” input; operation is only 

performed if it is a 1. 

Un – “undo” 
• Operation does the time-reversal of the operation without 

the “Un” prefix. 
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Operations Encountered So Far 
• Ordinary irreversible operations: 

– CLR(a):  a := 0.  Clear operation. 
– Invert(a, b): b := a.  Inverter operation. 
– AND(a, b, c): c := ab. AND gate operation. 
– OR(a, b, c): c := a+b. OR gate operation. 
– XOR(a, b, c): c := ab. XOR gate operation. 

• Unconditionally reversible operations: 
– NOT(a):  a := a.  In-place NOT operation. 
– cNOT(a, b): b := ab. Controlled-NOT operation. 
– ccNOT(a, b, c): c := abc. Toffoli gate operation. 
– SWAP(a, b): a ↔ b.  Swap operation. 
– cSWAP(a, b): if a, a ↔ b. Fredkin gate operation.  

• Conditionally reversible operations: 
– rCLR(a): (a) a := 0.  Reversible clear operation. 
– rcSET(a, b): (a + b) if a, b := 1.  Controlled rSET operation. 
– rCOPY(a, b): (b) b := a.  Reversible copy operation. 
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Type 2: Input-Barrier, Clocked-Bias  

Reversible Retractile Logic 

• Cycle of operation: 
– (1) Inputs raise or lower barriers 

• Do logic w. series/parallel barriers 

– (2) Clock applies bias force, which changes state, or not 

0 0 0 

1 0 N 

• Barrier signal is amplified! 

     Gain, restoring logic, fan-out. 

• Must reset output prior to  

     changing input. 

• Combinational logic only! 

(1) Input barrier height 

(2) Clocked bias force applied  

Examples: 

Hall’s logic, 

SCRL gates, 

Rod logic interlocks 
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Type 2 example: Adiabatic CMOS 

“buffer” (really, a cSET/cCLR gate) 
• Controlled-SET / controlled-CLEAR. 

– Using dual-rail signaling, we can 
reversibly set or clear a bit on an 
unoccupied logic node (pair of voltage 
nodes),  

• conditionally on an input node. 

• Structure: Two CMOS transmission gates  
– 2 transistors each;  
– 4T total 

• Features: 
– Amplifies input signal. 
– Fully restores logic levels. 

 

InN 

InP 

DriveN 

OutN 

(And similarly for OutP) 

InN InP 

DriveN 

OutN 
Voltage color scheme:   

Low / High 

off InN InP 

DriveN 

OutN 

InN InP 

DriveN 

OutN 

InN InP 

DriveN 

OutN 

on on 

off off 
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Transition Table for cSET 
• It is not always reversible, 

– Not a one-to-one transformation of all possible local states,  

• But, it is conditionally reversible 
– I.e., on condition that input state 1,1 is avoided. 

• Transition table for cCLR is similar. 

Before cSET After cSET 

Source Destination Source Destination 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 
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Icon for cSET/cCLR gate 

• Represents a gate that can perform either cSET 

or cCLR on the Out node, with either operation 

conditioned on InNP being a logic 1. 

 

 

 

• Constraints on use (in simple CMOS impl.): 
– Input must be a dual-rail pair. 

– The Drive control signal must have the same bus 

width as the Out signal. 

 

InNP Out 
Drive 
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Spacetime diagram for buffer 
• Subscript NP notation denotes shorthand for dual-rail NP pair of wires. 

– Still denotes a single logical bit. 

• Diagram emphasizes that the buffer copies InNP’s value to a new location. 
– The value simultaneously remains available in the old location. 

• Dotted horizontal line shows that OutNP is empty prior to the operation. 
– The absence of “×” icon shows that the operation is reversible. 

• Buffer icon indicates that the input signal is being amplified and restored. 
– Note that the input comes from InNP, not from previous value of OutNP. 

• Downward wedges remind us the output remains dependent on the input. 
– Input can’t be changed without (possibly) irreversibly destroying output. 

• Fortunately, the buffer’s entire operation sequence is reversible! 
– So, sometime later on, we can unbuffer the output,  

• and then we are free to change the input. 

InNP 

OutNP 

Time 

InNP 

OutNP 

Time 

Input value 

can be  

changed 

afterwards. 

Restored to null. 

… 
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Reversible Buffered Latch 

• Uses two dual-rail T-gates. 

• Combines a buffer and latch. 
– Reversibly copies InNP to 

MemNP when operated. 

InNP 

DriveNP 

LatchNP 

IntNP 

MemNP 

Spacetime diagram for operation sequence: 

InNP 

MemNP 

IntNP 

A 

B 

CNP 

This is our icon for a  

CMOS transmission 

gate (T-gate).  It says 

that nodes A and B 

are connected whenever 

the control signal  

CNP has logic value 1. 

Implements “reversible copy”: 

InNP 

MemNP 

Physical structure: 
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Hardware Icon for Buffered Latch 

• Looks a little bit like a diode icon, but isn’t. 

