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Abstract 
We offer well-motivated and basis-independent definitions for the total amount of change 
occurring along any continuous trajectory of a quantum state vector, as well as the 
amount of computational effort required for a given unitary transformation in an abstract 
setting, given a set of possible “input” quantum states, and a set of available 
Hamiltonians.  Our definitions are based on the action of the Hamiltonian, which we 
show is equal to (2×) the area swept out in the complex plane by the vector coefficients 
(in any basis).  Using our definitions, we show that the rate of change of any state is 
exactly given by its average energy (relative to a given ground state), while the rate of 
computing in the abstract situation could be considered to be the energy of the highest-
energy state in the input set.  The minimum amount of computational work required to 
carry out various types of quantum and classical logic operations is explored. 

1. Introduction 
The average energy E of any quantum system relative to its ground state was shown by 
Margolus and Levitin [1] to directly limit the rate at which the system can undergo 
transitions between distinguishable (orthogonal) states, such as individual steps within a 
digital computation.  The maximum (and achievable) rate is R⊥(N) = 2EN/[h(N−1)] for a 
dynamical orbit which cycles through a sequence of N≥2 mutually orthogonal states, with 
the extreme cases being R⊥(2) = 4E/h and R⊥(∞) = 2E/h .  Related results concerning the 
minimum time required to perform unitary transforms of specific types have also been 
explored in other papers, such as [2]. 

Results such as these suggest that energy might fruitfully be exactly identified 
with the rate of raw, low-level quantum-physical “computing” that is taking place within 
a given physical system, if only the quantity “amount of computing” could be 
appropriately defined.  We would like to understand better what this means, and show 
that some well-defined and well-justified measure of the rate at which “computational 
work” is being carried out within any quantum system is indeed exactly equal to the 
energy of that system. 

In this paper, we address this goal by proposing a well-defined, real-valued 
measure of the total amount of change undergone over the course of any continuous 
trajectory of a state vector along the unit sphere in Hilbert space.  This measure is simply 
given by the line integral of the magnitude of the imaginary component of the inner 
product between infinitesimally-adjacent state vectors along the given path.  This 
quantity is invariant under any time-independent change of basis, since the inner product 
itself is.  (And for closed paths, it even turns out to be invariant not only under rotations 
but also under translations of the complex plane.)  Our quantity is also equal to twice the 



complex-plane area (relative to the origin) that is circumscribed or “swept out” by the 
coefficients of the basis vector components (in any basis).   We show that the 
instantaneous rate at which change (under our definition) occurs for any state (under any 
time-dependent Hamiltonian) is exactly given by the instantaneous (Hamiltonian) energy 
of the state.  Our quantity is thus also equal to the action of the Hamiltonian over the 
system’s trajectory.   

Finally, we propose that (and motivate why) the amount of computational work 
performed by a given transformation trajectory (that is, a unitary transform described as 
U=eiA, where A is the time-integral of a given time-dependent Hamiltonian) might best be 
defined as the maximum amount of change (under our definition) over the set of all initial 
states of the system that are under consideration in a given situation.  (Similarly to how 
the information capacity or maximum entropy of a system also depends on what set of 
states is considered to be “available.”)  For time-independent Hamiltonians, an abstract 
system’s rate of computing is then given exactly by the energy of its highest-energy state 
under consideration.  And for any system of given energy, its rate of computing is exactly 
given by its energy.  For a “bare” unitary transform (that is, one that is not associated 
with any specific Hamiltonian), the computational effort required to perform it in a given 
situation can be defined by minimizing the amount of computational work over all 
available transformation trajectories that result in that unitary. 

The Margolus-Levitin theorem can then be reinterpreted (sightly) as showing us 
that the minimum Hamiltonian action or computational effort required to flip a bit in 
isolation is h/4, while the total action required to complete a cycle through N distinct 
neighboring states is (N−1)h/2.  The other previous results concerning minimum times to 
perform other quantum operations can also be subsumed under our new framework. 

2. Basic framework 
Let ℋ be any Hilbert space, and let H(t) be any continuous mapping from a real-valued 

parameter t (“time”) to Hermitian operators on ℋ, in other words, H can be considered to 
be a (most generally) time-dependent Hamiltonian,  given appropriate energy units.  For 

any times t1,t2 ∈ ℝ, define the action operator of H from t1 to t2 to be: 
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Of course, in the special case where we have a time-independent H(t) = H (const.), we 
can simplify the action operator to just AH(t1,t2) = AH(∆t) = H∆t where ∆t = t2 − t1. 

