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Abstract

We offer well-motivated and basis-independent definitions for the total amount of change occurring along any continuous trajectory of a time-dependent quantum state vector, as well as the amount of physical/computational “effort” required to carry out a given unitary transformation in an abstract setting, given a set of possible initial quantum states, and a set of available Hamiltonians.  Our definitions are based on the action of the Hamiltonian, which we show is always exactly twice the area swept out in the complex plane by the state-vector coefficients in any basis.  Using our definitions, we show that the rate of change of any state is exactly given by its quantum-average energy (relative to the given ground state), while the “rate of computing” in the abstract situation could be considered equal to the energy of the highest-energy state in the input set.  The minimum effort required to carry out various types of quantum and classical logic operations is explored.  Among other results, we show that the minimum effort to perform any 1-qubit unitary gate is 0 ≤ |θ|( ≤ h/2, where we view the gate as being equivalent to a rotation of the Bloch sphere through an angle of θ (with |θ|≤π) about some axis in three-space.
1. Introduction

The average energy E of any quantum system relative to its ground state was shown by Margolus and Levitin [1] to directly limit the rate at which the system can undergo transitions between distinguishable (orthogonal) states, such as individual steps within a digital computation.  The maximum (and achievable) rate is R((N) = 2EN/[h(N−1)] for a dynamical orbit which cycles through a sequence of N≥2 mutually orthogonal states, with the extreme cases being R((2) = 4E/h and R((∞) = 2E/h .  Related results concerning the minimum time required to carry out unitary transforms of specific types on states of given energy have also been explored in [2].  Additional papers that relate to the general theme of exploring the relationship between energy and computing speed include [4-8].
Results such as these suggest that energy might fruitfully be exactly identified with the rate of raw, low-level quantum-physical “computing” that is taking place within a given physical system, in some appropriate sense, if only the quantity “amount of computing” could be defined accordingly.  We would like to understand better what this means, and show that some well-defined and well-justified measure of the rate at which “computational work” is being carried out within any quantum system is indeed exactly equal to the energy of that system.
In this paper, we address this goal by proposing a well-defined, real-valued measure of the total amount of change undergone over the course of any continuous trajectory of a state vector along the unit sphere in Hilbert space.  This measure is simply given by the line integral of the magnitude of the imaginary component of the inner product between infinitesimally-adjacent state vectors along the given path.  This quantity is invariant under any time-independent change of basis, since the inner product itself is.  Our quantity is also equal to twice the complex-plane area (relative to the origin) that is circumscribed or “swept out” by the coefficients of the basis vector components (in any basis).  (And for closed paths, this quantity is even invariant not only under rotations but also under translations of the complex plane.)  

We show that the instantaneous rate at which change (under our definition) occurs for any state (under any time-dependent Hamiltonian) is exactly given by the instantaneous (Hamiltonian) energy of the state.  Our quantity is thus also equal to the “action of the Hamiltonian” (not Lagrangian) over the course of the system’s trajectory.  
Next, we propose that (and motivate why) the amount of computational work performed by a given transformation trajectory (that is, a unitary transform described as U=eiA, where A is the time-integral of a given time-dependent Hamiltonian) might best be defined as the maximum amount of change (under our definition) over the set of all initial states of the system that are under consideration in a given situation.  (Similarly to how the information capacity of a system relates to its maximum entropy, and depends on what set of states is considered to be “available.”)  For time-independent Hamiltonians, an abstract system’s rate of computing is then given exactly by the energy of its highest-energy state under consideration.  And for any system of given energy, its rate of computing is exactly given by its energy.  Finally, for a “bare” unitary transform (that is, one that is not associated with any specific Hamiltonian), the computational effort required to perform it in a given situation can be defined by minimizing the amount of computational work over all available transformation trajectories that result in that unitary.

In this view, the Margolus-Levitin theorem can then be reinterpreted (sightly) as showing us that the Hamiltonian action or computational work required to flip a bit in isolation is at least h/4, while the action required to complete a cycle through N distinct neighboring states is at least (N−1)h/2.  Other previous results concerning minimum times to perform various quantum operations can also be subsumed under our new framework.

2. Basic framework
Let ℋ be any Hilbert space, and let H(t) be any continuous mapping from a real-valued parameter t (“time”) to Hermitian operators on ℋ, in other words, H can be considered to be a (most generally) time-dependent Hamiltonian,  given appropriate energy units.  For any times t1,t2 ( ℝ, define the action operator of H from t1 to t2 to be:
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(1).
Of course, in the special case where we have a time-independent H(t) = H (const.), we can simplify the action operator to just AH(t1,t2) = AH(∆t) = H∆t where ∆t = t2 − t1.

Note that, although the action quantity that is most frequently used in physics (e.g. in Hamilton’s principle) is the action of the Lagrangian L = pv − H, it is also perfectly valid and reasonable for us to define a more general notion of the action “of” any quantity that has units of energy, by integrating that energy quantity over time.  In this case, we are referring to the action of the Hamiltonian, rather than the action of the Lagrangian.
Also define the unitary transform from t1 to t2 under H to be:


UH(t1,t2) = exp[iAH(t1,t2)].
(2)

(In this document, we will use roman font for the constant imaginary unit i where i2 = −1, to distinguish it from italic variables i which we use as indices.  Likewise for e, the constant base of the natural logarithms, and for (.) This is just the usual quantum time-evolution operator which transforms state vectors from time t1 to t2 under a given time-dependent Hamiltonian H(t).  (Sometimes, by convention a minus sign is inserted inside the exponential, but this is a purely arbitrary choice and we avoid it in this document.)  Henceforth, we will almost always omit the H subscript from U and A, although they should still be understood, in the context of the present discussion, to be always still implicitly dependent on H.
Taylor-expanding the expression for U, we note that (suppressing the t1,t2 parameters for clarity):
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(3)
where the O(A2) notation here is expressing the fact that if we were to scale to ever smaller A, e.g. by considering what happens to A(k) = AH(t1, t1 + (t2−t1)/k) as k→∞, the sum of the A2, A3, etc. terms would become asymptotically bounded in magnitude by a term that goes as A2, and that thus would be negligible in comparison with A.  In other words, as k→∞,

U(k) → 1 + iA(k).
(4)
Assuming that H(t) is a continuous function, then for any infinitesimal time interval of magnitude ∆t = dt, H(t) can be considered effectively time-independent over the “entire” infinitesimal interval between t1 and t2 = t1 + dt, and so we can say that at any time t, the “infinitesimal” (here meaning, close to 1) unitary transform applying “at” that time t can be expressed as