• Composed of our previous icons for: 
– Reversible buffer 

– Reversible latch 

 

 

 

• This gate properly implements the rlcSET(in,out) 

and rlcCLR(in,out) operations! 
– The buffer alone does not quite do it, because of the 

constraint that in must be stable while out is driven. 

in out int 
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Three Ways to Use a Transmission 

Gate Reversibly 

• rSET/rCLR – Drive signal and gate  
signals are both considered to be control. 
– Unconditional, not data-dependent. 

• rLatch/rUnlatch – Drive signal is 
a data input, gate signals are control. 
– rLatch(in,out) just isolates in from out 

• cSET/cCLR – Drive signal is a control 
signal, gate signals comprise data input. 
– cSET(in,out) presents a copy of in on out 

• What if everything is a data input? 
– Some data transitions are reversible, others not 

data 

connN 
drive 

connP 

connN 

connP 

in out 

InN InP 

DriveN 

OutN 
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Reversible & Irreversible T-gate 

Transitions 

• When drive and gate are both data-dependent 
– Certain data transitions must be avoided… 

off 

on 

off 

off 

off 

on 
drive 

drive 

drive drive 

drive 

drive 

out 

out 

out out 

out 

out 

0 

0 

0 

0 0 

0 1 1 

1 

1 1 1 
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Type 2 example: SCRL inverter (w/o latch) 
• Same structure as static CMOS inverter, but used reversibly. 
• Produces a fully-restored, amplified output signal. 
• Inverters can be cascaded, but need latches to get feedback. 

In Out 

In Out 

In Out 

off 

off on 

off 

off 

on 

driveH 

driveL 

driveL 

driveH 

driveH 

driveL 

In Out 

on 

off 

driveH 

driveL 

In Out 

off 

on 

driveL 

driveH 

Voltage color scheme:   

Low / Medium / High 

SCRL = “Split-level Charge 

Recovery Logic” (Younis & 

Knight, 1993)  
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SCRL Inverter Transition Table 

Before 

SCRL-Inv 

After 

SCRL-Inv 

In Out In Out 

0 0 

0 ½ 0 1 

0 1 

½  0 

½  ½ 

½  1 

1 0 

1 ½ 1 0 

1 1 

Before 

SCRL-Inv 

After 

SCRL-Inv 

In Out In Out 

0 ½ 0 1 

1 ½ 1 0 

• Conditionally reversible, if input 

   is valid and output is ½ just 

   before drivers do their thing. 

 

• No point in even listing the 

   table entries that don’t occur; 

   can summarize operation below. 
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Spacetime Diagram for SCRL Inverter 

• Note that the notation shows that Out is being 

computed from In on a separate wire.  
– In is explicitly not being inverted “in place.” 

• Wedge symbols show ongoing dependence. 
– Of course, we can always undo the op later. 

In 

Out 
… 
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Icon for SCRL Inverter 

• Same as normal inverter icon 
– Can (optionally) also show control (drive) bus. 

 

 

 

 

• Note we can build a latched SCRL inverter very 

easily: 

DriveHL 

In Out 

In Out 

Internal node (might not be labeled) 
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rsCopyInv(In,Out) 

Reversible Split-level Copy with Inversion 

• Preconditions: 
– Out is initially clear (logic N - neutral). 

• Semantics: 
– Out := ¬ In 

 

• Gate icon in hardware diagrams: 
– (same gate also performs rUnCopyInv.) 

In Out 
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Simple Logic Example:  

Adiabatic NMOS OR gate 

• Input barriers along two parallel paths 

Out 
A 

B 

Out 
A 

B 

Out 
A 

B 

Out 
A 

B 

Out 
A 

B 

Drive 

Drive 

Drive 

Drive 

Drive 

Out 
A 

B 

Out 
A 

B 

Out 
A 

B 

Out 
A 

B 

Drive 

Drive 

Drive 

Drive 

Out = A  B  

• Reverse sequence 

   decomputes Out. 
• Can’t change A,B 

   freely until then. 

• With NMOS, Out 

   is weak (orange). 

• Can use an SCRL 

  inverter to restore 

  the signal levels. 

• If appropriately 

   biased… 

• Or, just use CMOS 

   transmission gates 

   instead (8T OR) 
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Type 3: Input-Barrier, Clocked-Bias  

Latching Logic 

0 0 0 

1 

1 0 N 

● Cycle of operation: 
1. Input conditionally lowers barrier 

• Do logic w. series/parallel barriers 

2. Clock applies bias force; conditional bit flip 

3. Input removed, raising the barrier & 

locking in the state-change 

4. Clock 

bias can 

retract 

Examples: Mike’s 

4-cycle 2-level adiabatic 

CMOS logic (2LAL) 

(1) 

(2) (2) 

(2) (2) 

(3) 

(4) 

(4) 
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2LAL: 2-level Adiabatic Logic 

• Use simplified T-gate symbol: 

• Basic buffer element:  
– cross-coupled T-gates: 

• need 8 transistors to  

buffer 1 dual-rail signal 

 

• Only 4 timing signals 0-3 are  

needed.  Only 4 ticks per cycle: 
– i rises during ticks t≡i (mod 4) 

– i falls during ticks t≡i+2 (mod 4) 

TN 

TP 

T 

: 

in 

out 

1 

0 

0  1  2  3 … 
Tick # 

0 

1 

2 

3 

A pipelined fully-adiabatic logic invented at UF (Spring 2000), 

implementable using ordinary CMOS transistors. 

