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Abstract 
A potentially valuable side effect of the ongoing research into the fundamental physical limits of computing 
has been the enhancement of our understanding of how we can interpret all physical systems (with their 
dynamical behavior) as constituting computational systems, construed in a broad sense.  As an example of 
this new understanding, we survey what is known regarding some ways that a variety of physical quantities 
(such as entropy, energy, temperature, momentum, etc.) can (validly, and we hope usefully) be 
reinterpreted and understood in a somewhat new way, using terminology and concepts that are borrowed 
from information and computation theory.   
 We begin with entropy, that (originally enigmatic) ratio of heat transfer to temperature which, with 
many thanks due to Boltzmann’s pioneering work, we today can understand as being a measure of the 
portion of the physical information content of a system which is either unknown or incompressible.  We 
discuss how this particular disjunctive conception (also suggested by Zurek) can be justified in light of the 
arbitrariness of the dividing line that we tend to draw separating the knower (that is, any entity described as 
possessing a probability distribution about the state of another system) from the system in question, and we 
discuss precisely what “incompressible” means in this context.  We also discuss a conjectured connection 
between the entropy (in this broad definition) and the degree of entanglement of a system. 
 Next we visit energy, which Margolus & Levitin, Lloyd and others have shown imposes an upper 
bound on the rate at which computational “operations” (characterized as orthogonalizing unitary 
transforms) can take place.  In fact, we can make the connection between energy and rate of computing 
even stronger.  An easy proof in complex analysis shows that the action of any time-dependent Hamiltonian 
gives the amount of area swept out by a state vector’s components (in any basis!) in the complex plane.  If 
we define this area as the amount of computational work performed, then the value of the Hamiltonian 
becomes exactly the rate of computation, and prior results about the minimum time to perform various 
unitary transformations in a system of given energy can then be recast as giving the amount of computation 
that those transformations require (minimized over the possible Hamiltonians that could carry them out). 
 Next we discuss temperature, which Lloyd has provocatively pointed out seems to be related to 
clock speed, or rate of computing per bit.  As a simple example, we show that at least for a simple example 
system of an ideal Fermi gas, the generalized temperature (which is defined even for non-equilibrium 
states) does indeed correspond exactly (apart from a constant of integration) to the average rate of 
computing (relative to the ground state) per unit of information capacity. 
 We conclude with momentum, which we analyze by breaking down the relativistic mass-energy 
Hamiltonian into two parts, which we term motional and internal energy.  The motional energy is not 
exactly kinetic energy, but is closely related to it.  It describes the rate of motional computation, that is, of 
computation that results in an object’s being translated in a given reference frame.  Meanwhile, the internal 
energy (which is not exactly the thermodynamic kind) describes the rate of internal computation, that is, of 
an object’s updating of its internal state (as opposed to its overall position).  We show that this picture is 
fully consistent with special relativity.  In our picture, (relativistic) momentum becomes simply the amount 
of motional computation performed per unit of translation through space in a given frame.  As an 
interesting aside, the ordinary action (the action of the Lagrangian) can be shown to correspond (modulo 
sign) to the amount of internal computation, and so, Hamilton’s principle becomes equivalent to the 
statement that a system tends to follow the trajectory that extremizes its amount of internal computation. 


