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Abstract

We offer well-motivated and basis-independent definitions for thedotaunt of change
occurring along any continuous trajectory of a quantum state yexdowell as the
amount of computational effort required for a given unitary transformation in an abstract
setting, given a set of possible “input” quantum states, and a seivalable
Hamiltonians. Our definitions are based on the action of the Harmaittpmihich we
show is equal to ¢@ the area swept out in the complex plane by the vector deetfsc
(in any basis). Using our definitions, we show that the oatehange of any state is
exactly given by its average energy (relative to a givenrgt state), while theate of
computing in the abstract situation could be considered to be the energy bigtest-
energy state in the input set. The minimum amount of computationklrequired to
carry out various types of quantum and classical logic operations is explored.

1. Introduction

The average enerdy of any quantum system relative to its ground state was shown by
Margolus and Levitin [1] to directly limit the rate at whidhetsystem can undergo
transitions between distinguishable (orthogonal) states, such asluadisteps within a
digital computation. The maximum (and achievable) rai;(Bl) = 2EN/[h(N-1)] for a
dynamical orbit which cycles through a sequenciE># mutually orthogonal states, with
the extreme cases beifg(2) = 4/h andRy(«) = 2E/h . Related results concerning the
minimum time required to perform unitary transforms of specyipe$ have also been
explored in other papers, such as [2].

Results such as these suggest that energy might fruitfulsxdmtly identified
with the rate of raw, low-level quantum-physical “computing” thatisng place within
a given physical system, if only the quantity “amount of computinguld be
appropriately defined. We would like to understand better whatribens, and show
that some well-defined and well-justified measure of the ratghech “computational
work” is being carried out within any quantum system is indeedtly equal to the
energy of that system.

In this paper, we address this goal by proposing a well-definetlyaie@d
measure of the totamount of change undergone over the course afly continuous
trajectory of a state vector along the unit sphere in Higgace. This measure is simply
given by the line integral of the magnitude of in@ginary component of the inner
product between infinitesimally-adjacent state vectors alonggthen path. This
guantity is invariant under any time-independent change of basis, the inner product
itself is. (And for closed paths, it even turns out to be invarianbmigtunder rotations
but also undetrandlations of the complex plane.) Our quantity is also equal to twice the



complex-plane area (relative to the origin) that is circuibnedror “swept out” by the
coefficients of the basis vector components (in any basis). skgsv that the
instantaneous rate at which change (under our definition) occursyfatate (under any
time-dependent Hamiltonian) is exactly given by the instantangtamiltonian) energy
of the state. Our quantity is thus also equal to the action of @&n@ltdnian over the
system’s trajectory.

Finally, we propose that (and motivate why) #mount of computational work
performed by a givetransformation trajectory (that is, a unitary transform described as
U=€”, whereA is the time-integral of a given time-dependent Hamiltonianhtigst be
defined as thenaximum amount of change (under our definition) over the set of all initial
states of the system that are under consideration in a givatian. (Similarly to how
the information capacity or maximum entropy of a system also depends on what set of
states is considered to be “available.”) For time-independantiltonians, an abstract
system’srate of computing is then given exactly by the energy of its highest-enstajg
under consideration. And for any system of given energy, it®fa@mputing is exactly
given by its energy. For a “bare” unitary transform (tlsatone that is not associated
with any specific Hamiltonian), theomputational effort required to perform it in a given
situation can be defined by minimizing the amount of computational work aVe
available transformation trajectories that result in that unitary.

The Margolus-Levitin theorem can then be reinterpreted (sighglphawing us
that the minimum Hamiltonian action or computational effort requicedip a bit in
isolation ish/4, while the total action required to complete a cycle thraugtistinct
neighboring states iNE1)n/2. The other previous results concerning minimum times to
perform other quantum operations can also be subsumed under our new framework.

2. Basic framework

Let #€ be any Hilbert space, and Md{t) be any continuous mapping from a real-valued

parametet (“time”) to Hermitian operators offf, in other wordsH can be considered to
be a (most generally) time-dependent Hamiltonian, given appi@@meergy units. For

any timedy,t; 00 R, define theaction operator of H fromt; to t, to be:

Aot = [HO (1),

t=t,

Of course, in the special case where we have a time-indepdident H (const.), we
can simplify the action operator to jusi(ti,to) = Ay(At) = HAt whereAt =t — t;.

