
3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 1

FAMUFAMUFAMUFAMUFAMUFAMUFAMUFAMU--------FSUFSUFSUFSUFSUFSUFSUFSU

College of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of Engineering

SpaceSpace--Efficient Simulation Efficient Simulation
of Quantum Computersof Quantum Computers

47th ACM Southeast Conference, Clemson, SC
March 19-21, 2009 (Session F3, Systems)

Michael P. Frank1, Uwe H. Meyer-Baese1,
Irinel Chiroescu2, Liviu Oniciuc 1, Robert A. van Engelen3

1Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering
2National High Magnetic Field Laboratory, Florida State University

3Department of Computer Science, Florida State University

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 2

FAMU-FSU College of Engineering

Abstract (for reference)Abstract (for reference)
Traditional algorithms for simulating quantum computers on
classical ones require an exponentially large amount of memory,
and so typically cannot simulate general quantum circuits with
more than about 30 or so qubits on a typical PC-scale platform
with only a few gigabytes of main memory. However, more
memory-efficient simulations are possible, requiring only
polynomial or even linear space in the size of the quantum circuit
being simulated. In this paper, we describe one such technique,
which was recently implemented at FSU in the form of a C++
program called SEQCSim, which we releasing publicly. We also
discuss the potential benefits of this simulation in quantum
computing research and education, and outline some possible
directions for further progress.

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 3

FAMU-FSU College of Engineering

What is a Quantum Computer?What is a Quantum Computer?
� A new, more powerful fundamental paradigm for computing

within the laws of physics.
� Apparently exponentially faster on some problems.

� Some key differences between Classical vs. Quantum
Computation:
� State representations:

� Classical: A sequence of n bit values, w ∈ Bn, where B = {0,1}.
� Quantum: A function Ψ ∈ H, where H = Bn → C, mapping classical

states to complex numbers (“amplitudes”).
� Logic operators (“gates”):

� Classical: A function from several bits to one bit, g:Bk → B
� Quantum: A unitary (invertible, length-preserving) linear

transformation U:S→ S, where S = Bk → C.
� Measurement of computation results:

� Classical: Measured value is exactly determined by machine state.
� Quantum: Probability of measuring state as being w is ∝|Ψ(w)|2.

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 4

FAMU-FSU College of Engineering

A Simple Quantum Circuit: Draper AdderA Simple Quantum Circuit: Draper Adder

Uses the quantum Fourier transform (QFT) and its inverse QFT−1 to add two 2-bit input
integers in a temporary phase-based representation. Here it is computing 1 + 1 = 2.

H

a0

a1

b0

b1

φ1 H

φ0

φ0

φ1

H φ1
−1

H|0〉

|0〉

|1〉

|1〉

a = |012〉
= 1

b = |012〉
= 1

|0〉

|1〉

|1〉

|0〉

a := QFT(a) a := QFT −1(a)add b into
phase of a

a := (a + b) mod 4

a = |102〉
= 2

1 11

1 12
H

= −

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 exp(iπ2)

q

q

ϕ

−

 =

 Hadamard gate

Controlled-phase gate

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 5

FAMU-FSU College of Engineering

A Larger Draper Adder (2A Larger Draper Adder (2 ××4 bits)4 bits)

� Some advantages of the Draper adder:
� Minimal quantum space usage: Requires no ancilla bits for carries.
� A good simple, but nontrivial example of a quantum algorithm.

� A disadvantage of the Draper adder:
� Slow; requires Θ(n2) gates for an n-bit add!

� Unlikely to be used in practice, unless qubits are very expensive.

QCAD tool, by Hiroshi Watanabe, University of Tokyo, available from
http://apollon.cc.u-tokyo.ac.jp/~watanabe/qcad/index.html

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 6

FAMU-FSU College of Engineering

Some Potential Applications Some Potential Applications
of Quantum Computersof Quantum Computers

� If quantum computers of substantial size are built,
known quantum algorithms can be applied to obtain:
� Polynomial-time cryptanalysis of popular public-key

cryptosystems (e.g., RSA).
� Polynomial-time simulations of quantum-mechanical

physical systems.
� Square-root speedups of simple unstructured searches of

computed oracle functions.
� And not a whole lot else!

� A much wider variety of interesting & useful
quantum algorithms is needed,
� But new quantum algorithms are difficult to develop.

� Need flexible, capabable simulation tools for design validation.

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 7

FAMU-FSU College of Engineering

A Problem with Nearly All Existing A Problem with Nearly All Existing
Quantum Computer SimulatorsQuantum Computer Simulators

� They require exponential space as the number
of bits in the simulated computer increases.
� Why: They update a state vector explicitly

representing the full wavefunctionΨ: Bn → C.
� This vector contains 2n complex numbers

� 1 for each possible configuration of the machine’s n bits

� If the available memory holds 1G (230) numbers,
� We can only simulate <30-bit quantum computers!

� The large space usage also imposes a significant
slowdown to access main memory or disk.