[image: image3.wmf]t

t

H

t

A

t

t

t

A

t

t

t

U

t

H

d

)

(

i

1

)

d

(

i

1

)

d

,

(

i

1

)

d

,

(

)

(

+

=

+

=

+

+

=

+


(5)

with the equality here being both rigorous and exact.
This simple (and well-known) relationship between U and H over infinitesimal time intervals could be seen as suggesting that important characteristics of U over arbitrarily large intervals can usefully be found by integrating properties of the infinitesimal unitary U(t, t+dt) over time between t1 and t2, or in other words by integrating properties of the instantaneous H(t).  Indeed, we will see that this is the case.  Also, we will see that the imaginary unit i in (5) ends up playing an important role, and leads us to consider the imaginary part of the inner product in our definition of total action.
Now, to simplify further notation, let us henceforth write U′(t) to mean U(t, t+dt).  We will refer to the entire function U′(t) over values of t between any t1 and t2 as the transformation trajectory between those times.  Note that the overall transformation U(t1,t2) is the product of all the infinitesimal U′(t) over all times t in the range from t1 to t2.  That is, we can write:     
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Although the product operator ∏ is more traditionally applied only over discrete sets of terms, there is no reason it can’t also be applied to a set of values that are each infinitesimally close to 1, analogously to how an integral ∫ can be viewed as simply a generalization of the sum operator ∑ to a continuous set of infinitesimal terms.  
Note that although U′(t) completely determines U(t1,t2), knowing the total transformation U(t1,t2) for a particular pair of times t1,t2 is not sufficient to determine the specific complete transformation trajectory U′(t), even for values of t falling in the range [t1, t2]. 
3. Defining the amount of change

Now, let us proceed to define our concept of the amount of change performed by a transformation trajectory U′(t) between two times, and by the resulting overall unitary transform U.  We will find it easiest to analyze this by first considering U’s behavior when operating on its eigenvectors. 
Let us first pause and look back at equation (3), the Taylor-expansion of the definition of U as exp[iA], and reflect on it a moment.  This equation immediately implies that all eigenvectors of A are eigenvectors of U as well.  Why?  Let Av = av (with v a vector, a a scalar), then, spelling out the steps explicitly,
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where u is the scalar value 
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 = exp[ia].  Since Uv is equal to a scalar (namely u) times v, we have that v is an eigenvector of U.  Now, since U and A are of equal dimensionality, and all eigenvectors of A are eigenvectors of U, the converse also holds, and the two operators have identical sets of eigenvectors.  Since U is unitary, it preserves vector length, and so its eigenvectors v remain unchanged under U except for a phase rotation, namely a multiplication by u = eia, where a is the eigenvalue of A corresponding to v.  Note that A must have real eigenvalues, since it is an integral of H (which has real eigenvalues since it is Hermitian) and anyway, since we know that |u| = 1, and that u = eia, it follows that a must be real. In other words, the action operator is giving us the total angle of phase-rotation undergone by those vectors that end up unchanged by U(t1, t2) aside from a phase-rotation.
Of course, we would also like to understand and quantify what happens to other vectors as well.  We will see how to do this shortly.  First, we will begin by analyzing in more detail what happens to a given eigenvector v over time as it is transformed by U. 

Given any an initial vector v (at time t1 which without loss of generality we set equal to 0), we can let v(t) = U(t1, t)v.  In other words, v(t) traces out a continuous path on an origin-centered sphere in Hilbert space having radius |v|, which WLOG we can consider to be 1.  

For simplicity, first suppose that H is time-independent (later, we will see how to remove this restriction).  Then A(∆t) = H∆t and U(∆t) = exp[iH∆t], so that for times t = t1+∆t = ∆t, we have v(t) = U(∆t)v = exp[iH∆t]v.  If v is an eigenvector of U (thus of A, and of H) let its eigenvalue under H be ω.  Then v(t) = exp[iωt]v.  In other words, v(t) simply phase-rotates continuously in the complex plane at angular velocity ω.  Note that the inner product between the initial v and v(t), which we can write (v|v(t)(, has the value exp[iωt] = cos(ωt) + i sin(ωt).  The imaginary part of the inner product is sin(ωt).  Note now that for an infinitesimal t = dt, we have that sin(ωdt) = ωdt = dA, i.e., the infinitesimal increment in angle (or action) accumulated over the time dt.  In other words, over infinitesimal time intervals, the imaginary part of the inner product between the “before” vector v(t1) and the “after” vector v(t1+dt) gives exactly the amount of action (or phase angle accumulation) over that time.  At least, we have shown this in the case of a time-independent Hamiltonian H, and an initial vector v which is an eigenvector of that Hamiltonian.  Let us now see how to generalize this to other cases.
First, suppose the initial vector v is not an eigenvector of H.  However, let {vi} be a maximal set of unit-length mutually orthogonal vectors which are all eigenvectors of H, in other words, an orthonormal eigenbasis of H.  Then, any arbitrary v can be expressed in terms of components in the vi basis, that is as v = ∑i civi where the ci are complex coefficients.
Of course, since U is a linear operator, we can express Uv in terms of its action on v’s components in that basis, i.e.,
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(8)
where ωi is just the eigenvalue of H that is associated with eigenvector vi.  Now, note that the exponential terms can be absorbed into the coefficients.  That is, we can look at the coefficients as being time-dependent quantities, ci(t) = ci exp[iωit], and say that always v(t) = ∑i ci(t)vi.  Note that each coefficient, whatever its magnitude, still just phase-rotates in the complex plane with an angular velocity ωi that is given by the corresponding eigenvalue of H.
At this point, let us pause to preview the next steps.  We are going to study several quantities, and show the close identities between them:
1. The average rate of phase angle accumulation of the coefficients ci(t), weighted by their squared modulus (magnitude).

2. The energy of the given vector v considered as a quantum state.

3. The rate at which the coefficients ci(t) sweep out area in the complex plane.

4. The imaginary component of the inner product between infinitesimally-adjacent state vectors, per infinitesimal time interval.
5. The rate at which the coefficients cj(t) in any orthonormal basis vj sweep out area in the complex plane.

