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Abstract
• Studying the physical limits of computing 

encourages us to think about physics in 
computational terms.
– Viewing physics “as a computer” directly gives us 

limits on the computing capabilities of any machine 
that’s embedded within our physical world.

• We want to understand what various physical 
quantities mean in a computational context.
– Some answers so far:

• Entropy = Unknown/incompressible information
• Action = Amount of computational “work”
• Energy = Rate of computing activity
• Generalized temperature = “Clock frequency” (activity per bit)
• Momentum = “Motional” computation per unit distance

Today’s
topic
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Energy as Computing
• Some history of the idea:

– Earliest hints can be seen in the original Planck E=hν relation for light.
• That is, an oscillation with a frequency of ν requires an energy at least h ν .

– Also suggestive is the energy-time uncertainty principle ∆E∆t ≥ h/2.
• Relates average energy uncertainty ∆E to minimum time intervals ∆t.

– Margolus & Levitin, Physica D 120:188-195 (1998).
• Prove that a state of average energy E above the ground state takes at least time 
∆t = h/4E to evolve to an orthogonal one.

– Or (N-1)h/2NE, for a cycle of N mutually orthogonal states.

– Lloyd, Nature 406:1047-1054, 31 Aug. 2000.
• Uses that to calculate the maximum performance of a 1 kg “ultimate laptop.”

– Levitin, Toffoli, & Walton, quant-ph/0210076.
• Investigate minimum time to perform a CNOT + phase rotation, given E.

– Giovannetti, Lloyd, Maccone, Phys. Rev. A 67, 052109 (2003), quant-
ph/0210197; also see quant-ph/0303085.

• Tighter limits on time to reduce fidelity to a given level, taking into account both E
and ∆E, amount of entanglement, and number of interaction terms.

• These kinds of results prompt us to ask:  
– Is there some valid sense in which we can say that energy is computing? 

• And if so, what is it, exactly?

• We’ll see this also relates to action as computation.
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A Simple Example:
• Consider a constant Hamiltonian with energy 

eigenstates |G〉 and |E〉, with eigenvalues 0,E.
– That is, H|G〉=0, H|E〉=E|E〉.  E.g., H = h

� σ
z.

• Consider the initial state | ψ 0〉 = (|G〉+|E〉)·2−1/2.
– c|E〉 phase-rotates at rate ω |E〉 = E ⁄ h.
– In time 2E/h, rotates by θ =π.
– The area swept out by c|E〉(t) is:

• a|E〉 = ½π(|c|E〉|2) = π ⁄ 4.
• This is just ½ of a circle with

radius r|E〉 = 2−1/2.
– Meanwhile, c|G〉 is stationary.

• Sweeps out zero area.
– Total area: a = π ⁄ 4.

c|E〉

c|G〉

θ
=π

a=π/4

1

i

0
r = 2−1/2
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Let’s Look at Another Basis
• Define a new basis |0〉, |1〉 with: 

|0〉=(|G〉+|E〉)·2−1/2, |1〉=(|G〉−|E〉)·2−1/2

• Use the same initial state | ψ 0〉 = |0〉.
– Note the final state is |1〉.

• Coefficients c|0〉(t) and c|1〉(t)
trace out the path
shown to the right…

• Note that the total area
in this new basis is still π/4!
– Area of a circle of radius ½.

• Hmm, is this true for any basis?  Yes! …

c|0〉

c|1〉

a = π/4
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Action: Some Terminology
• A physical action is, most generally, 

the integral of an energy over time.
– Or, along some “temporalizable” path.

• Typical units of action: h or h.
– Correspond to angles of 1 circle and 1 radian, respectively.

• Normally, the word “action” is reserved to refer 
specifically to the action of the Lagrangian L.
– This is the action in Hamilton’s “least action” principle.

• However, note that we can broaden our usage a bit 
and equally well speak of the “action of” any quantity 
that has units of energy.
– E.g., the action of the Hamiltonian H = L + p·v = L + p2/m.

• Warning:  I will use the word “action” in this more 
generalized sense!
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Action as Computation

• We will argue:  Action is computation.
– That is, an amount of action corresponds exactly to an 

amount of physical quantum-computational “work.”
• Defined in an appropriate sense.