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 8

FAMU-FSU College of Engineering

A Way to Solve This ProblemA Way to Solve This Problem

� We can reformulate quantum mechanics in an
equivalent framework without state vectors.
� Feynman (1942): Any desired amplitude can be

computed using a path integral expression
summing over possible classical trajectories.

� Bohm (1952): Can maintain a classical state that
evolves under the influence of only wavefunction
amplitudes in the immediate neighborhood.

� The only real requirement is to obtain the
right probability of arriving at each final state!

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 9

FAMU-FSU College of Engineering

A Complexity Theorist’s View of A Complexity Theorist’s View of
Feynman’s Path IntegralFeynman’s Path Integral

� Consider any computation with a wide dataflow
graph (uses more space than time)
� The graph at right uses 4 variables

at time t=1, but only takes 2 steps.

� We can make the algorithm
more space-efficient by
recomputing intermediate
variables dynamically when
needed, instead of storing them.

� Bernstein & Vazirani, 1993: Can apply this generic
tradeoff to simulating quantum computers (duh).

t=0

t=1

t=2

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 10

FAMU-FSU College of Engineering

SEQCSim: The SEQCSim: The SSpacepace--EEfficient fficient
QQuantum uantum CComputer omputer SSimulatorimulator

� Core idea was conceived circa 2002 at UF.
� Adding Bohm updates to Feynman recursion.

� Avoids having to enumerate all possible final states.

� A working C++ software prototype was
developed and demonstrated at FSU in 2007.
� Future versions of the simulator will have a more

expressive programming interface.

� A performance-optimized FPGA-based
implementation is currently being developed.

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 11

FAMU-FSU College of Engineering

SEQCSim Input Files SEQCSim Input Files
for 2for 2××22--Bit Draper AdderBit Draper Adder

qconfig.txt format version 1

bits: 4

named bitarray: a[2] @ 0

named bitarray: b[2] @ 2

qinput.txt format version 1

a = 1

b = 1

qoperators.txt format version 1

operators: 4

operator #: 0

name: H

size: 1 bits

matrix:

(0.7071067812 + i*0)(0.7071067812 + i*0)

(0.7071067812 + i*0)(-0.7071067812 + i*0)

operator #: 1

name: cZ

size: 2 bits

matrix:

(1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (0 + i*0) (-1 + i*0)

... (two additional operators elided for brevity)

Input values to add

Quantum circuit (gate application sequence)

Gate
definitions

qopseq.txt format version 1

operations: 9

operation #0: apply unary operator H to bits a[1]

operation #1: apply binary operator cPiOver2 to bits a[1], a[0]

operation #2: apply unary operator H to bits a[0]

operation #3: apply binary operator cZ to bits b[1], a[1]

operation #4: apply binary operator cZ to bits b[0], a[0]

operation #5: apply binary operator cPiOver2 to bits b[0], a[1]

operation #6: apply unary operator H to bits a[0]

operation #7: apply binary operator inv_cPiOver2 to bits a[1], a[0]

operation #8: apply unary operator H to bits a[1]

Declare registers

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 12

FAMU-FSU College of Engineering

SEQCSim Core AlgorithmSEQCSim Core Algorithm
// Bohm-inspired iterative state updating.

procedure SEQCSim::run():

curState := inputState; // Current basis state

curAmp := 1; // Current amplitude

for PC =: 0 to #gates, // Current gate index

(w.r.t. gate[PC] operator and its operands,)

for each neighbor nbri of curState,

if nbri = curState, amp[nbri] :=curAmp;

else amp[nbri] := calcAmp(nbri);

amp[] := opMatrix * amp[]; // Matrix prod.

// Calculate probabilities as normalized

// squares of amplitudes.

prob[] := normSqr(amp[]);

// Pick a successor of the current state.

i := pickFromDist(prob[]);

curState := nbri; curAmp := amp[nbri].

// Feynman-inspired recursive

// amplitude-calculation procedure.

function SEQCSim::calcAmp(Neighbornbr):

curState := nbr;

if PC=0 return (curState = inputState) ? 1 : 0;

(w.r.t. gate[PC−1] operator and its operands,)

for each predecessor predi of curState,

PC := PC − 1;

amp[predi] = calcAmp(predi);

PC := PC + 1;

amp[] := opMatrix * amp[];

return amp[curState];

Complete C++ console app has
24 source files, total size 115 KB

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 13

FAMU-FSU College of Engineering

Illustration of SEQCSim Illustration of SEQCSim
Operation on 2Operation on 2××22--Bit Draper AdderBit Draper Adder

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

b1 b0 a1 a0

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71i

0

0

0

0

0

0

0

0

−.5

−.5i

H
(a

1)

φ
1(

a 1
,a

0)

H
(a

0)

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

−.5

−.5i

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

.5

.5i

0

0

0

0

.5

−.5

0

0

0

0

0

0

0

0

.5

−.5

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7
0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

8

φ
0(

b 1
,a

1)

φ
0(

b 0
,a

0)

φ
1(

b 0
,a

1)

H
(a

0)

φ
1−

1 (
a 1

,a
0)

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

9

H
(a

1)

State on
Bohmian
trajectory

State
visited
in final

recursion

Step number ����

P
os

si
b

le
 b

a
si

s
st

a
te

s

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 14

FAMU-FSU College of Engineering

Complexity AnalysisComplexity Analysis

� Defining the following parameters:
� a = const. = max. arity of quantum gates
� s = width (# of qubits) in simulated circuit
� t = time (# of operations) in simulated circuit
� k (< t) = # of nontrivial operations in sim’d circ.