Note that, although the action quantity that is most frequently used in phggics (
in Hamilton’s principle) is the action of tHeagrangian L = pv — H, it is also perfectly
valid and reasonable for us to define a more general notion of the action “of” artifyqua
that has units of energy, by integrating that energy quantitytower In this case, we
are referring to the action of th&amiltonian, rather than the action of the Lagrangian.

Also define theunitary transform fromt; to t, under H to be:

Un(ts,t2) = expliAn(ts,t2)]. (2



(In this document, we will use roman font for the constant imagimaityi where 7 = -1,
to distinguish it from italic variableisused as indices. Likewise for e, the constant base
of the natural logarithms.) This is just the usual quantum time-éwoloperator which
transforms state vectors from timieto t, under a given time-dependent Hamiltonian
H(t). (Sometimes, by convention a minus sign is inserted insidexgumential, but this
is a purely arbitrary choice.) Henceforth, we will almostagls omit theH subscript
from U and A, although they should still be understood, in the context of the present
discussion, to be always still implicitly dependent-bn

Taylor-expanding the expression f&f, we note that (suppressing thgt,
parameters for clarity):

U:exdiA]
-3 A
n=0 n!
AN ©
=1+iIA-———+...
2 6
=1+iA+O(A%)

where the Q%% notation here is expressing the fact that if we were tte doaever
smaller A, e.g. by considering what happens A(k) = Ay(ty, t; + (t2—t1)/k) ask—owo, the

sum of theA?, A%, etc. terms would become asymptotically bounded in magnitude by a
term that goes a4’ and that thus would be negligible in comparison Within other
words, ak—o,

U(K) — 1 +IA(K). 4)

Assuming thaH(t) is a continuous function, then for any infinitesimal time intepfal
magnitudeAt = dt, H(t) can be considered effectively time-independent over theréénti
infinitesimal interval betweet andt, =t; + dt, and so we can say that at any timthe
“infinitesimal” (here meaning, close to 1) unitary transform ajpgjyat” that timet can
be expressed as

U (t,t +dt) =1+iA(t,t +dt)

=1+iA,, (dt) (5)
=1+iH (t)dt

with the equality here being both rigorous and exact.

This simple (and well-known) relationship betwddrand H over infinitesimal
time intervals could be seen as suggesting that important téréssacs of U over
arbitrarily large intervals can usefully be found by intdgmtproperties of the
infinitesimal unitary U(t, t+dt) over time betweert; and t;, or in other words by
integrating properties of the instantaneél{y. Indeed, we will see that this is the case.
Also, we will see that the imaginary unit i in (5) ends up pigyan important role, and
leads us to consider the imaginary part of the inner product in oumtidef of total
action.



Now, to simplify further notation, let us henceforth wtitét) to meanU(t, t+dt).
We will refer to the entire functiob'(t) over values ot between any; andt, as the
transformation trajectory between those times. Note that the overall transformation
U(t1,t2) is the product of all the infinitesim&l'(t) over all timed in the range front; to
t,. Thatis, we can write:

U(t,t) =[]U'0). 6)

Although the product operatf is more traditionally applied only over discretdssof
terms, there is no reason it can’'t also be appleda set of values that are each
infinitesimally close to 1, analogously to how areggral| can be viewed as simply a
generalization of the sum operapoto a continuous set of infinitesimal terms.

Note that althoughU'(t) completely determined)(t;,t;), knowing the total
transformatiorlJ(t,,t;) for a particular pair of timesg,t; is not sufficient to determine the
specific complete transformation trajectds(t), even for values dffalling in the range
[t1, t2].

3. Defining the amount of change

Now, let us proceed to define our concept of dneunt of change performed by a
transformation trajectoryJ'(t) between two times, and by the resulting over augit
transformU. We will find it easiest to analyze this by firsbnsideringU’s behavior
when operating on its eigenvectors.