Note that, although the action quantity that is most frequently used in physics (e.g. 
in Hamilton’s principle) is the action of the Lagrangian L = pv − H, it is also perfectly 
valid and reasonable for us to define a more general notion of the action “of” any quantity 
that has units of energy, by integrating that energy quantity over time.  In this case, we 
are referring to the action of the Hamiltonian, rather than the action of the Lagrangian. 

Also define the unitary transform from t1 to t2 under H to be: 

 UH(t1,t2) = exp[iAH(t1,t2)]. (2) 



(In this document, we will use roman font for the constant imaginary unit i where i2 = −1, 
to distinguish it from italic variables i used as indices.  Likewise for e, the constant base 
of the natural logarithms.) This is just the usual quantum time-evolution operator which 
transforms state vectors from time t1 to t2 under a given time-dependent Hamiltonian 
H(t).  (Sometimes, by convention a minus sign is inserted inside the exponential, but this 
is a purely arbitrary choice.)  Henceforth, we will almost always omit the H subscript 
from U and A, although they should still be understood, in the context of the present 
discussion, to be always still implicitly dependent on H. 

Taylor-expanding the expression for U, we note that (suppressing the t1,t2 
parameters for clarity): 
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where the O(A2) notation here is expressing the fact that if we were to scale to ever 
smaller A, e.g. by considering what happens to A(k) = AH(t1, t1 + (t2−t1)/k) as k→∞, the 
sum of the A2, A3, etc. terms would become asymptotically bounded in magnitude by a 
term that goes as A2, and that thus would be negligible in comparison with A.  In other 
words, as k→∞, 

 U(k) → 1 + iA(k). (4) 

Assuming that H(t) is a continuous function, then for any infinitesimal time interval of 
magnitude ∆t = dt, H(t) can be considered effectively time-independent over the “entire” 
infinitesimal interval between t1 and t2 = t1 + dt, and so we can say that at any time t, the 
“infinitesimal” (here meaning, close to 1) unitary transform applying “at” that time t can 
be expressed as 
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with the equality here being both rigorous and exact. 
This simple (and well-known) relationship between U and H over infinitesimal 

time intervals could be seen as suggesting that important characteristics of U over 
arbitrarily large intervals can usefully be found by integrating properties of the 
infinitesimal unitary U(t, t+dt) over time between t1 and t2, or in other words by 
integrating properties of the instantaneous H(t).  Indeed, we will see that this is the case.  
Also, we will see that the imaginary unit i in (5) ends up playing an important role, and 
leads us to consider the imaginary part of the inner product in our definition of total 
action. 



Now, to simplify further notation, let us henceforth write U′(t) to mean U(t, t+dt).  
We will refer to the entire function U′(t) over values of t between any t1 and t2 as the 
transformation trajectory between those times.  Note that the overall transformation 
U(t1,t2) is the product of all the infinitesimal U′(t) over all times t in the range from t1 to 
t2.  That is, we can write:      
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Although the product operator ∏ is more traditionally applied only over discrete sets of 
terms, there is no reason it can’t also be applied to a set of values that are each 
infinitesimally close to 1, analogously to how an integral ∫ can be viewed as simply a 
generalization of the sum operator ∑ to a continuous set of infinitesimal terms.   

Note that although U′(t) completely determines U(t1,t2), knowing the total 
transformation U(t1,t2) for a particular pair of times t1,t2 is not sufficient to determine the 
specific complete transformation trajectory U′(t), even for values of t falling in the range 
[t1, t2].  

3. Defining the amount of change 
Now, let us proceed to define our concept of the amount of change performed by a 
transformation trajectory U′(t) between two times, and by the resulting over unitary 
transform U.  We will find it easiest to analyze this by first considering U’s behavior 
when operating on its eigenvectors.  

