Space-Efficient Simulation of Quantum Computers

Space-Efficient Simulation
Michael P. Frank

2525 Pottsdamer St., Rm. A341
Tallahassee, FL 32310, USA
+1 (850) 410-6455

mpf@eng.fsu.edu

Tallahassee, FL

Liviu Oniciuc
Dept. of Electrical & Computer Eng.
FAMU-FSU College of Engineering
2525 Pottsdamer St., Rm. A341
Tallahassee, FL 32310, USA
+1 (850) 410-6455

oniciuc@eng.fsu.edu

ABSTRACT

Traditional algorithms for simulating quantum computers on
classical ones require an exponentially large amount of ngemor
and so typically cannot simulate general quantum circuits with

M. P. Fehmk

Uwe H. Meyer-Baese
Dept. of Electrical & Computer Eng. Dept. of Electrical & Computer Eng.
FAMU-FSU College of Engineering FAMU-FSU College of Engineering
2525 Pottsdamer St., Rm. A354

+1 (850) 410-6220
umb@eng.fsu.edu

To appear in ACMSE 2009

of Quantum Computers

Irinel Chiorescu
National High Magnetic Field Lab
Florida State University
1800 East Paul Dirac Drive
Tallahassee, FL 32310, USA
+1 (850) 644-1726

ic@magnet.fsu.edu

32310, USA

Robert A. van Engelen
Dept. of Computer Science
Florida State University
160 James J. Love Bldg.
Tallahassee, FL 32306, USA
+1 (850) 645-0309

engelen@cs.fsu.edu

of computation developed in the 1980s and ‘90s for exploring the
theoretical capabilities of hypothetical “quantum computerst’' (no
yet implemented at useful scales) which would exhibit and exp-
loit exotic quantum-mechanical phenomena (such as superposi-

more than about 30 or so qubits on a typical PC-scale platformtion of states, interference effects and entanglement) iinftime

with only a few gigabytes of main memory. However, enor
memory-efficient simulations are possible, requiring onlyyjol

nomial or even linear space in the size of the quantum circuit

damental logical mode of operation. The study of quantum com-
puters is of significant intrinsic academic interest becairse,
principle, quantum computers would provide exponential speed-

being simulated. In this paper, we describe one such techniqueUPS On several important classes of problems, including ifagtor

which was recently implemented at FSU in the form of a C++
program called SEQQ@8®, which we releasing publicly. We also

of large numbers [2] (useful in cryptanalysis) and simulating the
quantum-mechanical behavior of physical systems Ej.,(

discuss the potential benefits of this simulation in quantum com- 8toms, molecules, and nanoscale devices).

puting research and education, and outline some possible direc-

tions for further progress.

Categories and Subject Descriptors
F.1.2 Modes of Computatior]: Probabilistic computatian

General Terms

Algorithms, Performance, Design, Experimentation, Languages,

Theory.

Keywords

Quantum computing, quantum circuits, quantum programming
languages, quantum computer simulators, research tools, educ
tion tools.

1. INTRODUCTION

Quantum computing [1] is a fundamentally new abstract model

Permission to make digital or hard copies of ajpart of this work for
personal or classroom use is granted without feeigeed that copies are
not made or distributed for profit or commercialadtage and that copies
bear this notice and the full citation on the fiyage. To copy otherwise, to
republish, to post on servers or to redistributiésts, requires prior specific
permission and/or a fee.

ACMSE '09 March 19-21, 2009, Clemson, SC, USA.

Copyright 2009 ACM 1-58113-000-0/00/0004 ...$5.30.

Final revised submission, v1.01

As submitted, 2/25/2009 (plus head&sgjo

Occasionally in the quantum computing literature (and often
in press reports), one sees claims that to simulate a quantum
computer on a classical one requires an amount of memory that
increases exponentially with the size of the quantum circuit be-
ing simulated. Although this is true if the quantum state vecto
is represented explicithe@. in an array), simulating the measur-
able statistical behavior of a quantum circuit does not dgtueal

quire such an explicit representation, and so much more space-
efficient simulations are possible.