First, let us describe each coefficient ci in phase-magnitude representation as ci = mi exp[iθi], where mi = |ci|
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 is the modulus (absolute value, magnitude, norm, length) of the complex number ci, and θi = arg(ci) is its argument (phase angle).  Another notation for this relation is ci = m​i ( θi.  Perhaps the most popular notation in use today is 
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, although the notation ex may be confused with the ordinary complex exponentiation operation, which is, strictly speaking, multi-valued in the case of non-integer exponents.  (E.g., 11/3 technically has 3 distinct complex values, namely 1, exp[2πi/3], and exp[4πi/3].)  To avoid confusion, we use the exp[∙] notation here.
Let us now consider the following quantity:
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Recall that ωi is the eigenvalue of H corresponding to eigenvector vi, and is the rate of phase rotation (or angular velocity) of the coefficient ci in the complex plane.  So, 
[image: image11.wmf]w

 is simply the average angular velocity of the coefficients, weighted by their squared modulus.  Weighting by the squared modulus of the amplitudes (complex coefficients) of the basis states is the normal way of taking the average or mean value of an observable quantity in quantum mechanics, for a pure state that is a complex superposition of the eigenstates of the given observable.  Thus, we can say 
[image: image12.wmf]w

is simply the average complex-plane angular velocity for the quantum state v.
We pause to note that aside from a conversion of units, 
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is also the energy of the quantum state v.  For example, if 
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has been implicitly quantified in terms of radians per second, then we can write 
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, using some standard physical unit for ( such as Joule-seconds, to obtain the average energy 
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in a traditional energy unit such as Joules.  (The constant ( can be considered to represent the angle “1 radian,” and thus serves to make this implicit angle-unit explicit.)  However, I emphasize that this is merely a matter of unit-conversion, and we can equally well say that 
[image: image17.wmf]w

is the energy of the state.

[image: image18]
Figure 1. A complex coefficient ci sweeps out a small wedge-shaped area (shown exaggerated) in the complex plane over an infinitesimal time interval dt.
Let us now consider the rate at which the complex coefficients sweep out area in the complex plane.  To illustrate what we mean by this, refer to figure 1, which illustrates a region of the complex plane centered on the origin.  Consider first just one of the coefficients ci.  At time t, it has value ci(t), shown as an arrow on the diagram.  A short time dt later, the arrow has rotated to ci(t+dt), and we say that the arrow has “swept out” the region shown in gray.  Between these times, the arrow has rotated by an angle dθi = ωidt.  What is the area of the wedge-shaped region of the disc?  This is easy to calculate, if we recall that, were we to let the arrow sweep out a full circle, it would rotate by a total angle of θi = 2π radians, while sweeping out an area of ai = πmi2, since mi (the magnitude of ci) is the radius of the circle shown.  Thus, for the full circle, ai = θimi2/2.  By symmetry, this relation between a and θ also holds for each part of the circle, so we have dai = dθimi2/2 = ωimi2dt/2.
To find the total area da swept out by all coefficients ci over time dt, we merely do the same for each of them, and sum them all up:
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(10)

Thus, the total rate da/dt at which area is swept out in the complex plane by all the various coefficients taken together is exactly half of the average component phase velocity, i.e., half the state’s energy.

This brings us to the fourth item in the preview above, namely the inner product between infinistesimally-adjacent state vectors v(t) and v(t+dt).  For conciseness, we will let v=v(t) and v′ = v(t+dt) and likewise for the coefficients ci and phase angles θi.  The inner product v•v′ = (v|v′( = v†v′ (these are three common alternative notations for it) can be defined in terms of the coefficients ci, ci′ by:
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where the * denotes complex conjugation of ci′.  Now, in the phase-magnitude representation, ci* = (mi exp[θi])* = mi exp[−θi].  Note that mi′=mi because the complex magnitudes are not changed by phase rotation.  Thus, ci*ci′ = (mi exp[−θi])(mi exp[θi′]) = mi2 exp[θi′−θi].  But, note that θi′ = θi + ωidt, so we have 
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where in the last step we are using the identities cos(dθ)=1 and sin(dθ)=dθ which hold for infinitesimal angles d(, where in our case dθ=ωdt.  Now, we just sum equation (12) over the values of the index i to get the overall inner product.  The real part of the inner product is just ∑mi2 = 1 always, so it is not very useful, but the imaginary part of the inner product, Im[v•v′] = ∑mi2ωidt =
[image: image22.wmf]w

dt, in other words, it is the average energy times the time increment dt.  Recall that 
[image: image23.wmf]w

is the average phase velocity or average Hamiltonian energy of the state v, thus dA=
[image: image24.wmf]w

dt is the average increment in phase, or the increment in action over the time dt.  Note that we have dA = 2da, where recall da was the increment in area swept out in the complex plane.

Of course, even for a non-infinitesimal time interval ∆t, we can obtain the total average accumulation of phase angle ∆A, or the total area ∆a swept out, by just using the expressions ∆A = 
[image: image25.wmf]w

∆t and ∆a = ∆A/2.
As an interesting aside, for any closed trajectory that eventually brings all coefficients back to their initial complex-plane locations simultaneously, it does not even matter where we choose to locate the complex origin for purposes of calculating the area, relative to the geometric curves that are traced out in the plane by the coefficients.  The total area swept out by the points as they travel around the curves remains exactly the same no matter where the “center” for area calculations is chosen.  Or rather, this is true as long as any retrograde (clockwise) motions are considered to sweep out negative area.
4. Generalizing to arbitrary bases
The above discussion proceeded under the context of a set of basis vectors {vi} which were taken to be orthonormal eigenvectors of the (temporarily presumed constant) Hamiltonian operator H.  Now, we will see that this choice of basis is in fact unnecessary, and that the same statements concerning the relationship between the area swept out and the action would hold true in any (time-independent) basis.
That this is true is suggested by considering the relationship between dA (the increment of action, the energy 
[image: image26.wmf]w