Let us first pause and look back at equation (3), the Taylor-expansion of the 
definition of U as exp[iA], and reflect on it a moment.  This equation immediately implies 
that all eigenvectors of A are eigenvectors of U as well.  Why?  Let Av = av (with v a 
vector, a a scalar), then, spelling out the steps explicitly, 
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where u is the scalar value ∑∞
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u) times v, we have that v is an eigenvector of U.  Now, since U and A are of equal 
dimensionality, and all eigenvectors of A are eigenvectors of U, the converse also holds, 
and the two operators have identical sets of eigenvectors.  Since U is unitary, it preserves 
vector length, and so its eigenvectors v remain unchanged under U except for a phase 
rotation, namely a multiplication by u = eia, where a is the eigenvalue of A corresponding 
to v.  Note that A must have real eigenvalues, since it is an integral of H (which has real 
eigenvalues since it is Hermitian) and anyway, since we know |u| = 1, and u = eia, a must 
be real. In other words, the action operator is giving us the total angle of phase-rotation 
undergone by those vectors that end up unchanged by U(t1, t2) aside from a phase-
rotation. 

Of course, we would also like to understand and quantify what happens to other 
vectors as well.  We will see how to do this shortly.  First, we will begin by analyzing in 
more detail what happens to a given eigenvector v over time as it is transformed by U.  



Given any an initial vector v (at time t1 which without loss of generality we set 
equal to 0), we can let v(t) = U(t1, t)v.  In other words, v(t) traces out a continuous path on 
an origin-centered sphere in Hilbert space having radius |v|, which WLOG we can 
consider to be 1.   

For simplicity, first suppose that H is time-independent (later, we will see how to 
remove this restriction).  Then A(∆t) = H∆t and U(∆t) = exp[iH∆t], so that for times t = 
t1+∆t = ∆t, we have v(t) = U(∆t)v = exp[iH∆t]v.  If v is an eigenvector of U (thus of A, 
and of H) let its eigenvalue under H be ω.  Then v(t) = exp[iωt]v.  In other words, v(t) 
simply phase-rotates continuously in the complex plane at angular velocity ω.  Note that 
the inner product between the initial v and v(t), which we can write 〈v|v(t)〉, has the value 
exp[iωt] = cos(ωt) + i sin(ωt).  The imaginary part of the inner product is sin(ωt).  Note 
now that for an infinitesimal t = dt, we have that sin(ωdt) = ωdt = dA, i.e., the 
infinitesimal increment in angle (or action) accumulated over the time dt.  In other words, 
over infinitesimal time intervals, the imaginary part of the inner product between the 
“before” vector v(t1) and the “after” vector v(t1+dt) gives exactly the amount of action (or 
phase angle accumulation) over that time.  At least, we have shown this in the case of a 
time-independent Hamiltonian H, and an initial vector v which is an eigenvector of that 
Hamiltonian.  Let us now see how to generalize this to other cases. 

First, suppose the initial vector v is not an eigenvector of H.  However, let {vi} be 
a maximal set of unit-length mutually orthogonal vectors which are all eigenvectors of H, 
in other words, H’s orthonormal eigenbasis.  Then, any arbitrary v can be expressed in 
terms of components in the vi basis, that is v = ∑i civi where the ci are complex 
coefficients. 

Of course, since U is a linear operator, we can express Uv in terms of v’s 
components in that basis, i.e., 
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where ωi is just the eigenvalue of H that is associated with eigenvector vi.  Now, note that 
the exponential terms can be absorbed into the coefficients.  That is, we can look at the 
coefficients as being time-dependent quantities, ci(t) = ci exp[iωit], and say that always 
v(t) = ∑i ci(t)vi.  Note that each coefficient, whatever its magnitude, still just phase-rotates 
in the complex plane with an angular velocity ωi that is given by the corresponding 
eigenvalue of H. 

At this point, let us pause to preview the next steps.  We are going to study 
several quantities, and show the close identities between them: 

 
1. The average rate of phase angle accumulation of the coefficients ci(t), 

weighted by their squared modulus (magnitude). 
2. The energy of the given vector v considered as a quantum state. 
3. The rate at which the coefficients ci(t) sweep out area in the complex plane. 