A simple, general algorithmic transformation for tradirfig o
space for time which has long been known in computational com-
plexity theory (and which can be applied to any computation with
a polynomial-depth dataflow graph) implies that any polynomial-
time quantum algorithm requires only polynomial space to simu-

%ate classically, yielding the basic complexity theoreglation

that BQP (the class of problems solvable in probabilistig-pol
nomial time on a quantum computer) is a subset of PSPACE [4].
However, there are few (if any) publicly-available quantum-co
puter simulators leveraging this important insight.

To help remedy this situation, at Florida State Universiy
recently developed (in ANSI C++) a working prototype of a new
quantum computer simulator called SEQ€S(say “SEEK-
sim”), standing for_face-Hficient Quantum_®mputer_Simla-
tor. SEQCSim uses onlynear space in the size of the quantum
circuit being simulated. More precisely, fobit wide,t gate cir-
cuits, SEQC#’s space usage grows only@és +).

Page 1 of 6

Space-Efficient Simulation of Quantum Computers M. P. Fehak To appear in ACMSE 2009

If desired, this can be reduced further to ofls + k), manipulate class objects that act exactly like real-worldtgubi
wherek is the maximum number of nontrivial operations (for a (just more slowly). By looking “behind the scenes” at thmeusi
certain definition of “nontrivial”) in any qubit's predecessor lator code, scholars can see for themselves how, with dfelp
graph. For many of the important quantum algorithms that havesome computational effort, all of the supposedly-weird behavio
been described (such as Shor’s algorithm [R])tself is only of quantum systems can arise from a classical modeln give
O(s), and so in these cases, the overall space complexity eeducemodest-sized record of past local interactions.
to just O(s), i.e, only proportional to the space usage of the To preview the rest of this paper: Section 2 outlines and ex-
quantum computer being simulated. In other words, available plains the current simulator algorithm. Section 3 describes a
memory need not significantly limit the size of the quantum ci Simple example circuit. Section 4 briefly describes what we

cuits we can simulate. have in mind for our forthcoming C++ API and FPGA-based
Execution time is still a limiting factor (still exponeritian hardware accelerator. Section 5 concludes.

the worst case), but to the extent that additional memoryo®ay | isting 1. Outline of the algorithm used in the present SE-

readily available, it can be used in a straightforward wayobst QCSim guantum computer simulator. (Some details omitted.)

the performance of our simulator. In addition, our simuleor procedure SEQCSim:run():

be implemented on a single, very fast, FPGA chip, requiring no curState = input3ate; // Current basis state

slow off-chip accesses to external memory, and using special curAmp = 1; /I Current amplitude

purpose parallel hardware to further boost speed. (We are pres for PC =: 0 to #gates, // Current gate index

ently working on a custom architecture of this sort, whichxis
pected to improve the performance of our simulator by ~50x%.)

In addition to its advantages in terms of computational com-
plexity, our simulation technique also provides an interesting
pedagogical illustration of several important conceptual cispe
of quantum mechanics.

For example, David Bohm'’s interpretation [5] of quantum
mechanics shows that, contrary to widespread belief, weeain t
guantum systems as always possessing a definite clagsieal s
which tracks the (local) flow of probability mass through e
tem’s configuration space. This picture contrasts withrherk
ently indefinite state pictured in other interpretations. @Quus

(w.r.t. gatéfC] operator and its operands,)
for each neighbaibr; of curSate,
ifnbr; = curSate, amp[nbr;] :=cur Amp;
elsamp[nbr;] := calcAmpgbr);
amp[] := opMatrix * amp[]; // Matrix prod.
/I Calculate probabilities as normalized
/I squares of amplitudes.
prob[] := normSqramp[]);
/I Pick a successor of the current state.
i := pickFromDistprobl[]);
curSate := nbrj; curAmp := amp[nbri].