 times dt) and the inner product v•v′ = v(t)•v(t+dt) between infinitesimally neighboring vectors along the trajectory.  We saw that dA = Im[v•v′].  However, a fundamental property of the inner product that it is itself a unitary invariant; that is, it is a product of two vectors considered as pure geometric objects, and thus it is independent of the basis which we use to express those vectors in terms of components.  Therefore, this basis-independence also holds for the imaginary part of the inner product.  So, if we were to just define dA = Im[v•v′], this definition would rely not at all on any particular basis; we do not even have to find the eigenstates of the Hamiltonian to determine it.  Yet, it is still true that dA/dt is the energy of the state v.
Now, however, we would like to see whether the other quantities we investigated that explicitly invoke a choice of basis nevertheless remain consistent under a change of basis.  In particular, we saw that in the energy basis vi, the area swept out by the coefficients ci in the complex plane was exactly given by half of the action A, that is, a=A/2.  Does this remain true in other bases?  We will see that it does.
At first, it may seem non-obvious that the area swept out is still half of the action.  Note that our previous arguments for this relied on the fact that in the energy basis {vi}, the coefficients all rotated at uniform angular velocity in a circle in the complex plane, while their individual magnitudes mi remained constant.  In a different basis vj, this is no longer true.  Each basis vector vj is in general some superposition of the vi, like
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where the matrix U = [uji] of complex coefficients (j indexing rows, i columns) is, most generally, any unitary matrix.  We can also write this equation in matrix-vector form as 
[image: image28.wmf]i
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.  Now, for a general vector v,
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so, equating the coefficients on the vi components of v, we have that
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or, solving for the cj’s,
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(16)
In other words, each complex coefficient in the new basis is just a particular linear combination of what the various complex coefficients were in the old basis.  If the coefficients ci in the old energy basis are describing perfect circles around the complex origin at a variety of radii and angular velocities, there is no guarantee that the coefficients cj in the new basis will still be describing circular paths centered on the origin, although their paths will of course still be continuous.  In general, the cj will follow complex looping trajectories in the complex plane, generated exactly as if by Ptolemaic planetary epicycles, i.e., as a sum of circularly rotating vectors.  A given cj will in general return to its initial location in the complex plane only when its components ci that have nonzero values of uji all simultaneously return to their initial locations exactly (which might take infinitely long, if the corresponding (i values were relatively irrational).
Anyway, the important point for our present purposes is that the cjs do not, in general, maintain a constant magnitude (distance from the origin), and so the area swept out by the cj over a given time is no longer just a section of a circle, which was really easy to analyze.  Instead, while cj’s phase angle (j is rotating, simultaneously its magnitude mj may also be growing or shrinking.  Figure 2 illustrates the situation.

[image: image33]
Figure 2. Area swept out (exaggerated) by a coefficient cj (in a basis other than the energy eigenbasis) over an infinitesimal time interval dt.  Note that both its phase and magnitude change, in general.
What, now, is the area swept out in this more general situation?  Notice that it is (in the infinitesimal limit which we are discussing) exactly half the area of the parallelogram spanned on two adjacent sides by cj = cj(t) and cj′ = cj(t+dt), considered as vectors in the complex plane.  See figure 3.

[image: image34]
Figure 3.  The infinitesimal area daj swept out approaches one-half the parallelogram area mjmj′ sin d(j.

The parallelogram area, itself, is dAj = mjmj′ sin(d(j), where mi and mi′ are the magnitudes of the old and new coefficients, respectively, and d(j is the increment in phase angle.  However, note that the area dAj of this parallelogram is also the magnitude of the “cross product” cj × cj′ between the coefficients, considered as two-dimensional vectors.  (The traditional cross-product, defined in three dimensions, would be a vector perpendicular to the complex plane having this value dAj as its length.)  There is a beautiful identity connecting the cross product and dot product with the conjugate multiplication of complex numbers, namely:


a* b = a·b + i(a×b)
(17)
where a* means the complex conjugate of a, and a·b denotes the real “dot product” between a and b considered as vectors, namely |a||b| cos[arg(b)−arg(a)], and a×b denotes the real “cross product” previously mentioned between a and b considered as vectors, namely |a||b| sin[arg(b)−arg(a)].  That this is true can be shown easily:
       a* b = (|a| exp[−i arg(a)]) (|b| exp[i arg(b)])

= |a||b| exp{i[arg(b)−arg(a)]} 


 = (|a||b| cos () + i(|a||b| sin ()
(18)

where ( = arg(b)−arg(a).  Applying this identity to our situation, we can see that the area swept out is exactly ½ of the imaginary part of the conjugate product between our two coefficients, in other words,


daj = dAj/2 = Im[cj* cj′]/2.
(19)

Now, this is the area swept out by this single component cj.  To find the total area da swept out by all components, we merely sum over components:
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In other words, just like in the energy basis, in an arbitriary basis, the infinitesimal increment da in the area swept out is still exactly one-half of dA, the imaginary component of the inner product between infinitesimally adjacent vectors along the trajectory.  We saw earlier that dA was exactly the action of the Hamiltonian over the time increment dt. Integrating over time, we see now that the total area a swept out by the coefficients in any basis is exactly A/2, where A is indeed exactly the action of the Hamiltonian, i.e. the quantum average value of the observable operator A = H∆t when applied to the initial state vector v.
5. Time-dependent Hamiltonians

In the above, we have established that 2da = dA = Im[v●v′] = Hdt for infinitesimal changes of the state vector v → v′ along its trajectory over infinitesimal time intervals dt under any constant Hamiltonian.  But, as long as the Hamiltonian only changes in continuous fashion, it can always be considered essentially “constant” throughout any infinitesimal interval dt, even if it is varying over non-infinitesimal timescales.  Therefore the above identities still hold true even for a time-dependent Hamiltonian H(t), as we originally started with.  Thus, when we integrate over time, it remains true that:
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In other words, for any initial state v, 2a (twice the area swept out by the complex coefficients of v, in any basis) is equal to A, the action of the Hamiltonian (the average eigenvalue (v|A|v( of the operator A(t1,t2) applied to the initial state v), which is equal to the integral along the trajectory v(t) of the imaginary component of the dot product between neighboring vectors along the trajectory, and to the integral of the average phase velocity of the coefficients in the energy eigenbasis (weighted by the instantaneous eigenstate probability [mi(t)]2), and to the integral of the instantaneous Hamiltonian energy (the average eigenvalue of the operator H(t) applied to the instantaneous state v(t)) over time.  We might even consider this quantity to be a reasonable definition of the geometric length of the path that the state vector describes as it drifts along the unit sphere in Hilbert space, except that it could be negative if (H( (the instantaneous average value of H) was sometimes negative.
Anyway, the fact that this measure of “amount of change” is so stable with respect to changes of basis as well as multifarious ways of defining it, and that it connects so strongly with fundamental physical concepts such as action and energy, as well as with primitive geometric concepts such as angles and areas, all feeds into our motivation for proposing it as being the most natural and genuine measure of the “amount of change” that is undergone by a physical quantum state vector v as it changes dynamically under a (possibly-varying) physical influence H(t).