Let us first pause and look back at equation (3¢, Taylor-expansion of the
definition of U as exp|A], and reflect on it a moment. This equation imragy implies
that all eigenvectors oA are eigenvectors df as well. Why? LeAv = av (with v a
vector,a a scalar), then, spelling out the steps explicitly

Uv:{i(iA)n}v:ii”Anv:iinanv—(iin::n]v=uv (7)

n=0

whereu is the scalar value = z:zo(ia)“/n! = % SinceUv is equal to a scalar (namely

u) timesv, we have thav is an eigenvector df). Now, sinceU and A are of equal
dimensionality, and all eigenvectors Afare eigenvectors &f, the converse also holds,
and the two operators have identical sets of eigetiovs. Sincé) is unitary, it preserves
vector length, and so its eigenvectersemain unchanged under except for a phase
rotation, namely a multiplication hy= €?, wherea is the eigenvalue @k corresponding
to v. Note thatA must have real eigenvalues, since it is an intexrel (which has real
eigenvalues since it is Hermitian) and anyway, esiwe knowd| = 1, andu = €%, a must
be real. In other words, the action operator isngiws the total angle of phase-rotation
undergone by those vectors that end up unchanged(layt,) aside from a phase-
rotation.

Of course, we would also like to understand anchtiiyawhat happens to other
vectors as well. We will see how to do this shyortFirst, we will begin by analyzing in
more detail what happens to a given eigenvectiwer time as it is transformed hy



Given any an initial vectov (at timet; which without loss of generality we set
equal to 0), we can left) = U(ty, t)v. In other wordsy(t) traces out a continuous path on
an origin-centered sphere in Hilbert space haviadius Y|, which WLOG we can
consider to be 1.

For simplicity, first suppose thé&t is time-independent (later, we will see how to
remove this restriction). ThelAt) = HAt andU(At) = exp[HAt], so that for timeg =
t1+At = At, we havev(t) = U(At)v = exp[HAt]v. If v is an eigenvector dl (thus ofA,
and ofH) let its eigenvalue undét be w. Thenv(t) = exp[iwt]v. In other wordsy(t)
simply phase-rotates continuously in the complenelat angular velocity. Note that
the inner product between the initiandv(t), which we can writév|v(t)), has the value
expliot] = cost) + i sin(t). The imaginary part of the inner product is &it)( Note
now that for an infinitesimat = d, we have that sin{dt) = wdt = dA, i.e, the
infinitesimal increment in angle (or action) accuated over the timetd In other words,
over infinitesimal time intervals, the imaginaryrpaf the inner product between the
“before” vectorv(t;) and the “after” vectoy(t;+dt) gives exactly the amount of action (or
phase angle accumulation) over that time. At |easthave shown this in the case of a
time-independent Hamiltoniad, and an initial vectov which is an eigenvector of that
Hamiltonian. Let us now see how to generalizetihisther cases.

First, suppose the initial vecteolis not an eigenvector éf. However, let {;} be
a maximal set of unit-length mutually orthogonattees which are all eigenvectorslaf
in other wordsH’s orthonormal eigenbasis. Then, any arbitraigan be expressed in
terms of components in the basis, that isv = i ¢vi where thec, are complex
coefficients.

Of course, sincdJ is a linear operator, we can exprddg in terms ofv's
components in that basis.,

v(t) =U(tv=U (t)(Z c.vi]
=2 GU (v (8)
= cexpliatly

wherew; is just the eigenvalue &f that is associated with eigenvectpr Now, note that
the exponential terms can be absorbed into thdiciests. That is, we can look at the
coefficients as being time-dependent quantitig$) = ¢ exp[iwit], and say that always
v(t) =Y ci(t)vi. Note that each coefficient, whatever its magteiistill just phase-rotates
in the complex plane with an angular velocity that is given by the corresponding
eigenvalue oH.