4. The imaginary component of the inner product between infinitesimally-
adjacent state vectors. 

5. The rate at which the coefficients cj(t) in any orthonormal basis vj sweep out 
area in the complex plane. 

 
First, let us describe each coefficient ci in phase-magnitude representation as 

ci = mi exp[iθi], where mi = |ci| is the modulus (absolute value, magnitude, norm, length) 
of the complex number ci, and θi = arg(ci) is its argument (phase angle).  Another notation 
for this relation is ci = mi ∠ θi.  Perhaps the most popular notation in use today is 

i
ii mc θie= , although the notation ex may be confused with the ordinary complex 

exponentiation operation, which is, strictly speaking, multi-valued in the case of non-
integer exponents.  (E.g., 11/3 technically has 3 distinct complex values, namely 1, 
exp[2πi/3], and exp[4πi/3].)  To avoid confusion, we use the exp[·] notation here. 

Let us now consider the following quantity: 

 ∑=
i

iim ωω 2  (9) 

Recall that ωi is the eigenvalue of H corresponding to eigenvector vi, and is the rate of 
phase rotation (or angular velocity) of the coefficient ci in the complex plane.  So, ω  is 
simply the average angular velocity of the coefficients, weighted by their squared 
modulus.  Weighting by the squared modulus of the amplitudes (complex coefficients) of 
the basis states is the normal way of taking the average or mean value of an observable 
quantity in quantum mechanics, for a pure state that is a complex superposition of the 
eigenstates of the given observable.  Thus, we can say ω is simply the average complex-
plane angular velocity for the quantum state v. 

We pause to note that aside from a conversion of units, ω is also the energy of the 
quantum state v.  For example, if ω has been implicitly quantified in terms of radians per 
second, then we can write hω=e , using some standard physical unit for h such as Joule-
seconds, to obtain the average energy e in a more traditional energy unit such as Joules.  
(The constant h can be considered to represent the angle “1 radian,” and thus serves to 
make this implicit angle-unit explicit.)  However, I emphasize that this is merely a matter 
of unit-conversion, and we can equally well say that ω is the energy of the state. 



 
Figure 1. A complex coefficient ci sweeps out a small wedge-shaped area (shown exaggerated) in the 

complex plane over an infinitesimal time interval dt. 

Let us now consider the rate at which the complex coefficients sweep out area in the 
complex plane.  To illustrate what we mean by this, refer to figure 1, which illustrates a 
region of the complex plane centered on the origin.  Consider first just one of the 
coefficients ci.  At time t, it has value ci(t), shown as an arrow on the diagram.  A short 
time dt later, the arrow has rotated to ci(t+dt), and we say that the arrow has “swept out” 
the region shown in gray.  Between these times, the arrow has rotated by an angle 
dθi = ωidt.  What is the area of the wedge-shaped region of the disc?  This is easy to 
calculate, if we recall that, were we to let the arrow sweep out a full circle, it would rotate 
by a total angle of θi = 2π radians, while sweeping out an area of ai = πmi

2, since mi (the 
magnitude of ci) is the radius of the circle shown.  Thus, for the full circle, ai = θimi

2/2.  
By symmetry, this relation between a and θ also holds for each part of the circle, so we 
have dai = dθimi

2/2 = ωimi
2dt/2. 

To find the total area da swept out by all coefficients ci over time dt, we merely 
do the same for each of them, and sum them all up: 

 

t

tma
i

ii

d
2
1

d
2
1

d 2

ω

ω

=

= ∑
 (10) 

Thus, the total rate da/dt at which area is swept out in the complex plane by all the 
various coefficients taken together is exactly half of the average component phase 
velocity, i.e., half the state’s energy. 

This brings us to the fourth item in the preview above, namely the inner product 
between infinistesimally-adjacent state vectors v(t) and v(t+dt).  For conciseness, we will 
let v=v(t) and v′ = v(t+dt) and likewise for the coefficients ci and phase angles θi.  The 

ci(t) 

ci(t+dt) 

0 Real axis 

Imaginary
axis



inner product v•v′ = 〈v|v′〉 = v†v′ (these are three common alternative notations for it) can 
be defined in terms of the coefficients ci, ci′ by: 
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where the * denotes complex conjugation of ci′.  Now, in the phase-magnitude 
representation, ci* = (mi exp[θi])* = mi exp[−θi].  Note that mi′=mi because the complex 
magnitudes are not changed by phase rotation.  Thus, ci*ci′ = (mi exp[−θi])(mi exp[θi′]) = 
mi

2 exp[θi′−θi].  But, note that θi′ = θi + ωidt, so we have  
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where in the last step we are using the identities cos(dθ)=1 and sin(dθ)=dθ which hold for 
infinitesimal angles dθ, where in our case dθ=ωdt.  Now, we just sum equation (12) over 
the values of the index i to get the overall inner product.  The real part of the inner 
product is just ∑mi

2 = 1 always, so it is not very useful, but the imaginary part of the 
inner product, Im[v•v′] = ∑mi

2ωidt =ω dt, in other words, it is the average energy times 
the time increment dt.  Recall that ω is the average phase velocity or average 
Hamiltonian energy of the state v, thus dA=ω dt is the average increment in phase, or the 
increment in action over the time dt.  Note that we have dA = 2da, where recall da was 
the increment in area swept out in the complex plane. 