� For a moderately well-optimized
implementation of SEQCSim, we can have
� Space complexity: O(s + t)
� Time complexity: O(s + t·2ak)

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 15

FAMU-FSU College of Engineering

SEQCSim OutputSEQCSim Output
on 2on 2××22--Bit Draper AdderBit Draper Adder

Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.

(C++ console version)

By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.

Copyright (C) 2008 Florida State University Board of Trustees.

All rights reserved.

SEQCSim::run(): Initial state is 3->0101<-0 (4 bits) ==> (1 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=0)

The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=1)

The new current state is 3->0111<-0 (4 bits) ==> (0 + i*0.707107).

... (5 intermediate steps elided for brevity) ...
SEQCSim::Bohm_step_forwards(): (tPC=7)

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=8)

The new current state is 3->0110<-0 (4 bits) ==> (1 + i*0).

SEQCSim::done(): The PC value 9 is >= the number of operations 9.

We are done! 1+1 = 2 = 102

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 16

FAMU-FSU College of Engineering

Empirical MeasurementsEmpirical Measurements
of Space Complexityof Space Complexity

QCAD vs. SEQCsim memory usage

1,000

10,000

100,000

1,000,000

10,000,000

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

P
ea

k
m

em
or

y
us

ag
e

(K
B

)

QCAD

SEQCsim

Linear growth of SEQCsim memory usage with size of
quantum circuit

y = 0.1656x + 1895.9

R2 = 0.9282

1892
1896
1900
1904
1908
1912
1916
1920
1924
1928
1932
1936
1940
1944
1948
1952
1956
1960

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

P
ea

k
m

em
or

y
us

ag
e

(K
B

)

Ex
po

ne
nt

ia
l!

(Note: QCAD crashed on the 28-bit circuit, due to
insufficient memory available on the test PC.)

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 17

FAMU-FSU College of Engineering

Empirical MeasurementsEmpirical Measurements
of CPU Time Utilizationof CPU Time Utilization

� SEQCSim is 10× faster
than QCAD on small
circuits
� This is probably largely

because QCAD has a GUI
and SEQCSim doesn’t.

� SEQCSim is ~2× slower
than QCAD on large
circuits.
� But there is much room for

improvement.
� Take better advantage of

available memory.
� Reimplement in special-

purpose hardware

QCAD vs. SEQCsim CPU time usage

0.01

0.1

1.

10.

100.

1,000.

10,000.

100,000.

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

C
P

U
 ti

m
e

(s
ec

s.
)

QCAD

SEQCsim

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 18

FAMU-FSU College of Engineering

FPGA Tools (1 of 5):FPGA Tools (1 of 5):
AlteraAltera SOPC BuilderSOPC Builder

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 19

FAMU-FSU College of Engineering

FPGA Tools (2 of 5):FPGA Tools (2 of 5):
NIOS II SoftNIOS II Soft --Core ConfigurationCore Configuration

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 20

FAMU-FSU College of Engineering

FPGA Tools (3 of 5):FPGA Tools (3 of 5):
Custom Hardware Generation with C2HCustom Hardware Generation with C2H

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 21

FAMU-FSU College of Engineering

FPGA Tools (4 of 5):FPGA Tools (4 of 5):
LISA Processor Design CycleLISA Processor Design Cycle

FPGA
Implementation

Size, speed, power

FPGA
Implementation

Size, speed, power

Design
tool

generation

Design
tool

generation
Assembler, linker,

profiling,
ISS, C-

compiler

Architecture
exploration

Architecture
exploration

ISA, cache,
Co-
proces

sor

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 22

FAMU-FSU College of Engineering

FPGA Tools (5 of 5):FPGA Tools (5 of 5):
LISA Development ToolsLISA Development Tools

Disassembler

Memory
monitor

Profiler
regs

3/16/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 23

FAMU-FSU College of Engineering

Conclusion & Future WorkConclusion & Future Work
� We have implemented in C++ and validated a

working prototype of a quantum computer simulator
that uses only linear space.
� This tool can be useful to help students & researchers

validate quantum algorithms.
� Online resources at http://www.eng.fsu.edu/~mpf/SEQCSim
� Contact michael.patrick.frank@gmail.comfor source code

� A future version will provide a more expressive quantum
programming language based on C++.

� We are also designing an FPGA-based hardware
implementation to boost simulator performance.
� This approach is made much more feasible by the extreme

memory-efficiency of our algorithm.