2 

(implicit 

dual-rail 

encoding 

everywhere) 
Animation: 
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2LAL Cycle of Operation 

in 

in1 

in=0 

01 

01 

10 

11 

out1 

out=0 

00 

00 

in0 

11 

out0 

Tick #0 Tick #1 Tick #2 Tick #3 
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A Schematic Notation for 2LAL 
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2LAL Shift Register Structure 

• 1-tick delay per logic stage: 

 

 

 

 

• Logic pulse timing and signal propagation: 

in@0 

1 

0 

2 

1 

3 

2 

out@4 

0 

3 

inN 

inP 

0  1  2  3  ... 0  1  2  3  ... 

Animation: 
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More Complex Logic Functions 
• Non-inverting multi-input Boolean functions: 

 

 

 

 

• One way to do inverting functions in pipelined 

logic is to use a quad-rail logic encoding: 
– To invert, just 

swap the rails! 
• Zero-transistor 

“inverters.” 

A0 

B0 

0 

A1 

(AB)1 

A0 B0 

 

(AB)1 

AN 

AP 

AN 

AP 

A = 0 A = 1 

AND gate  

(plus delayed A) 
OR gate 
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cNOT hardware diagram 
• Here is an implementation of in-place 
cNOT(a,b) (controlled-NOT) 

– In terms of reversible AND or OR, 

reversible buffers, reversible latches, 

and (0T dual-rail) complement bubbles. 

• As you can see, it is rather  

complicated! 
– Illustrates that cNOT might not be 

a very good primitive for reversible CMOS! 

• This structure can be properly called a cNOT 

gate (as opposed to a cNOT operation) 

a 
b 

i 

x 

j 
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cNOT operation sequence 

• Steps to implement cNOT(a,b): a  b  i  x   j 

         a  b  0 0  0 
1.  rlXOR(a, b, x): 

1a. rUnLatch(i, x)    a   b   (   0  ) 0 
1a. rAND(a, b, i), rAND(a, b, i)  a   b   (ab) 0 
1b. rLatch(i, x)    a   b  ab ab 0 
1c. rUnAND(a, b, i), rUnAND(a, b, i) a   b   0 ab 0 

2.  rAND(a, x, b), rUnAND(a, x, b) a  ab  0 ab  0 

3.  rUnCopy(b, x): 
3a. rcSET(b, j)    a  ab  0  ab ab 

3b. rUnLatch(j, x)    a  ab  0  (ab ) 
3c. rcUnSet(b, j)    a  ab  0  (   0   ) 
3d. rLatch(j, x)    a  ab  0   0   0 

•     Note it takes 9 full steps! 
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Shift Register Simulation Results (Cadence/Spectre) 

• Graph shows power 
dissipation vs. frequency 

– in 8-stage shift register. 

• At moderate frequencies  
(1 MHz), 

– Reversible uses  
< 1/100th the power of 
irreversible! 

• At ultra-low power  
(1 pW/transistor) 

– Reversible is 100× faster 
than irreversible! 

• Minimum energy dissip. 
per nFET is < 1 eV! 

– 500× lower than best 
irreversible! 

• 500× higher 
computational energy 
efficiency! 

• Energy transferred is still 
~10 fJ (~100 keV) 

– So, energy recovery 
efficiency is 99.999%! 

• Not including losses in 
power supply, though 

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL
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2LAL = Two-level adiabatic logic (invented at UF, ‘00) 
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With this recursive structure,  

we can do a 2n-bit add in 2(n+1)  

logic levels. 

 

Hardware 

overhead is 

< 2× regular 

ripple-carry! 

Θ(log n)-time Recursive Adiabatic  

Wired-OR Carry-Skip Adder 

(8 bit segment shown) 
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32-bit Adder Simulation Results 

32-bit adder power vs. 

frequency
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20x better perf. 
@ 3 nW/adder 

Further improvements may be attainable through more pipelining, carry-save adders, etc. 
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Reversible and/or Adiabatic Full-Custom  

VLSI Chips Designed @ MIT, 1996-1999 
By EECS grad students Josie Ammer, Mike Frank, Nicole Love, Scott Rixner, 

and Carlin Vieri under CS/AI lab members Tom Knight and Norm Margolus. 



Things to Do 

• Explore whether this more-general paradigm 

for conditionally-reversible logic primitives 

might be helpful in developing reversible 

designs in technologies other than CMOS. 
– In particular, superconducting technologies. 

• May facilitate porting designs between domains. 

• Build up a much more comprehensive variety 

of larger functional-unit designs based on this 

general approach. 
– And teach more designers how to work with it! 
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