lation leverages Bohm's insight by following, in each runyanl /I Recursive amplitude-calculation procedure

single classical (computational basis) state, which idvedo function SEQCSim::calcAmp(Neighbabr):

consistently with the flow of probability mass implied by the curState = nbr;

quantum algorithm. This saves memory and computational effort if PC=0 return ¢urState = inputState) ? 1 : 0;

that might otherwise be spent considering final states thaldwo (w.r.t. gatePC-1] operator and its operands,)

end up with zero (or negligible) aggregate probability. for each predecessared; of curState,
Another reformulation of quantum mechanics illustrated in PC:=PC-1;

our simulator is that of Feynman [6], who showed that the ampli amp[pred] = calcAmppred;);

tudes of quantum wavefunctions can be calculated usjragha PC:=PC+1;

integral, basically a sum ranging over the possible trajectories amp[] := opMatrix * amp([];

through configuration space that may be taken by the system. returnamp[cur Sate];

The advantage of this approach is that trajectories can -be ex
plored sequentially, so that the entire wavefunction never needs2- SEQCS”\/l ALGORITHM
to be explicitly represented. This is another way of explaining The current version of our simulator (v0.8) uses a very sirapl
what allows our simulation to run in linear space. gorithm. Given input files specifying a quantum circuit and a
Finally, via the particular way in which it combines Bohm’s classical input state.¢. a basis state in the computational basis),
and Feynman’s pictures, SEQ@Sjives us a new way of con- SEQCSim simply applies the quantum gates (unitary operations)
ceptualizing the universe described by quantum mechanics, a®ne at a time, calculating at each step the amplitudes ana-prob
one in which each system has just a single classical thiate bilities of the possible gate outputs, and selecting an “dctual
evolves under the influence of not only the present localbvaria output state at random, according to the amplitude distribution,
les, but also a hidden memory of the structure of past ot using a standard PSRG (pseudo-random number generator,
actions (quantum logic gates) in the causally-connected history ~which should be reseeded on each run if multiple runs are need-
the system. This picture provides a compact hidden-variablesed). The only difficult part occurs when the quantum gate is
model of quantum mechanics which partially addresses old philo-nontrivial for the given input state, meaning that its unitary mat-
sophical objections to quantum mechanics raised by Einstein andix hasb>1 entries in the selected column. In this case, the out-
others [7]. (The hidden information is non-local in the sense put amplitudes depend not only on the amplitude of the actual in-

required to avoid Bell’s “no-hidden-variables” theorem [8].) put state, but also on thatlwf1 small Hamming-distance neigh-
We are currently developing a new version of our simulator bors of the input state, varying from it at bits that grerands of
illustrating this new conceptual picture even more explichily, the current gate.

providing a novel C++ API that lets programmers constrodt a

Final revised submission, v1.01 As submitted, 2/25/2009 (plus head&sgjo Page 2 of 6

Space-Efficient Simulation of Quantum Computers M. P. Fehak To appear in ACMSE 2009

b=101) | P10 0)

=1 by 12) /L |1
a=101) | & l0—[H]—s (eo——(oy t—HF—ID | 4= 110,)

B 3 |11 H @0 H}p) 0 =

N) J J
Y \a V7
a:=QFT(a) addb into a:=QFT a)
phase o&

— _

a:=(a+b)mod4

Figure 1. A simple example quantum circuit.Uses the quantum Fourier transform (QFT) and its inverse
QFT ' to add two 2-bit input integers in a temporary phase spacesegpagion. Here it is computing 1 + 1 = 2|

Calculating the neighbor-state amplitudes involves recurs- ingt —k = Q(t) trivial (e.g. classical) gates, and so the worst-case
ively calculating the amplitudes of the neighbors’ immediate pr time complexity of the recursion &(t-2°®). Constructing the-
decessors (the consistent input states tgta@ous gate opera- bit initial state takes timé@(s), but subsequent state manipula-
tion) in the same way. The recursion bottoms out at thieafta tions and comparisons can be done incrementally, and need only
the quantum circuit, where the state identical to the inputistate take amortized constant time, and so total worst-case domp-
assigned amplitude 1 and all other states are assigned amplitudiexity for a well-optimized implementation can be as lowd¢s
0. Listing 1 above gives brief pseudocode for the algorithm. +1.2°0),