If we like, we can consider the dynamical trajectory of the system to comprise a computation, and then A (or equally well, a) becomes a natural measure of the total raw amount of computational work that is performed physically by the system.  Note this is not to imply that all of the raw physical computation that is occurring in the given system is necessarily being harnessed and applied by humans to meet our calculational needs,  only that this is the total amount of raw computational work that occurring “in nature.”
The only caveat to all of this is that the quantity A is itself dependent on where we choose to draw our zero of energy.  As is well-known, energies are only defined up to an additive constant, and so the total action is only defined up to this constant multiplied by the elapsed time ∆t.  Although it is a natural convention to define the least eigenvalue of the Hamiltonian (the “ground state”) to be the zero of energy, this is by no means mandated mathematically, and in the context of a time-dependent or infinite-dimensional Hamiltonian, there might not even be any global minimum energy eigenvalue.  One should keep all these caveats in mind, although they seemingly end up not much affecting the potential practical applications of this concept, which we will address in a later section.
6. More abstract scenarios
Consider an abstract physical situation wherein we know that a particular time-dependent Hamiltonian H(t) will be applied to a system, but we do not know the exact initial state v of the system to which it will be applied.  Instead, suppose we are given only a set of possible initial states, or a probability distribution over initial states.  Can we meaningfully define the amount of computational work performed by the resulting action A(t1,t2) between two times, in the absence of knowledge of the particular state?
In the case where we have a probability distribution over initial states, of course one natural thing to do is to quantify the weighted average action over all those states.  This is then the expectance value of the action, or of the amount of computation.

If we are only given a set of states, we might construct a uniform probably distribution over that set (or if it is a continuous set, a uniform probability density function, according to some natural measure on that set), and then proceed to define the expected action according to that distribution.

However, an interesting alternative is to also consider what we would get by taking the minimum and maximum action over the set of initial states.

For large sets of possible states, the minimum action may frequently be zero, for example, it will be 0 as long the Hamiltonian is time-independent and its lowest-energy eigenstate (the ground state, defined to have energy 0) happens to be included in the set of possible initial states.  So, minimizing the action over initial states may not tell us anything useful that we don’t already know.
On the other hand, the maximum action A(t1,t2) over the set of possible initial states is a measure of the maximum amount of “computational work” that could be performed by the given dynamics H(t) operating on an element of the given input set, between two given times t1 and t2.  This is perhaps a better measure of the computational “power” of the dynamics.  It is a dynamics that could perform a given amount of computational work.  Insofar as the actual state might be the one that invokes maximal work, we can say that a system with an unknown or unspecified state is, at least, performing this much “potential” computational work.  At least, even if the actual state is not the maximum-action one, the system could be thought of as still “doing the work” of determining that the actual state is not the one that should transition through the given maximal distance.

To summarize:

(potential computational work represented by action operator A) = Wrk[A] =
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where V is the set of available initial state vectors, and Av denotes the action of the operator A when applied to v, that is,
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where the basis k is the orthonormal eigenbasis of the operator A.  In other words, Av is just the quantity we were calling A earlier, for the particular case of initial vector v.  If we can obtain the eigenvalues Ak and can determine the magnitudes mk of the coefficients ck of the eigenvectors vk in this basis, then we can calculate the action by the summation shown.
7. Computational effort

Suppose now that we are given nothing except a unitary operator U on the Hilbert space ℋ, and we want to address the question: How much computational effort does it require to implement U, in the sense that U ends up being generated by the dynamics, according to U = eiA for some A?  The above discussion provides us a way to answer this question.

Among the set of all Hermitian operators A, or among at least a set of available action operators, we can choose one generating U that has the smallest value of the potential computational work Wrk[A] = 
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, given a set V of available initial states.  This A then can be considered the “best” action operator for generating the given unitary U, in the sense that the length of the longest trajectory that would be undergone by any possible state vector v(V is minimized.
Formally, given U, we can define the effort to implement U, Eff[U], by
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where ( is the set of available action operators on ℋ, i.e., some subset of the set of all Hermitian operators on ℋ, determined by what constitutes an “available” dynamics.  For example, ( might reasonably be constrained to only those action operators that are obtainable by time-integrating instantaneous Hamiltonians H(t) that are themselves constructed by summing over local interaction terms between neighboring subsystems, or by integrating a Hamiltonian density function that includes only local terms over some topological space, e.g., to reflect the local structure of spacetime in a quantum field-theory picture.  Or, we might constrain ourselves to action operators that are obtainable from time-independent Hamiltonians only.
Now, given this notion of the computational effort of a given unitary U, one can reinterpret previous results (such as [1,2]) regarding “quantum speed limits” or minimum times to implement various specific unitary transforms of interest (or classes of transforms), given states of specified average energy above the ground state, as follows:  These analyses are specifying an ( (usually, just all Hermitian operators) and a V (usually, just the entire Hilbert space), and showing that Eff[U] for the transform U has a specific value (or lower bound), assuming the presence of a time-independent Hamiltonian with a ground state energy of 0.  In other words, a certain minimum “worst-case” action is required to implement the particular U in question.
As an example, Margolus and Levitin’s result [1] can be interpreted as implying that any U that rotates some state v to an orthogonal state has an effort Eff[U] ( h/4, since their result shows that any state of energy E takes time at least h/4E (no matter what the Hamiltonian) to accumulate the action needed to transition to an orthogonal state; thus the action A=Et that is required for such a transition is at least h/4.  
Another result in [1] implies that if there is a v such that (v, Uv, U2v, …, UN−1v, UNv=v) comprises a cycle of N states, with each orthogonal to the preceding and succeeding states in the cycle, then Eff[U] ( (h/2)(N−1)/N, even if we are given complete freedom in constructing the Hamiltonian, aside from the requirement that it be time-independent.  For N=2, this expression reduces to h/4; while for N→∞, it goes to h/2.
Notice that the Margolus-Levitin theorem is, strictly speaking, only giving us a lower bound on the effort, since it is considering only a particular state v of interest (one that actually undergoes a transition to an orthogonal state), rather than finding the worst-case potential work to perform a desired U, maximized over all possible v in the Hilbert space.  Later, we will see that the actual (i.e., worst-case) effort for an orthogonalizing transformation is h/2 = π even in the N=2 case, and possibly even higher in cases with more states.
It is anticipated that, armed with the new definitions proposed in this document, it would be a highly useful and worthwhile exercise to systematically go through a variety of the quantum unitary transforms that have already been studied in the context of quantum computing as comprising useful “quantum logic gate” operations, and quantify their computational effort according to the above definition.  This would directly tell us how much physical action is required for those operations (given a best-case Hamiltonian implementation, while operating on a worst-case input state).  We can likewise do the same for classical reversible Boolean logic operations embedded within unitary operations, and classical irreversible Boolean operations embedded within these (with ancilla bits available as needed for carrying away unwanted information to be discarded). 