Of course, even for a non-infinitesimal time interval ∆t, we can obtain the total 
average accumulation of phase angle ∆A, or the total area ∆a swept out, by just using the 
expressions ∆A = ω ∆t and ∆a = ∆A/2. 

As an interesting aside, for any closed trajectory that eventually brings all 
coefficients back to their initial complex-plane locations simultaneously, it does not even 
matter where we choose to locate the complex origin for purposes of calculating the area, 
relative to the geometric curves traced out in the plane by the coefficients.  The total area 
swept out by the points as they travel around the curves remains exactly the same no 
matter where the “center” is chosen. 

4. Generalizing to arbitrary bases 
The above discussion proceeded under the context of a set of basis vectors {vi} which 
were taken to be orthonormal eigenvectors of the (temporarily presumed constant) 
Hamiltonian operator H.  Now, we will see that this choice of basis is in fact unnecessary, 
and that the same statements concerning the relationship between the area swept out and 
the action would hold true in any (time-independent) basis. 

That this is true is suggested by considering the relationship between dA (the 
increment of action, the energy ω  times dt) and the inner product v•v′ = v(t)•v(t+dt) 
between infinitesimally neighboring vectors along the trajectory.  We saw that dA = 
Im[v•v′].  However, a fundamental property of the inner product that it is itself a unitary 
invariant; that is, it is a product of two vectors considered as pure geometric objects, and 



thus it is independent of the basis which we use to express those vectors in terms of 
components.  Therefore, this basis-independence also holds for the imaginary part of the 
inner product.  So, if we were to just define dA = Im[v•v′], this definition would rely not 
at all on any particular basis; we do not even have to find the eigenstates of the 
Hamiltonian to determine it.  Yet, it is still true that dA/dt is the energy of the state v. 

Now, however, we would like to see whether the other quantities we investigated 
that explicitly invoke a choice of basis nevertheless remain consistent under a change of 
basis.  In particular, we saw that in the energy basis vi, the area swept out by the 
coefficients ci in the complex plane was exactly given by half of the action A, that is, 
a=A/2.  Does this remain true in other bases?  We will see that it does. 

At first, it may seem non-obvious that the area swept out is still half of the action.  
Note that our previous arguments for this relied on the fact that in the energy basis {vi}, 
the coefficients all rotated at uniform angular velocity in a circle in the complex plane, 
while their individual magnitudes mi remained constant.  In a different basis vj, this is no 
longer true.  Each basis vector vj is in general some superposition of the vi, like 

 ∑=
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where the matrix U = [uj
i] of complex coefficients (j indexing rows, i columns) is, most 

generally, any unitary matrix.  We can also write this equation in matrix-vector form as 

ij vv
vv

U= .  Now, for a general vector v, 
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so, equating the coefficients on the vi components of v, we have that 
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or, solving for the cj’s, 
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In other words, each complex coefficient in the new basis is just a particular linear 
combination of what the various complex coefficients were in the old basis.  If the 
coefficients ci in the old energy basis are describing perfect circles around the complex 
origin at a variety of radii and angular velocities, there is no guarantee that the 



coefficients cj in the new basis will be describing circular paths, although their paths will 
of course still be continuous.  In general, the cj will follow a complex looping trajectory 
in the complex plane, generated exactly as if by Ptolemaic planetary epicycles, i.e., as a 
sum of circularly rotating vectors.  A given cj will in general return to its initial location 
in the complex plane only when its components ci that have nonzero values of uj

i 
simultaneously return to their initial locations exactly (which could take infinitely long, if 
the corresponding ωi values were relatively irrational). 