At this point, let us pause to preview the nexpste We are going to study
several quantities, and show the close identits&den them:

1. The average rate of phase angle accumulation of cthedficients ci(t),
weighted by their squared modulus (magnitude).

2. Theenergy of the given vectov considered as a quantum state.

3. The rate at which the coefficientgt) sweep out area in the complex plane.



4. The imaginary component of the inner product betwadinitesimally-
adjacent state vectors.

5. The rate at which the coefficientgt) in any orthonormal basis; sweep out
area in the complex plane.

First, let us describe each coefficientin phase-magnitude representation as
¢ =m exp[id], wherem = || is the modulus (absolute value, magnitude, néength)
of the complex numbaeg;, andd, = arg€) is its argument (phase angle). Another notation
for this relation iscc = m O 6. Perhaps the most popular notation in use today i
¢ =me?, although the notation*emay be confused with the ordinary complex

exponentiation operation, which is, strictly speaki multi-valued in the case of non-
integer exponents. E(g., 1 technically has 3 distinct complex values, namgly
exp[2ri/3], and exp[4i/3].) To avoid confusion, we use the eXmiotation here.

Let us now consider the following quantity:

0=y )

Recall thatw; is the eigenvalue dfi corresponding to eigenvectgr and is the rate of
phase rotation (or angular velocity) of the coédint ¢; in the complex plane. Sa, is
simply the average angular velocity of the coedints, weighted by their squared
modulus. Weighting by the squared modulus of theldaudes (complex coefficients) of
the basis states is the normal way of taking trexage or mean value of an observable
guantity in quantum mechanics, for a pure staté ihha complex superposition of the
eigenstates of the given observable. Thus, wesagf is simply the average complex-
plane angular velocity for the quantum state

We pause to note that aside from a conversion itd,um is also theenergy of the
guantum state. For example, ifw has been implicitly quantified in terms of radigres
second, then we can wrigg= &, using some standard physical unitAcuch as Joule-
seconds, to obtain the average eneggy a more traditional energy unit such as Joules.
(The constant can be considered to represent the angle “1 radian,” and tives ser
make this implicit angle-unit explicit.) However, | emphaslza this is merely a matter
of unit-conversion, and we can equally well say #aas the energy of the state.
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Figure 1. A complex coefficient; sweeps out a small wedge-shaped area (shown exéeyjein the
complex plane over an infinitesimal time interval d

Let us now consider the rate at which the complex coefficneep out area in the
complex plane. To illustrate what we mean by this, refdéigtoe 1, which illustrates a
region of the complex plane centered on the origin. Consider firstopes of the
coefficientsc.. At timet, it has value(t), shown as an arrow on the diagram. A short
time d later, the arrow has rotated¢¢i+dt), and we say that the arrow has “swept out”
the region shown in gray. Between these times, the arrowadtaied by an angle
do; = widt. What is the area of the wedge-shaped region of the di$u® isTeasy to
calculate, if we recall that, were we to let the arrowegweut a full circle, it would rotate
by a total angle of; = 2t radians, while sweeping out an areaof tm?, sincem (the
magnitude of;) is the radius of the circle shown. Thus, for the full cirales 6m?/2.
By symmetry, this relation betweenandé also holds for each part of the circle, so we
have & = ddim?/2 = oim?dt/2.

To find the total areaalswept out byall coefficientsc; over time d, we merely
do the same for each of them, and sum them all up:

da= %Z wndt

—1oat
>

(10)

Thus, the total rateaddt at which area is swept out in the complex plane by all the
various coefficients taken together is exactly half of the geereomponent phase
velocity, i.e., half the state’s energy.

This brings us to the fourth item in the preview above, namely the pmoduct
between infinistesimally-adjacent state vectdty andv(t+dt). For conciseness, we will
let v=v(t) andVv' = v(t+dt) and likewise for the coefficients and phase anglés. The



inner productsev' = (v|V') = vV (these are three common alternative notations for it) can
be defined in terms of the coefficiersc;’ by:

vev=Yc'c (11)

where the * denotes complex conjugation @f Now, in the phase-magnitude
representationg* = (my exp[¢i])* = m exp[-¢]. Note thatm'=m because the complex
magnitudes are not changed by phase rotation. THas,= (m exp[-#i])(m expld]) =
m? expp'-6;]. But, note that’ = 6; + w;dt, so we have

G ¢ =ny explwt]
= m¢[cos@dt) +i sin(wdt)] (12)
=mffi+iad]

where in the last step we are using the identiite¢d/)=1 and sin(é)=dd which hold for
infinitesimal angles @, where in our casedgwdt. Now, we just sum equation (12) over
the values of the indekto get the overall inner product. The real pdrthe inner
product is jus®m? = 1 always, so it is not very useful, but the iinagy part of the
inner product, Imfev] = Ym?widt =@ dt, in other words, it is the average energy times
the time increment td Recall that @is the average phase velocity or average
Hamiltonian energy of the statethus d\= « dt is the average increment in phase, or the
increment in action over the timé. dNote that we haveAd= 2da, where recall d was
the increment in area swept out in the complexeglan

Of course, even for a non-infinitesimal time in@rit, we can obtain the total
average accumulation of phase antfe or the total areaa swept out, by just using the
expressionaA = « At andAa = AA/2.