• The type of action corresponds to the type of 
computational work performed, e.g.,
– Action of the Hamiltonian = “All” computational work.
– Action of the Lagrangian = “Internal” computational work.
– Action of pv = “Motional” computational work

• We will show exactly what we mean by all this, 
mathematically…
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Action of the Hamiltonian
• Consider now the action A (eq. (1) below) of any 

time-dependent Hamiltonian operator H(t).
– Note that A is an Hermitian observable as well.

• The H determines state-vector dynamics via the 
usual Schrödinger relation d/dt = iH/h.
– For our purposes, we are adopting the opposite of the 

usual (but arbitrary) sign convention in this equation.
• This leads to the time-evolution operator (2) below:

– Given H(t) → A(t0,t) → U(t0,t), any initial vector v(t0) yields 
a complete state trajectory v(t) = U(t,t0)v(t0).

∫
=

=
t

t

HttA
0

d)(),( 0

τ

ττ h/),(i
0

0e),( ttAttU =(1) (2)



1/3/2005

5

1/3/2005 9

Some Nice Identities for A
• Consider applying a specific operator A itself to any “initial” state v0.

– For any observable A, we’ll use shorthand like Av0 = 〈v0|A|v0〉.
• It is easy to show that Av0 is equal to all of the following:

– The quantum-average net phase-angle accumulation of the coefficients ci of 
v’s components in H’s energy eigenbasis {vi}, weighted by the component 
probabilities (3).

– The line integral, along v’s trajectory, of the magnitude of the imaginary part 
of the inner product 〈v | v + dv 〉 between adjacent states (4).

– Exactly twice the net area a swept out in the complex plane (relative to the 
complex origin) by v’s coefficients cj, in any basis {vj}.

• We will prove this.

• Note that the value of Av0 therefore depends only on the specific 
trajectory v(t) that is taken by v0 itself, 
– and not on any other properties of the complete Hamiltonian that was used 

to implement that trajectory!
• For example, it doesn’t depend on the energy Hu assigned to other states u that 

are orthogonal to v.
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Area swept out in energy basis

• For a constant Hamiltonian,
– By a coefficient ci of

an energy basis
vector vi.

• If ri=|ci|=1, the area 
swept out is ½
of the accumulated
phase angle.
– For ri<1, note area

is this times ri
2.

• Sum over i = ½ avg.
phase angle accumulated
= ½ action of Hamiltonian.

ci(t)

ci(t+dt)

0 Real axis

Imaginary
axis

ri
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In other bases…
• Both the phase and magnitude of each 

coefficient will change, in general…
- The area swept out is no longer 

just a corresponding fraction of a 
circular disc.

* It’s not immediately obvious
that the sum of the areas
swept out by all the cj’s will 
still be the same in the 
new basis.

- We’ll show that indeed it is.

Real axis

Imag. 
axis

0

cj(t)cj(t + dt)

dθj drj
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Basis-Independence of a
• Note that each cj(t) trajectory is just a sum of circular 

motions…
– Namely, a linear superposition of the ci(t) motions…

• Since each circular component motion is continuous and 
differentiable, so is their sum.
– The trajectory is everywhere a smooth curve.

• No sharp, undifferentiable corners.

• Thus, in the limit of arbitrarily short time intervals, the path
can always be treated as linear.
– Area daj approaches ½ the parallelogram area rj rj′ sin d θ = cj×cj′

• “Cross product” of complex numbers considered as vectors

• Use a handy complex identity: a*b = a·b + i(a×b)
• Implies that daj = ½ Im[cj* cj′]

– So, da = ½ Im[v†v ′ ].
• So da is basis-independent, 

since the inner product v†v ′ is! 
cj

cj′

daj

dθj rj

rj′

0
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Computational Work of a 
Hamiltonian applied to a system 

• Suppose we’re given a time-dependent Hamiltonian H(t), a 
specific initial state v, and a time interval (t0, t)
– We can of course compute the operator A(t0,t) from H.

• We’ll call Av the computational work performed according to 
the specific action operator A (or “by” H acting from t0 to t) 
on the initial state v.
– Later we will see some reasons why this identification makes sense.

• For now, take it as a definition of what we mean by “computational work”

• If we are given only a set V of possible initial vectors, 
– The (maximum, minimum) work of A (or H from t0 to t) is (5)

• If we had a prob. dist. over V (or equiv., a mixed state ρ ), 
– we could instead discuss the expected work (6) of A acting on V;

AvAAvA
VvVv ∈

−

∈

+ == min][W;max][W ][Ex][W AvA
Vv∈

=
(5)

(6)
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Computational “Effort” to 
Cause a Desired Change 

• If we are interested in taking v0 to v1, and we have a set ℵ
of available action operators A (implied, perhaps, by a set 
of available Hamiltonians H(t))
– we define the minimum work or “effort” to get from v0 to v1, (7)

• Maximizing over ℵ isn’t very meaningful, since it may often yield ∞.