The space complexity analysis is as follows. Given gaites We should note that, if the numblerof nontrivial gates is
small constant arity (# of qubita) specifying a neighbor state to larger than the number of qubisthis approach can in fact be
visit only requiresa = ©(1) bits; these “delta bit vectors” to near- slower than the conventional approach of simply tracking the full
by states (and a constant amount of other stack frame data) a quantum state vector of 2lements, which takes tim@(t-2).
all that actually needs to be pushed onto the stack at eacbf step The conventional approach can be thought of as a dynamic-pro-
the recursion; at full depth, the stack contents give a tomjec gramming performance optimization of our approach, caching all
through configuration space from time O to the current top-leve state amplitudes so as to avoid the work of dynamicalblcak
PC value; this has siz&(t), if t is the number of gates. (The re- ating their values whenever needed.
cursive procedure traverses these trajectories sucdgsanekef- However, in cases where the cost for @{&°% size memo-
fectively computes the path integral.) MeanwhderState has ry required for a traditional state-vector approach would be pr
size ©(9), if s is the width of the quantum circuit, and all other hibitive, our approach provides a space-time tradeoff that can
variables and arrays are only constant size (approximaijjag-lo permit the simulation of quantum circuits that would be tocelarg
ithmic factors as constant), and so total space us&ls ist). to simulate with conventional approaches. Furthermore, our si

The time complexity analysis is similarly easy. The run ulator can be easily modified to perform a conventional simul
time is dominated by the calcAmp() recursion for the last non tion (with a sparse state vector representation) untilithié of
trivial gate. The branching factbrat each node of the recursive the available memory is reached, and revert to the path-ahteg
call tree is given by the number of predecessor statdw afur- approach only for subsequent steps in the quantum circuit beyond
rent state, which is equal to the rank of the block (submatfix) o that point {.e., using the last explicitly representable state vector
the current gate operator corresponding to that state. Wbha as the initial state for the remaining part of the circuit) this

= 1 in the case of “trivial” gates, defined as gates whostry way, the simulator can take full advantage of the availagien-
matrices can be diagonalized in the computational basis, such asry to improve its performance on nontrivial circuits, whilot
classical gates and phase gates, and we thavg in the worst limiting the size of such circuits that it can handle.

case, for general (nontrivial) unitary gates of aaityMany gates

have intermediate branching factors, such as the “controlied-co 3, EXAMPLE QUANTUM CIRCUIT

trolled-.... rotation” gate @J, for arbitraryn and 1-bit unitary, To illustrate the operation of our algorithm, Figure 1 gigesim-
which hasb=1 in 2"*~2 of the input cases, a2 in only the ple example of a quantum circuit, using the standard graphical
remaining 2 input cases, when albf the control bits are simul- npotation of quantum logic networks [1]. The strings)ibrack-
taneously 1 (antJ is not diagonal). ets label classical basis states, and the icons representimua

For simplicity, letb = ©(1) be the maximum branching fac- gates (unitary operationsH is a 1-bit gate called the Hadamard
tor (maximum block rank) over all gates in the quantum circuit, transform; in terms of Pauli spin operators, it can betewrigs
and letk be the number of nontrivial gates in the circuit; then the (g, +5,)-2Y2=[1, 1; 1, -1]{/2, a 1-line notation for the matrix
number of leaf nodes of the recursiorO@") = O(2°%). In the
worst case, the deepest part of the recursion may invealvers-

Final revised submission, v1.01 As submitted, 2/25/2009 (plus head&sgjo Page 3 of 6

Space-Efficient Simulation of Quantum Computers M. P. Fehak To appear in ACMSE 2009
b O 1 2 3 4 5 6 7 8 9
0000 | O o}—{oNo\—{o\—{o}—{o\ o o { 0]
0001 [© 0 o 0 —{ oo o] 0o —{ o JX{o0]
0010 | © o—oxoﬂo\ﬂo\ﬂo\ oo 0
0011 | © 0 — 0 0O o} ofJ—o] oo 0
0100 | © ol— o 5 — 5 —] 5] .5}>d.71|—| 71 0 |
0101 [z 71 71 -5—-5— 5} 5 o o 0
0110 [o 0 —1.0 5i 5i Si -5 -.71 -.71 1
0111 | 0 71 71 -5 —-5— .5 —-5 0 —1 0 0
1000 [0 OfoxtﬂﬂtmﬂOHO\ o (o} o]
1001 [© o o 0o o FqoFHo] o o { 0]
1010 [0 oHo%oHoHoHo\ 0o —{ o [X{o]
1011 [© 0 o] 0o FqoF-o] o o [0]
1100 | © oHoMO\ﬂoHoHo\ 0o —{o} Lo0]
1101 © o o oo +{oFHo o o [0]
1110 [© o\%oNO\ﬂoHoHo\X\oHo [0]
1111 o o o oo FHoFqo}F Yoo [0]