As an interesting aside, for any closed trajectthgt eventually brings all
coefficients back to their initial complex-planeddions simultaneously, it does not even
matter where we choose to locate the complex ofagipurposes of calculating the area,
relative to the geometric curves traced out inpglame by the coefficients. The total area
swept out by the points as they travel around tih@es remains exactly the same no
matter where the “center” is chosen.

4. Generalizing to arbitrary bases

The above discussion proceeded under the contextset of basis vectors;f which
were taken to be orthonormal eigenvectors of tleengrarily presumed constant)
Hamiltonian operatoHd. Now, we will see that this choice of basis idot unnecessary,
and that the same statements concerning the medai between the area swept out and
the action would hold true in any (time-indepenjidaisis.

That this is true is suggested by considering @iationship betweenAl (the
increment of action, the energy times d) and the inner productev' = v(t)ev(t+dt)
between infinitesimally neighboring vectors alorg ttrajectory. We saw thatAd=
Im[vev']. However, a fundamental property of the innevdurct that it is itself a unitary
invariant; that is, it is a product of two vect@ansidered as puggeometric objects, and



thus it is independent of the basis which we usexjress those vectors in terms of
components. Therefore, this basis-independencehalisls for the imaginary part of the
inner product. So, if we were to just defing d Im[veV], this definition would rely not
at all on any particular basis; we do not even hawvdind the eigenstates of the
Hamiltonian to determine it. Yet, it is still trdleat d\/dt is the energy of the state

Now, however, we would like to see whether the othentities we investigated
that explicitly invoke a choice of basis nevertissleemain consistent under a change of
basis. In particular, we saw that in the energgida, the area swept out by the
coefficientsc in the complex plane was exactly given by halftteg actionA, that is,
a=A/2. Does this remain true in other bases? Wess#lthat it does.

At first, it may seem non-obvious that the areapveeit is still half of the action.
Note that our previous arguments for this reliedtmnfact that in the energy basig}{
the coefficients all rotated at uniform angularoggly in a circle in the complex plane,
while their individual magnitudesy remained constant. In a different bagjghis is no
longer true. Each basis vectpis in general some superposition of #dike

v, = Zu}vi , (13)

where the matriX = [Uji] of complex coefficientsj(indexing rowsj columns) is, most
generally, any unitary matrix. We can also wrhes tequation in matrix-vector form as
v, =Uv,. Now, for a general vectoy

EDICEDWAED NSNS HATAE Z(chuj Jvi : (14)
i j j [ ] [ J
so, equating the coefficients on theomponents of, we have that

C :Zu}cj
]

(15)
c=U'c,
or, solving for theg's,
¢ =U'g,
Tyv-1lzx — =
(U ) G _Cj
(U)™& =¢, (16)
Ut =

In other words, each complex coefficient in the new basis isguysarticular linear
combination of what the various complex coefficients were in thebakls. If the
coefficientsc; in the old energy basis are describing perfect circlesnar the complex
origin at a variety of radii and angular velocities, there is oarantee that the



coefficientsc; in the new basis will be describing circular paths, although paghs will
of course still be continuous. In general, thaill follow a complex looping trajectory
in the complex plane, generated exactly as if by Ptolemanefaley epicycles.e., as a
sum of circularly rotating vectors. A givenwill in general return to its initial location
in the complex plane only when its componeatghat have nonzero values of
simultaneously return to their initial locations exactly (whtohld take infinitely long, if
the correspondingy values were relatively irrational).

Anyway, the important point for our present purposes is thatjthdo not, in
general, maintain a constant magnitude (distance from the orgid)so the area swept
out by thec; over a given time is no longer just a section of a circle, wivah easy to
analyze. Instead, whilg’s phase angl€] is rotating, simultaneously its magnituneg
may also be growing or shrinking. Figure 2 illustrates the situation.