Anyway, the important point for our present purposes is that the cjs do not, in 
general, maintain a constant magnitude (distance from the origin), and so the area swept 
out by the cj over a given time is no longer just a section of a circle, which was easy to 
analyze.  Instead, while cj’s phase angle θj is rotating, simultaneously its magnitude mj 
may also be growing or shrinking.  Figure 2 illustrates the situation. 

 
Figure 2. Area swept out (exaggerated) by a coefficient cj (in a basis other than the energy eigenbasis) over 

an infinitesimal time interval dt.  Note that both its phase and magnitude change in general. 

What, now, is the area swept out in this more general situation?  Notice that it is (in the 
infinitesimal limit which we are discussing) exactly half the area of the parallelogram 
spanned on two adjacent sides by cj = cj(t) and cj′ = cj(t+dt), considered as vectors in the 
complex plane.  See figure 3. 

 
Figure 3.  The infinitesimal area daj swept out approaches one-half the parallelogram area mjmj′ sin dθj. 

 
The parallelogram area, itself, is dAj = mjmj′ sin(dθj), where mi and mi′ are the magnitudes 
of the old and new coefficients, respectively, and dθj is the increment in phase angle.  
However, note that the area dAj of this parallelogram is also the magnitude of the “cross 
product” cj × cj′ between the coefficients, considered as two-dimensional vectors.  (The 
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traditional cross-product, defined in three dimensions, would be a vector perpendicular to 
the complex plane having this value dAj as its length.)  There is a beautiful identity 
connecting the cross product and dot product with the conjugate multiplication of 
complex numbers, namely: 

 a* b = a·b + i(a×b) (17) 

where a* means the complex conjugate of a, and a·b denotes the real “dot product” 
between a and b considered as vectors, namely |a||b| cos[arg(b)−arg(a)], and a×b denotes 
the real “cross product” previously mentioned between a and b considered as vectors, 
namely |a||b| sin[arg(b)−arg(a)].  That this is true can be shown easily: 

       a* b = (|a| exp[−i arg(a)]) (|b| exp[i arg(b)]) 
 = |a||b| exp{i[arg(b)−arg(a)]}   
  = (|a||b| cos θ) + i(|a||b| sin θ) (18) 

where θ = arg(b)−arg(a).  Applying this identity to our situation, we can see that the area 
swept out is exactly ½ of the imaginary part of the conjugate product between our two 
coefficients, in other words, 

 daj = dAj/2 = Im[cj* cj′]/2. (19) 

Now, this is the area swept out by this single component cj.  To find the total area da 
swept out by all components, we merely sum over components: 
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In other words, just like in the energy basis, in an arbitriary basis, the infinitesimal 
increment da in the area swept out is still exactly one-half of dA the imaginary 
component of the inner product between infinitesimally adjacent vectors along the 
trajectory.  We saw earlier that dA was exactly the action of the Hamiltonian over the 
time increment dt. Integrating over time, we see now that the total area a swept out by the 
coefficients in any basis is exactly A/2, where A is indeed exactly the action of the 
Hamiltonian, i.e. the quantum average value of the observable operator A = H∆t when 
applied to the initial state vector v. 

5. Time-dependent Hamiltonians 
In the above we have established that 2da = dA = Im[v●v′] = Hdt for infinitesimal 
changes of the state vector v → v′ along its trajectory over infinitesimal time intervals dt 
under a constant Hamiltonian.  But, as long as the Hamiltonian only changes in 
continuous fashion, it can always be considered “constant” throughout any infinitesimal 
interval dt, even if it is varying over non-infinitesimal timescales.  Therefore the above 



identities still hold true even for a time-dependent Hamiltonian H(t), as we originally 
started with.  Thus, when we integrate over time, it remains true that: 
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In other words, 2a (twice the area swept out by the complex coefficients, in any basis) is 
equal to A, the action of the Hamiltonian (the average eigenvalue 〈v|A|v〉 of the operator 
A(t1,t2) applied to the initial state v), which is equal to the integral along the trajectory v(t) 
of the imaginary component of the dot product between neighboring vectors, and to the 
integral of the average phase velocity of the coefficients in the energy eigenbasis 
(weighted by the instantaneous eigenstate probability [mi(t)]

2), and to the integral of the 
instantaneous Hamiltonian energy (the average eigenvalue of the operator H(t) applied to 
the instantaneous state v(t)) over time.  We might even consider this quantity to be a 
reasonable definition of the geometric length of the path that the state vector describes as 
it drifts along the unit sphere in Hilbert space, except that it could be negative if 〈H〉 (the 
instantaneous average value of H) was sometimes negative. 