g € & % ¥ T g 2 B
r & T £ £ £ I & I
s s s s T

S-

Figure 2. State graph of figure 1 circuit. Rows correspond

states show paths along which amplitude can flesva aesult of each gate. (Note that the triyiaates produce no branchin
SEQCSim follows a single randomly-selected trajggtthe bold path is one possibility. To calculatensition probabilities for
nontrivial gates, the amplitudes of neighbor states computed using a path integral. The statadezhred are traversed by th
spacefficient recursive ciculation of the neighbor state at step 8, needed toulzk the output probabilities for the leH

to basis states; columns aréuthstate vectors. Lines between

H - (1)

} .

i

Meanwhile,pq is the “controlled-phase” gate for a relative-phase

rotation (between }JGand |} states) of 1/20f a half-circle; this is
a trivial gate that can be written algebraically using +2mpera-
tors of identityi = [1, O; 0 1], numbemfi=4'4 = [0, O; 0, 1]
(with 4= [0, 1; 0, 0] the annihilation operatad' its adjoint),

number complementi(= 43" = | -), and tensor produgt ,

¢, =01 +A0exp(A2?),)
or more explicitly in matrix form, as follows:
100 0
4 = 010 0 ®)
“70 0 1 0
0 0 0 exp@®2?)

The circuit shown uses an algorithm by Draper @add a pair
of 2-bit numbers, b in-place (modulo 4) in tha register with-
out using any carry bits, by first transformiago a phase repres-
entation using a 2-bit quantum version of the ditecrFourier
transform (QFT), adding into the relative phases afusing the
¢q gates in the middle of the circuit, and transfargnihe result
in a back to the usual binary encoding using the irevefsthe
QFT circuit. H =His its own inverse.)

Figure 2 illustrates the operation of SEQCSim fus tex-
ample. The full state vectors (columns of figujea2e never

Final revised submission, v1.01

As submitted, 2/25/2009 (plus head&sgjo

generated. Instead, a random trajectory (say tieelioed in

bold) is traversed, consistently with state proligds. To

capture interference effects, at each step whergordrivial

operation takes place, appropriate neighbor staegxamined,
and their amplitudes calculated recursively. Ttees visited
during this calculation for state 0110’s singleghdior at step 8
are shaded red.

Figure 3 below shows the actual input files (trindnseme-
what for brevity) used to code the above exampl8EQCSIm'’s
current file format, and the actual output producadently by
the simulator. The current input and output fosreate just ad-
hoc temporary solutions, designed primarily for miernal use
in testing & debugging of the simulator.

4. FUTURE WORK

The present simulator is a bit cumbersome to useghe quan-
tum circuit to be simulated must be specified expyi in the

low-level text input format of figure 3. Such deptions can be-
come rather tedious. For ease of constructingtacgcuits, we
would prefer a quantum programming language foremalo-

stractly describing complex quantum algorithmse lik a normal
programming language. A number of quantum prograngman-

guages have been described previously (see [10& furvey),
but few of them are both easy to use and readdgssible.

One particularly simple approach we are exploringgired
by [11]) is to let the quantum programming languagea con-
ventional OOP (object-oriented programming) languagch as
C++, with a class library API that emulates the &nétr of real
qubits, invoking the simulator “behind the scenes'it were.

The implementation of this approach leads to sorterést-

Page 4 of 6

Space-Efficient Simulation of Quantum Computers

PVIFranket al.