A

Imag (t + ot _
axis a( ) /;‘(t)
d dm
) 0 Real axis ’

v

Figure 2. Area swept out (exaggerated) by a coefficgi(in a basis other than the energy eigenbasis) over
an infinitesimal time intervaltd Note that both its phase and magnitude changeneral.

What, now, is the area swept out in this more general situatiatizeNhat it is (in the

infinitesimal limit which we are discussing) exactly hdietarea of the parallelogram

spanned on two adjacent sidesdoy ¢j(t) andg’ = ¢j(t+dt), considered as vectors in the

complex plane. See figure 3.

Figure 3. The infinitesimal areaal swept out approaches one-half the parallelogrammm,’ sin di.

The parallelogram area, itself, i&yd= mmy’ sin(dd), wherem andm’ are the magnitudes
of the old and new coefficients, respectively, aflig the increment in phase angle.
However, note that the are#df this parallelogram is also the magnitude of the “cross
product”c; x ¢’ between the coefficients, considered as two-dimensional vectong (



traditional cross-product, defined in three dimensions, would be a vecpmnalicular to
the complex plane having this valué das its length.) There is a beautiful identity
connecting the cross product and dot product with the conjugate mutigsiicaf
complex numbers, namely:

a* b=ab + i(axb) (a7)

where a* means the complex conjugate af anda-b denotes the real “dot product”
betweena andb considered as vectors, nameljb| cos[argip)—arg@)], andaxb denotes
the real “cross product” previously mentioned betwaesndb considered as vectors,
namely §||b| sin[argb)—arg@)]. That this is true can be shown easily:

a* b= (la| exp[-i arg@)]) (|b| expli argb)])
= [lo| exp{ilargb)-arg@)]}
= (Rlb| cos) + i(Jalfo| sin &) (18)

where@ = argp)—arg@). Applying this identity to our situation, we can see that tka a
swept out is exactly ¥z of thenaginary part of the conjugate product between our two
coefficients, in other words,

da; = dA/2 = Im[g* ¢']/2. (19)

Now, this is the area swept out by this single compogenilo find the total areaad
swept out by all components, we merely sum over components:

da= Z Im[c, c;1/2
J

=%|m{z c;c;} (20)
:%Im[vj V]

In other words,just like in the energy basis, in an arbitriary basis, the infinitesimal
increment d in the area swept out igtill exactly one-half of A the imaginary
component of the inner product between infinitediynadjacent vectors along the
trajectory. We saw earlier thahdvas exactly the action of the Hamiltonian over the
time increment d Integrating over time, we see now that the tataba swept out by the
coefficients in any basis is exactl/2, whereA is indeed exactly the action of the
Hamiltonian,i.e. the quantum average value of the observable apetat HAt when
applied to the initial state vector

5. Time-dependent Hamiltonians

In the above we have established thaa 2ddA = Im[veVv] = Hdt for infinitesimal
changes of the state vector— V' along its trajectory over infinitesimal time intafs d
under aconstant Hamiltonian. But, as long as the Hamiltonian omlyanges in
continuous fashion, it can always be consideredstant” throughout any infinitesimal
interval d, even if it is varying over non-infinitesimal tiseales. Therefore the above



identities still hold true even for a time-dependetamiltonianH(t), as we originally
started with. Thus, when we integrate over tirhegmains true that:

2a=A= t] Im[v(t) * v(t +dt)] = tzjw(t)dt = tsz (t)dt . (21)

t=t, t=t; t=t,

In other words, & (twice the area swept out by the complex coeffitsigin any basis) is
equal toA, the action of the Hamiltonian (the average eigdun(v|Alv) of the operator
A(ty,t2) applied to the initial stat@, which is equal to the integral along the tragegi/(t)

of the imaginary component of the dot product betwaeighboring vectors, and to the
integral of the average phase velocity of the coefits in the energy eigenbasis
(weighted by the instantaneous eigenstate probahifi(t)]?), and to the integral of the
instantaneous Hamiltonian energy (the average e#&jea of the operatdti(t) applied to
the instantaneous statt)) over time. We might even consider this quantdybe a
reasonable definition of the geometigogth of the path that the state vector describes as
it drifts along the unit sphere in Hilbert spacecept that it could be negative(il) (the
instantaneous average valueH)fwas sometimes negative.