Anyway, the fact that this measure of “amount of change” is so stable with 
respect to changes of basis as well as multifarious ways of defining it, and that it connects 
so strongly with fundamental physical concepts such as action and energy, as well as with 
primitive geometric concepts such as angles and areas, all feeds into our motivation for 
proposing it as being the most natural and genuine measure of the “amount of change” 
that is undergone by a physical quantum state vector v as it changes dynamically under a 
(possibly-varying) physical influence H(t). 

If we like, we can consider the dynamical trajectory of the system to comprise a 
computation, and then A (or equally well, a) becomes a natural measure of the total raw 
amount of computational work that is performed physically by the system.  Note this is 
not to imply that all of the raw physical computation that is occurring in the given system 
is necessarily being harnessed and applied by humans to meet our calculational needs,  
only that this is the total amount of raw computational work that occurring “in nature.” 

The only caveat to all of this is that the quantity A is itself dependent on where we 
choose to draw our zero of energy.  As is well-known, energies are only defined up to an 
additive constant, and so the total action is only defined up to this constant times the time 
∆t.  Although it is natural to define the least eigenvalue of the Hamiltonian (the “ground 
state”) to be the zero of energy, this is by no means mandated mathematically, and in the 
context of a time-dependent or infinite-dimensional Hamiltonian, there might not even be 
any minimum eigenvalue.  One should keep these caveats in mind, although they 
seemingly end up not much affecting the practical applications of this concept, which we 
will address in a later section. 

6. More abstract scenarios 
Consider an abstract physical situation wherein we know that a particular time-dependent 
Hamiltonian H(t) will be applied to a system, but we do not know the exact initial state v 
of the system to which it will be applied.  Instead, suppose we are given only a set of 
possible initial states, or a probability distribution over initial states.  Can we 



meaningfully define the amount of computational work performed by the resulting action 
A(t1,t2) between two times, in the absence of knowledge of the particular state? 

In the case where we have a probability distribution over initial states, of course 
one natural thing to do is to quantify the weighted average action over all those states.  
This is then the expectance value of the action, or of the amount of computation. 

If we are only given a set of states, we might construct a uniform probably 
distribution over that set (or if it is a continuous set, a uniform probability density 
function, according to some natural measure on that set), and then proceed to define the 
expected action according to that distribution. 

However, an interesting alternative is to also consider what we would get by 
taking the minimum and maximum action over the set of initial states. 

For large sets of possible states, the minimum action may frequently be zero, for 
example, it will be 0 as long the Hamiltonian is time-independent and its lowest-energy 
eigenstate (the ground state, defined to have energy 0) happens to be included in the set 
of possible initial states.  So, minimizing the action over initial states may not tell us 
anything useful that we don’t already know. 

On the other hand, the maximum action A(t1,t2) over the set of possible initial 
states is a measure of the maximum amount of “computational work” that could be 
performed by the given dynamics H(t) operating on an element of the given input set, 
between two given times t1 and t2.  This is perhaps a better measure of the computational 
“power” of the dynamics.  It is a dynamics that could perform a given amount of 
computational work.  Insofar as the actual state might be the one that invokes maximal 
work, we can say that a system with an unknown or unspecified state is, at least, 
performing this much “potential” computational work.  At least, even if the actual state is 
not the maximum-action one, the system could be thought of as still “doing the work” of 
determining that the actual state is not the one that should transition through the given 
maximal distance. 

To summarize: 

(potential computational work represented by action operator A) = W[A] = Av
Vv∈

max  

where V is the set of available initial state vectors, and Av denotes the action of the 
operator A when applied to v, that is, 
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where the basis k is the orthonormal eigenbasis of the operator A.  In other words, Av is 
just the quantity we were calling A earlier, for the particular case of initial vector v.  If we 
can obtain the eigenvalues Ak and can determine the magnitudes mk of the coefficients ck 
of the eigenvectors vk in this basis, then we can calculate the action by the summation 
shown. 

7. Computational effort 
Suppose now that we are given nothing except a unitary operator U on the Hilbert space 

ℋ, and we want to address the question: How much computational effort does it require 



to implement U, in the sense that U ends up being generated by the dynamics, according 
to U = eiA for some A?  The above discussion provides us a way to answer this question. 