This will, for the first time, give us a natural and physically well-founded measure for the computational effort or physical action needed to physically implement various logic operations.  This in turn would directly translate to a minimum physical time to perform these operations within any physical system or subsystem using a set of states having a given maximum energy above the ground state, given any known or prespecified constraints on the system’s initial state and its available Hamiltonian dynamics.  This new quantification of computational effort may also allow us to derive lower bounds on the number of quantum gates of a given type that would be required to implement a given larger transformation, and possibly to show that certain constructions of larger gates out of smaller ones are optimal.
8. Effort to perform various operations
In this section, we explore the amount of computational effort (according to our previous definitions) that is required to implement a variety of important quantum and classical logic operations.

We will begin by making some “educated guesses” about the effort to carry out various unitaries.  Remember, for each unitary U we are to imagine implementing it via a particular transformation trajectory U(t) (and Hamiltonian H such that U(t)  = eiHt) that is as “direct” as possible, that is, the maximum “distance” through which a worst-case vector is taken under that transformation should be as “short” as possible.  Intuition tells us that these minimal trajectories should generally be thought of as being “geodesics” in the space of unitaries; in other words they are “straight-line” paths, so to speak, that get us to the desired unitary as directly as possible.
8.1. General Two-Dimensional Unitaries
Let us start with U2, the space of unitary transformations on Hilbert spaces of dimensionality 2.  In quantum computing, these correspond to single-qubit quantum logic gates.  As is well-known (e.g., see [3], eq. 4.9), any such U can be decomposed as:
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where 
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where 
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Let us now consider U in terms of its multiplicative components exp[iα] and 
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, which we observe commute with each other, since exp[iα] is a scalar.  Thus, we can consider the two components of U to be carried out in either order, or even simultaneously if we prefer.

Let’s start with 
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.  At first, we might guess that the effort that is required to perform
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(for angles θ where −π ≤ θ ≤ π) ought to just turn out to be at least |θ|/2, since, for example, a Bloch sphere rotation through an angle of π radians corresponds to inverting a spin that’s embedded in ordinary 3D space through an angle of 180° to point in the opposite direction, which is an orthogonalizing transformation, and we already know from the Margolus-Levitin theorem that any transition to an orthogonal state under a constant Hamiltonian requires a minimum action (defining the ground state energy as 0) for the state in question of h/4 = (π/2)( = (π/2) rad, or an area swept out of π/4 square units.  (Later, we will see that the actual worst-case action turns out to be twice as large.)
Indeed, for any real unit 3-vector
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 (the “axis of rotation” in the Bloch sphere), one can easily verify that there is always a corresponding complex state vector
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which is a unit eigenvector of 
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 having eigenvalue +1.  This state vector is therefore also (see eq. (7)) an eigenstate of 
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 as one of the basis vectors, as θ increases from 0 (for now, we’ll assume for simplicity that the final value of θ is non-negative, 0 ≤ θ ≤ π), the coefficient of the |
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, where the coefficient is 1) describes a circular arc in the complex plane centered on the origin, sweeping out a total angle of θ/2, and an origin-centered area of θ/4.  As we saw earlier, this is then true in any basis.  So, we have that the effort of 
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must be at least θ/2, and we conjecture that indeed, this is the exact effort.  (To prove this, we would need to show that no initial vector sweeps out a larger area than θ/4 under this transformation.)

Now, what about the 
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 term that’s included in the expression for a general U?  Note that this term represents an overall (global) phase factor.  As such, even the ground state g of whatever Hamiltonian is used to implement U could still accumulate a phase due to this phase factor.  In this case, g would need to have nonzero Hamiltonian energy.  If we redefined g to instead have zero energy (Hg=0), then state g would not phase-rotate at all, since the action operator A=Ht would give Ag=0 for this state, and Ug would give (eiA)g = (e0)g = g, that is, g would be unchanged by this U.  However, it does not follow that we can always just let α be zero, as g may generally have accumulated an additional phase from the 
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 component of U as well.  It is the total phase accumulated in the ground state that we wish to define to be zero.
Let us now consider the following:  Under the transformation 
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 therefore undergoes an overall phase-rotation by an angle of α + θ/2.  We conjecture that the “least-potential-action” or most efficient way to implement U is to apply a Hamiltonian that sweeps both α and θ forward steadily from 0, at respective rates that are exactly proportional to their final values.  If this is correct, then 
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 is indeed an eigenstate of that best-case Hamiltonian, with energy (α + θ/2)/t (recall that we’re using (=1), where t is the total time taken for α and θ to reach their final values.
However, since the space we are working with is two-dimensional, there must be another energy eigenstate as well.  Solving the eigen-equation (
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or, in the special case when nz=0, then instead any normalized column vector 
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 where |v0|=|v1|=2−1/2 will work, so long as the vector components v0 and v1 have the specific obtuse (that is, beyond ±90°) relative phase angle that is given by the relation
v1 = (−nx−iny)v0.  (Note that |nx+iny|=1 when nz=0.)
Thus, for any Hamiltonian that smoothly sweeps θ forward in a steady transformation 
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 with θ ( t, there will actually be two different energy eigenstates having energies that are negatives of each other, one state in which the accumulated action (of the Hamiltonian) is θ/2 (as we saw above), and another state (the ground state) where the action is the negative of this, or −θ/2.  Together with the global phase-rotation of α, we have that the total action for U is α + θ/2 and α − θ/2 for these two energy eigenstates, respectively.
Following our convention that the total action in the ground state should be always considered to be zero, we can shift the energy levels upwards in such a way that the lower value α − θ/2 will be equal to 0, in other words, we can adjust our rate of global phase rotation (which determines α) in such a way that we have exactly α = θ/2.  Now, the total action in the high energy state is α + θ/2 = θ/2 + θ/2 = θ.  
In other words, starting with any U(U2 and decomposing it as 
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, that is, ignoring the original value of α (whatever it was) and instead adjusting α to have the value α = θ/2 which assigns the ground state to zero energy.  Thus, we can say that the “true” computational/physical effort (given this choice) is exactly θ for any single-bit unitary 
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, regardless of the value of α.  If θ is a pure number (implicitly bearing an angle unit of radians), then the worst-case physical action to carry out the desired transform using the best-case Hamiltonian (assuming that this is indeed what we have managed to characterize above) is θ(, in whatever physical units we wish to express (.  That is, Eff[U] = θ.
To wrap up this section, let us take a look at the precise form of the Hamiltonian in question.  Note that 