Anyway, the fact that this measure of “amount oarge” is so stable with
respect to changes of basis as well as multifancayss of defining it, and that it connects
so strongly with fundamental physical concepts saaghction and energy, as well as with
primitive geometric concepts such as angles anasaadl feeds into our motivation for
proposing it as being the most natural and genmaasure of the “amount of change”
that is undergone by a physical quantum state veas it changes dynamically under a
(possibly-varying) physical influends(t).

If we like, we can consider the dynamical trajegtof the system to comprise a
computation, and therA (or equally well,a) becomes a natural measure of the total raw
amount of computational work that is performed physically by the system. Note this is
not to imply that all of the raw physical computatithat is occurring in the given system
is necessarily being harnessed and applied by haittameet our calculational needs,
only that this is the total amount of raw computa#l work that occurring “in nature.”

The only caveat to all of this is that the quanitis itself dependent on where we
choose to draw our zero of energy. As is well-knpenergies are only defined up to an
additive constant, and so the total action is a@fined up to this constant times the time
At. Although it is natural to define the least eig&ne of the Hamiltonian (the “ground
state”) to be the zero of energy, this is by no meaandated mathematically, and in the
context of a time-dependent or infinite-dimensiddammiltonian, there might not even be
any minimum eigenvalue. One should keep theseatsviem mind, although they
seemingly end up not much affecting the practiggliaations of this concept, which we
will address in a later section.

6. More abstract scenarios

Consider an abstract physical situation whereirkm@v that a particular time-dependent
HamiltonianH(t) will be applied to a system, but we do not knbw éxact initial state

of the system to which it will be applied. Insteadppose we are given only a set of
possible initial states, or a probability distrilomt over initial states. Can we



meaningfully define the amount of computational kvperformed by the resulting action
A(ty,t2) between two times, in the absence of knowledgbeparticular state?

In the case where we have a probability distributiwer initial states, of course
one natural thing to do is to quantify the weightegrage action over all those states.
This is then the expectance value of the actionf the amount of computation.

If we are only given a set of states, we might twmes a uniform probably
distribution over that set (or if it is a continset, a uniform probability density
function, according to some natural measure ondégt and then proceed to define the
expected action according to that distribution.

However, an interesting alternative is to also aerswhat we would get by
taking theminimum andmaximum action over the set of initial states.

For large sets of possible states, the minimunoacatiay frequently be zero, for
example, it will be 0 as long the Hamiltonian ié&-independent and its lowest-energy
eigenstate (the ground state, defined to have gri®rbappens to be included in the set
of possible initial states. So, minimizing theiaatover initial states may not tell us
anything useful that we don’t already know.

On the other hand, theaximum action A(t1,t;) over the set of possible initial
states is a measure of the maximum amount of “ctatipnal work” that could be
performed by the given dynamiéHt) operating on an element of the given input set,
between two given times andt,. This is perhaps a better measure of the compngat
“power” of the dynamics. It is a dynamics thaduld perform a given amount of
computational work. Insofar as the actual stailght be the one that invokes maximal
work, we can say that a system with an unknown mspeacified state is, at least,
performing this much “potential” computational workt least, even if the actual state is
not the maximum-action one, the system could baghbof as still “doing the work” of
determining that the actual statend the one that should transition through the given
maximal distance.

To summarize:

(potential computational work represented by actiparatorA) = W[A] = rrvha}xAv

whereV is the set of available initial state vectors, #wddenotes the action of the
operatorA when applied t@, that is,

Av=(v[AV) =T A (22)

where the basik is the orthonormal eigenbasis of the operatorin other wordsAv is
just the quantity we were callifgearlier, for the particular case of initial vectorIf we
can obtain the eigenvaluég and can determine the magnitudesof the coefficientsy
of the eigenvectors, in this basis, then we can calculate the actioriheysummation
shown.