• And if we have a desired unitary transform U that we wish 
to perform on any of a set of vectors V, given a set ℵ of 
available action operators,
– Then we can define the minimum (over ℵ) worst-case (over V) work 

to perform U, or “worst-case effort to do U” (8).  
• Similarly, we can discuss the best-case effort to do U.

– or (if we have vector probabilities) the minimum (over ℵ) expected 
(over V) work to do U, or “expected effort to do U” (9).

0
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The Justification for All This…
• Why do we insist on referring to these concepts as 

“computational work” or “computational effort?”
– One could imagine other possible terms, such as “amount of change,”

“physical effort,” the original “action of the Hamiltonian” etc.
• What is so gosh-darned “computational” about this concept?

• Answer: We can use these concepts to quantify the “size” or 
“difficulty” of, say, quantum logic-gate operations.
– And by extension, classical reversible operations embedded in 

quantum operations…
• And by extension, classical irreversible Boolean ops, embedded within 

classical reversible gates with disposable ancillas…
– As well as larger computations composed from such primitives.

• The difficulty of a given computational op (considered as a 
unitary U) is given by its effort (minimized work over ℵ)…
– We can meaningfully discuss an operation’s minimum, maximum, or 

expected effort over a given space of possible input states.
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But, you say, Hamiltonian energy is only 
defined up to an additive constant…

• Still, the effort of a given U can be a well-defined (and non-
negative) quantity, IF…
– We adopt an appropriate and meaningful zero of energy!

• One useful convention: 
– Define the least eigenvalue (ground state energy) of H to be 0.

• This ensures that energies are always positive.

• However, we might want to do something different than this 
in some cases…
– E.g., if the ground-state energy varies, and it includes energy that 

had to be explicitly transferred in from another subsystem…
• Another possible convention:  

– We could count total gravitating mass-energy…
• Anyway, let’s agree, at least, to just always make sure that 

all energies are positive, OK?
– Then the action is always positive, and we don’t have to worry about 

trying to make sense of a negative “amount of computational work.”
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Energy as Computing
• Given that “Action is computation,”

– That is, amount of computation,
• where the suffix “-ation” denotes a noun, 

– i.e., the act itself, 

– What, now, is energy?

• Answer: Energy is computing.
– By which I mean, “rate of computing activity.”

• The suffix “-ing” denotes a verb, 
– the (temporal) carrying out of an action…

• This should be clear, since H(t) = dA/dt…
– Thus the Hamiltonian energy of any given state is the 

rate at which computational work is being (or would 
be) performed “on” (or “by,” if you prefer) that state.
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Applications of the Concept

• How is all this useful?
– It lets us calculate time/energy tradeoffs for 

performing operations of interest.

– It can help us find (or define) lower bounds on 
the number of operations of a given type 
needed to carry out a desired computation.

– It can tell us that a given implementation of 
some computation is optimal.
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Time/Energy Tradeoffs
• Suppose you determine that the effort of a desired v1→v2 or 

U(V) (given the available actions ℵ) is A.
– For a multi-element state set V, this could be a minimum, maximum, 

or expected effort…

• And, suppose the energy that is available to invest in the 
system in question is at most E.
– This then tells you directly that the minimum/maximum/expected 

(resp.) time to perform the desired transformation will be t ≥ A/E.
• To achieve equality might require varying the energy of the state over 

time, if the optimal available H(t) says to do so…

• Conversely, suppose we wish to perform a transformation in 
at most time t.
– This then immediately sets a scale-factor for the magnitude of the 

energy E that must be devoted to the system in carrying out the 
optimal Hamiltonian trajectory H(t); i.e., E ≥ A/t.
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Single-Qubit Gate Scenario

• Let’s first look at 2-state (1-qubit) systems.
– Later we’ll consider larger systems.

• Let U be any unitary operator in U2.
– I.e., any arbitrary 1-qubit quantum logic gate.

• Let the vector set V consist of the “sphere” of all unit 
vectors in the Hilbert space 

ℋ
2.