[image: image77.wmf]ú

û

ù

ê

ë

é

-

+

-

=

×

z

y

x

y

x

z

i

i

ˆ

n

n

n

n

n

n

n

s

r


(29)
is itself an Hermitian operator that plays the role of the Hamiltonian operator H with respect to the Bloch-sphere rotation unitary
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, if the rotation angle θ is taken to be equal to twice the time t.  Meanwhile, in this scenario, the extra phase-rotation factor exp[iα]=exp[i(θ/2)] out front corresponds simply to an additional constant energy of +1, using the same angular-velocity units of (θ/2t).  This gives us a total “Hamiltonian” (in quotes because we haven’t introduced a flexible time parameter here yet) of 
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With this choice of “Hamiltonian”, you can easily check that the 
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To generalize the picture slightly, if a rotation through θ is to take place over some completely arbitrary amount of time t, then we require a Hamiltonian (a proper one now, in actual angular-velocity units) of
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With this choice of Hamiltonian, note that things work out nicely so that the high-energy eigenstate 
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Thus, the action operator A=Ht comes out exactly equal to the angle operator Θ which gives the total angle of phase rotation for both the energy eigenstates 
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.  (And for an arbitrary initial state v, i.e., for any normalized complex superposition of the eigenstates 
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Of course, as usual, if we ever wish to convert from angular-velocity/angle units for energy/action (respectively) to the usual kinds of units, we can simply multiply H (or A) by (, which makes the implicit angle unit “1 radian” explicit in whatever arbitrary system of units we are using.
Note that in all the above discussion, we have assumed that the rotation angle is non-negative; i.e., that 0 ≤ θ ≤ π (rad).  To complete the picture, note that for values of θ between 0 and −π, we can convert them to positive angles by the simple expedient of rotating instead by an angle of |θ| = −θ about the 
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 axis, which is an exactly equivalent rotation.  This has the effect of exchanging the values of the 
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 eigenstates, as well as the sign of the 
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 component of H.  Other than that, everything is the same, with the result that the action A comes out non-negative and equal to the absolute value of θ.  Of course, for absolute angles lying outside the range (−π, π], we can just reduce them to the equivalent angle in (−π, π].
In the above, although we have not yet, strictly speaking, proved explicitly that the specific H we have given is in fact the one that implements U with the least possible value of the worst-case action A, still, we expect that it should already seem highly plausible to the reader that this should in fact be the case, due to the directness and simplicity of our construction, which made use only of the simple fact that any arbitrary U(U2 can be decomposed into a single generalized rotation about an arbitrary axis in real three-space, accompanied by a global phase rotation.  Of course, a complete proof of the optimality of this construction would be desirable to have, but it will have to wait for future work.
8.2. Specific Single-Qubit Gates

Given the above discussion, to determine the effort of any single-qubit gate U is a simple matter of finding some unit 3-vector 
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 and angles α,θ ( (−π, π] such that 
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, which is always possible.  This then establishes that Eff[U] = |θ|.  Let us look at how this comes out for various single-qubit gates of interest.

1. The Pauli spin-operator “gates” X = σx (which is NOT), Y = σy, and Z = σz all of course involve a rotation angle of θ=π, since they all square to the identity.  Thus, Eff[X] = Eff[Y] = Eff[Z] = π = h/2.

2. The “square root of NOT” gate 
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 of course requires an angle of π/2, since N2 = X.  Thus, Eff[N] = π/2 = h/4.

3. The Hadamard gate 
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 requires a rotation angle of π about the 
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.  (Also note that H2 = 1 and a rotation through 2π is the identity.) Thus, Eff[H] = π = h/2.  
4. The “phase gate” 
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 requires θ = π/2 since note that S2=Z.  So, Eff[S] = π/2 = h/4.
5. The so-called “π/8” gate  
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 involves θ = π/4 since note that T4 = Z.  Thus, Eff[T] = π/4 = h/8.
6. The generalized phase gate 
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 is just a rotation of θ about the Z axis, so Eff[ph(θ)] = θ = θ(.

As a point of comparison, the paper [2] studies the time required to perform the specific gate U = ei(X (i.e., NOT with global phase rotation) using an optimal Hamiltonian, and conclude that the time τ (for a specific initial state) is
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Note that the corresponding action is
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At first, this might appear to contradict our claim that the effort to perform A is exactly π. However, we should keep two things in mind.  First, in [2] Levitin et al. are concerned with the time to carry out U in the case of a specific subset of initial states which will actually transition to an orthogonal state in the time τ.  However, these particular states are not the “worst-case” ones from our perspective, and so they don’t determine the effort.  Rather, the particular states under consideration all have a mean energy of only
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where E1 and E2 are the low and high energy eigenvalues of the ideal Hamiltonian, respectively.  Letting E1=0 (our ground state zero assumption), we have that 
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.  Since it has the highest energy available given this spectrum, the E2 energy eigenstate accumulates more action over the time τ than any other possible state, in particular double that of states with energy 
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, and thus this state determines the worst-case action, which is twice that of [34], or in other words A = π.  The term involving ( drops out entirely, since we already saw earlier that global phase-shifts are irrelevant when considering total action, under our convention that the ground state action is always defined to be zero.
8.3. Effort Required for Infidelity

A popular measure of the “distance” between two quantum states u,v is the fidelity, defined (for pure states) as F(u,v) = |(u|v(|.  Note that if if the actual state of a system is u, and we measure it in a basis that includes v as a basis vector, the square of the fidelity p=F2 gives the probability that, the measurement operator will be found to project the actual state down to v.  (This is a “quantum jump” or “wavefunction collapse” event, or, in the many-worlds picture, a possible subjective outcome when the state of the measurer becomes entangled with that of the system.)  Likewise with the roles of u and v reversed.  Thus only when F=0 are the states u and v orthogonal.
Let us now define a new quantity, the “infidelity” 
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.  The squared infidelity between u and v is then the probability 1−p that if the actual state is u, then it will not be measured to be v (when measured in a basis that includes v), and vice-versa.  In other words, if v is some old state of a system, and u is its new state, the squared infidelity between u and v is the probability that the answer to the question “Has the state diverged from v?” will be found to be “yes” when this question is asked experimentally.