7. Computational effort
Suppose now that we are given nothing except amynitperatot) on the Hilbert space
Jf, and we want to address the question: How nooofiputational effort does it require



to implement U, in the sense thal ends up being generated by the dynamics, according
to U = é* for someA? The above discussion provides us a way to arthigeguestion.
Among the set oéll Hermitian operator#, or among at least a set of available
action operators, we can choose one generddirthat has thesmallest value of the
potential computational work V& = rrvha}xAv, given a seW of available initial states.

This A then can be considered the “best” action opefatogenerating the given unitary
U, in the sense that the length of the longestdtayg that would be undergone by any
possible state vectef1V is minimized.

Formally, givenU we can define theffort to implement, E[U], by

E[U] = min max Av (23)
AT vV

where is the set of available action operatorskhi.e., some subset of the set of all

Hermitian operators oftf, determined by what constitutes an “available”atyics. For
example,[J might reasonably be constrained to only thoseoactperators that are
obtainable by time-integrating instantaneous Hamiéns H(t) that are themselves
constructed by summing over local interaction tebeisveen neighboring subsystems, or
by integrating a Hamiltonian density function thatludes only local terms over some
topological spacee.g., to reflect the local structure of spacetime imguantum field-
theory picture. Or, we might constrain ourselv@sdtion operators that are obtainable
from time-independent Hamiltonians only.

Now, given this notion of the computational effofta given unitaryJ, one can
reinterpret previous results (such as [1,2]) regardquantum speed limits” or minimum
times to implement various specific unitary tramsfe of interest (or classes of
transforms), given states of specified averageggnabove the ground state, as follows:
These analyses are specifying @n(usually, just all Hermitian operators) andVa
(usually, just the entire Hilbert space), and smgathat E[J] for the transformJ has a
specific value, assuming a time-independent Hamdio with a ground state energy of O.
In other words, a certain minimum “worst-case” actis required to implement.

As an example, Margolus and Levitin’s result [1h ¢ee interpreted as saying that
anyU that rotates any stateo an orthogonal state requires an effolEt h/4. Also, if
there is av such that, Uy, U%, ..., UNv, UNv=v comprises a cycle dfl states, with
each orthogonal to the preceding and succeeditgsstathe cycle, then HJ is exactly
(n/2)(N-1)/N, so long as we are given complete freedom in coctig the Hamiltonian,
aside from the requirement that it be time-indepeihd ForN=2, this expression reduces
to h/4; while forN—w, E[U]—h/2.

We note that this form of the Margolus-Levitin thexm at first only seems to
concern the amount @iction A required to implement the givest however, in light of
our previous discussions, this immediately alsoliespthat an initial state of given
energyE (above the ground state) will take time A/E to accumulate this amount of
action under a time-independent Hamiltonian, ang thwill take at least this much time
to undergo the given transformation (namely, aditeon between two orthogonal states,
in the case of the Margolus-Levitin theorem).

It is anticipated that, armed with the new defons proposed in this document, it
would be a highly useful and worthwhile exercisesystematically go through a variety



of the quantum unitary transforms that have alrebdgn studied in the context of
guantum computing as comprising useful “quantuniclgate” operations, and quantify
their computational effort according to the aboedirdtion. This would directly tell us
how much physical action is required for those apens (given a best-case Hamiltonian
implementation, while operating on a worst-casalimngiate). We can likewise do the
same for classical reversible Boolean logic opersti embedded within unitary
operations, and classical irreversible Boolean atpmrs embedded within these (with
ancilla bits available as needed for carrying awawanted information to be discarded).

This will, for the first time, give us a naturaldaphysically well-founded measure
for the computational effort or physical action dee to physically implement various
logic operations. This in turn would directly tedate to a minimum physical time to
perform these operations within any physical systensubsystem using a set of states
having a given maximum energy above the groundestgtven any known or
prespecified constraints on the system’s initiatestand its available Hamiltonian
dynamics. This new quantification of computatioaibrt may also allow us to derive
lower bounds on the number of quantum gates o¥engiype that would be required to
implement a given larger transformation, and pdggio show that certain constructions
of larger gates out of smaller ones are optimal.

8. Effort to perform various operations

In this section [under construction], we explore tAmount of computational effort
(according to our previous definitions) that is uegd to implement a variety of
important quantum and classical logic operations.
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