Among the set of all Hermitian operators A, or among at least a set of available 
action operators, we can choose one generating U that has the smallest value of the 
potential computational work W[A] = Av

Vv∈
max , given a set V of available initial states.  

This A then can be considered the “best” action operator for generating the given unitary 
U, in the sense that the length of the longest trajectory that would be undergone by any 
possible state vector v∈V is minimized. 

Formally, given U we can define the effort to implement U, E[U], by 

 AvU
VvA ∈ℵ∈

= maxmin][E  (23) 

where ℵ is the set of available action operators on ℋ, i.e., some subset of the set of all 

Hermitian operators on ℋ, determined by what constitutes an “available” dynamics.  For 
example, ℵ might reasonably be constrained to only those action operators that are 
obtainable by time-integrating instantaneous Hamiltonians H(t) that are themselves 
constructed by summing over local interaction terms between neighboring subsystems, or 
by integrating a Hamiltonian density function that includes only local terms over some 
topological space, e.g., to reflect the local structure of spacetime in a quantum field-
theory picture.  Or, we might constrain ourselves to action operators that are obtainable 
from time-independent Hamiltonians only. 

Now, given this notion of the computational effort of a given unitary U, one can 
reinterpret previous results (such as [1,2]) regarding “quantum speed limits” or minimum 
times to implement various specific unitary transforms of interest (or classes of 
transforms), given states of specified average energy above the ground state, as follows:  
These analyses are specifying an ℵ (usually, just all Hermitian operators) and a V 
(usually, just the entire Hilbert space), and showing that E[U] for the transform U has a 
specific value, assuming a time-independent Hamiltonian with a ground state energy of 0.  
In other words, a certain minimum “worst-case” action is required to implement U. 

As an example, Margolus and Levitin’s result [1] can be interpreted as saying that 
any U that rotates any state v to an orthogonal state requires an effort E[U] ≥ h/4.  Also, if 
there is a v such that v, Uv, U2v, …, UN−1v, UNv=v comprises a cycle of N states, with 
each orthogonal to the preceding and succeeding states in the cycle, then E[U] is exactly 
(h/2)(N−1)/N, so long as we are given complete freedom in constructing the Hamiltonian, 
aside from the requirement that it be time-independent.  For N=2, this expression reduces 
to h/4; while for N→∞, E[U]→h/2. 

We note that this form of the Margolus-Levitin theorem at first only seems to 
concern the amount of action A required to implement the given U; however, in light of 
our previous discussions, this immediately also implies that an initial state of given 
energy E (above the ground state) will take time t = A/E to accumulate this amount of 
action under a time-independent Hamiltonian, and thus it will take at least this much time 
to undergo the given transformation (namely, a transition between two orthogonal states, 
in the case of the Margolus-Levitin theorem). 

It is anticipated that, armed with the new definitions proposed in this document, it 
would be a highly useful and worthwhile exercise to systematically go through a variety 



of the quantum unitary transforms that have already been studied in the context of 
quantum computing as comprising useful “quantum logic gate” operations, and quantify 
their computational effort according to the above definition.  This would directly tell us 
how much physical action is required for those operations (given a best-case Hamiltonian 
implementation, while operating on a worst-case input state).  We can likewise do the 
same for classical reversible Boolean logic operations embedded within unitary 
operations, and classical irreversible Boolean operations embedded within these (with 
ancilla bits available as needed for carrying away unwanted information to be discarded).  

This will, for the first time, give us a natural and physically well-founded measure 
for the computational effort or physical action needed to physically implement various 
logic operations.  This in turn would directly translate to a minimum physical time to 
perform these operations within any physical system or subsystem using a set of states 
having a given maximum energy above the ground state, given any known or 
prespecified constraints on the system’s initial state and its available Hamiltonian 
dynamics.  This new quantification of computational effort may also allow us to derive 
lower bounds on the number of quantum gates of a given type that would be required to 
implement a given larger transformation, and possibly to show that certain constructions 
of larger gates out of smaller ones are optimal. 

8. Effort to perform various operations 
In this section [under construction], we explore the amount of computational effort 
(according to our previous definitions) that is required to implement a variety of 
important quantum and classical logic operations. 
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