Let us now explore the minimum effort that is required in order for some of the possible vectors in a system to attain a given degree of infidelity (relative to their initial values), in the case of two-dimensional Hilbert spaces.

We start by recalling from earlier that any 2-dimensional unitary can be considered a rotation of the Bloch sphere about some axis in ordinary (real-valued) 3-D space.  Since a simple change of basis suffices to transform any axis to any other, we can without loss of generality assume a rotation about the z axis, represented by
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We saw earlier that the effort of any such rotation (under the ground-zero convention) is always exactly (.  What initial state will gain infidelity most rapidly under this transformation?  Until we figure this out, let us allow the initial state to be a general unit vector v = [v0; v1] = v0|0( + v1|1(.  Then u =
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where in the last line we have made use of the fact that |v0|2+|v1|2=1 for a normalized v.  Now, F2 is the sum of the squared real and imaginary components of the expression inside the outermost absolute-value symbol above:
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which we can reassure ourselves is always (1, since |v0|2|v1|2 ( 1/4 given that |v0|2+|v1|2=1.  Note also that the fidelity is minimized when |v0|2 = |v1|2 = ½, that is, when the two z-basis states are in an equal superposition.  This is then the “worst case” (worst in terms of “least fidelity”) that we wish to focus on.

 So now, the infidelity 
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 comes out to be a reasonably simple expression:
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Note that for any given angle of rotation in 0 < (  < π/2, the infidelity is maximized when |v0| = |v1| = 
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.  For such v, |v0||v1| = ½ and so Inf(u,v) = sin((/2).  Thus, if we wish that some state v should achieve a desired degree I of infidelity relative to its initial value using a transformation of minimum effort, we must choose unitary a transformation that is a rotation along an axis “perpendicular” to v, and rotate by an angle ( = 2·arcsin(I).  The action accumulated by “worst-case” (that is, maximum-energy) vectors under this transformation is (by definition) the effort, and is A = 2·arcsin(I).  
However, the specific initial vector in question will not have the maximum energy E (relative to ground) but rather half of this, or E/2, since half of its probability mass will be in the high-energy state, and half in the low-energy state.  Therefore, its total action (amount of change) along its trajectory will instead be exactly A = arcsin(I), a nice simple expression.  This is the work performed when operating on the given state.
So, for example, suppose we want to cause some given initial state to transition to a new state that only has a probability of p = ½ of being confused with the initial state if it were measured.  This is to say that the infidelity between the states should be I = (1−p)1/2 = 
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, which requires the state to traverse a trajectory that has a length of at least ( = arcsin(I) = arcsin(
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) = π/4 = h/8, which can be done using a least-effort unitary transformation whose effort is twice this much, or π/2 = h/4, meaning that the worst-case (maximum-energy) states of the system would traverse a trajectory of this (greater) length under such a transformation.  

Assuming the actual given initial state in question is assigned an average energy of only E above the ground state, then it will take time at least t = h/8E to carry out a unitary transformation on this state that achieves a probability above ½ of distinguishing it from the final state; whereas, if we are given that the maximum energy state in the qubit spectrum has this much energy, then it will take time at least t = h/4E to carry out the transform.  

In other words, to carry out an operation in time t that yields a 50% probability of conflation of some initial states with their successors requires that the initial states in question must have energy at least E = h/8t, and that states of energy E = h/4t must exist in the spectrum.  

Note that the above results are also perfectly consistent with the Margolus-Levitin theorem [1].  That is, plugging in an infidelity of I=1, we find that the effort is ( = 2 arcsin(1) = π, and so for a state to attain a 0% probability of conflation (i.e., to reach an orthogonal state) requires it have at least twice the energy as the previous scenario, or E = h/4t (under the Hamiltonian used to carry out the transformation), and states of energy at least h/2t = π/t must be present in the spectrum of the Hamiltonian that is used.
8.4. Higher-Dimensional Operations
Naturally, we are interested not only in unitaries in U2 but also in higher dimensions, in particular unitaries in the groups 
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In particular, let us focus on the “controlled-U” gates, which take the general form (modulo qubit reorderings)
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where we have 2n−1 ones along the diagonal, and a rank-2 unitary U in the lower-right corner.  In other words, for computational basis states |b0b1…bn−1(, whenever the first n−1 qubits making up the row/column index b0b1…bn−1 are not all 1, the state remains unchanged; otherwise, the unitary U is performed on the last qubit bn−1.
We observe immediately that Eff[U′] ≥ Eff[U], since all the input states that undergo any change at all will undergo the exact same transformation that they would if U were just applied to them unconditionally.

Furthermore, if U by itself would be optimally implemented by the Hamiltonian H, then it is easy to believe that U′ would likewise be optimally implemented by the Hamiltonian
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that is, with 0’s everywhere except for a copy of H in the lower-right 2×2 submatrix.  Note that this H′, when exponentiated, indeed produces the desired U′.  If these conjectures are in fact correct, then the effort of U′ is exactly the effort of U.

However, in many physical situations of interest, we may not have available Hamiltonians that are exactly of the form H′ suggested above.  Instead, we may only have available a more limited, perhaps parameterized suite of Hamiltonians, perhaps ones that are formed by a sum or time-sequence of specific, controllable localized couplings having (say) at most 2 qubits each, as is popularly represented in the quantum computing literature using the schematic notation of quantum logic networks.

Obviously, if our space of available Hamiltonians is more restricted than a simple “all Hermitian operators,” then the resulting values of Eff[U] in general become larger, and probably much more difficult for us to analytically calculate.  To compute Eff[U] for Hamiltonians that can plausibly be constructed within the context of particular experimental frameworks that are readily physically realizable in the lab (or in a manufactured product, e.g., a someday-hopefully-to-be-realized commercial quantum computer) is obviously a more complex and much more difficult task than we have attempted to tackle in this work so far.  To address this problem more fully will have to wait for future work.  

Still, we hope that the present work can at least serve as a fruitful conceptual foundation on which we can build meaningful future analytical and/or numerical analyses of the “effort” required to perform various physical/computational operations.  We also hope that this work will serve as a helpful stepping-stone for future investigators who wish to continue exploring the many deep and rich interconnections between physical and computational concepts.
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