– Given this scenario, the minimum effort to do any U is always 0 
(just let v be an eigenvector of U), and is therefore uninteresting.  

• Instead we’ll consider the maximum effort.

• What about our space ℵ of available action operators?
– Suppose for now, for simplicity, that all time-dependent 

Hermitian operators on ℋ 2 are available as Hamiltonians.
• Really we only need the time-independent ones, however.

– Thus, ℵ consists of all (constant) Hermitian operators.
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Analysis of Maximum Effort
• The maximum effort to do U (in this scenario) arises from 

considering a “geodesic” trajectory in U2.
– All the worst-case state vectors just follow the “most direct” path 

along the unit sphere in Hilbert space to get to their destinations.
• Other vectors “go along for the ride” on the necessary rotation.

• The optimal unitary trajectory U(t0,t) then amounts to a 
continuous rotation of the Bloch sphere around a certain 
axis in 3-space…
– where the poles of the rotation axis are the eigenvectors of U.
– Also, there’s a simultaneous (commuting) global phase-rotation.

• If we also adopt the convention that the ground-state 
energy of H is defined to be 0,
– Then the global phase-rotation factor goes away,

• And we are left with a total effort A that turns out to be 
exactly equal to θ h, where 0 ≤ θ ≤ π is simply the 
(minimum) required angle of Bloch-sphere rotation to 
implement the given U.
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Some Special Cases

• Pauli operators X,Y,Z (including X=NOT), 
as well as the Hadamard gate:
– Bloch sphere rotation angle = π (rads)
– Maximum effort: h/2

• Square-root of NOT, also phase gate 
(square root of Z):
– Rotation angle π/2, effort = h/4.

• “π/8” gate (square root of phase gate):
– Rotation angle π/4, effort = h/8.



1/3/2005

12

1/3/2005 23

Fidelity and Infidelity

• The fidelity between pure states u,v is defined as 
F(u,v) = |〈u|v〉|.
– So, F2 is the probability of conflating the two.

• Define the infidelity between u,v as

• Thus, I2 = 1 − F2 is the probability that if state u
is measured in a basis that includes v as a basis 
vector, it will project to a basis state other than v.
– Infidelity is thus a distance metric between states…

2),(1),( vuFvuI −=
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Effort Required for Infidelity
• Guess what, a Bloch-sphere rotation by an angle of θ

gives a maximum (over V) infidelity of I+(θ) = sin(2 θ ).
– Meanwhile, the minimum fidelity is cos(2 θ )…

• You’ll notice that F2+I2=1, as probabilities should.

• Therefore, achieving an infidelity of I requires performing 
a U whose maximum effort is at least A = 2h·arcsin(I).
– However, the specific initial states that actually achieve this 

infidelity under the optimal rotation are Bloch “equator” states
• Equal superpositions of high and low energy eigenstates;

– They perform a quantum-average amount of computational work 
that is only half of the maximum effort.

• Thus, the actual work required for an infidelity of I is only 
half of the maximum effort, or W = A/2 = h·arcsin(I).
– And so, a specific state that carries out an amount of 

computational work W ≤ π/2 can achieve an infidelity of at most 
I = sin(W/h), while maintaining a fidelity of at least F=cos(W/h)…

• a nice simple relation… Especially if we let h=1…
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Multi-qubit Gates
• Some multi-qubit gates are easy to analyze…

– E.g., “controlled-U” gates that perform a unitary U on 
one qubit only when all of the other qubits are “1”

• If the space of Hamiltonians is truly totally 
unconstrained, then (it seems) the effort of these 
will match that of the corresponding 1-bit gates.
– However, in reality we don’t have such fine-tailored 

Hamiltonians readily available.
• A more thorough analysis would analyze the effort 

in terms of a Hamiltonian that’s expressible as a 
sum of realistically-available, 1- and 2-qubit 
controllable interaction terms.
– We haven’t tried to do this yet…
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Conclusion
• We can define a clear and stable measure of the 

“length” of any continuous state trajectory in 
Hilbert space.  (Call it “computational work.”)
– It’s simply given by the action of the Hamiltonian.

• It has a nice geometric interpretation as well.

• From this, we can accordingly define the “size”
(or “effort”) of any unitary transformation.
– As the worst-case (or average-case) path length, 

minimized over the available Hamiltonians.

• We can begin to quantify the effort required for 
various quantum gates of interest…
– From this, we can compute lower bounds on the time 

to implement them for states of given energy.