To appear in ACMSE 2009

qconfig.txt format version 1 | 9inPU
bits: 4 a = 1
nanmed bitarray: a[2] @O =1

t.txt format version 1

qoperators.txt format version 1

nanmed bitarray: b[2] @2 |

defines the quantum registeginput.txt gives their initial

syntax is verbose, with limited flexibility (keywas can be
abbreviated). The next version of SEQCSim willet@thput

allows the programmer to use more abstraction.

Figure 3. Actual input files used (sans comments) and output
produced (bottom) for the example circuit of fig. dconfig.txt

values,qoperators.txt defines arbitrary named unitary gates (of
any width) andjopseq.txtspecifies the gate sequence. Input

programs in a higher-level quantum programming lagg that

operators: 4
operator #: O

name: H
size: 1 bits
mat ri x:

(0.7071067812 + i *0) (0. 7071067812 + i *0)
(0.7071067812 + i *0)(-0.7071067812 + i *0)

gopseq. txt format version 1
operations: 9
operation #0:
operation #1:
operation #2:
operation #3:
operation #4:
operation #5:
operation #6:
operation #7:
operation #8:

apply unary operator Hto bits a[1]
apply binary operator cPiOver2 to bits a[1], a[0]
apply unary operator Hto bits a[0]

apply binary operator cZ to bits b[1], a[1]

apply binary operator cZ to bits b[0], a[O0]

apply binary operator cPiOver2 to bits b[0], a[1]
apply unary operator Hto bits a[0]

apply binary operator inv_cPiOver2 to bits a[1], a[0]
apply unary operator Hto bits a[1]

coment: Wsh we could just say sqrt(2)/2.
operator #: 1

name: cZ

size: 2 bits

mat ri x:

(1 +i*0) (0 +i*0) (O +i*0) (O + i*0)
(0O +i*0) (1 +i*0) (O +i*0) (0O + i*0)
(0 +i*0) (0O +i*0) (1 +i*0) (0 + i*0)
(0 +i*0) (0O +i*0) (0O +i*0) (-1 +i*0)

(two additional operators elided for brevity)

Output:
(C++ consol e version)
By M chael P. Frank, Uwe Meyer-Baese,

Al'l rights reserved.

SEQCSim :run(): Initial
SEQCSi m : Bohm step_forwards(): (tPC=0)

SEQCSi m : Bohm step_forwards(): (tPC=1)

(5 intermediate steps elided for brevity) . . .
SEQCSi m : Bohm step_forwards(): (tPC=7)
SEQCSi m : Bohm step_forwards(): (tPC=8)

SEQCSi m : done():
We are done!

Wel come to SEQCSIM the Space-Efficient Quantum Conputer SIMil ator.
I rinel
Copyright (C) 2008 Florida State University Board of Trustees.

state is 3->0101<-0 (4 bits) ==> (1 + i*0).
The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + i*0).

The new current state is 3->0111<-0 (4 bits) ==> (0 + i*0.707107).

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).

The new current state is 3->0110<-0 (4 bits) ==> (1 + i*0).
The PC value 9 is >= the nunber of operations 9.

Chi orescu, and Liviu Oniciuc.

ing considerations. The quantum circuit can bestocted dyn-
amically and incrementally by the API as the pragreer creates
qubit objects and applies quantum operations tmthd&Rather
than treating quantum states as monolithic nonk-loiogects, the
simulator can naturally confine its attention te tjubits current-
ly being manipulated, and the causally-connecteglyiof gates
in their history. This approach facilitates optzations that per-
mit us to ignore gates that are not causally caede® current
qubits, and to prune recursive trajectories as smrhey are
found inconsistent with earlier partial measuremenmtwith the
initial state (rather than waiting until no moretgg@can be un-
done). A future paper will fully describe the nalgorithm.

Later, the simulation environment can be extendedbtev-
en more aggressive optimizations, such as applgiggbraic
transformations to dynamically restructure the mashputation
graph to a form permitting faster simulation. Tajgproach may
be thought of as an optimizing JIT (just-in-timenwilation of
the quantum algorithm.

Final revised submission, v1.01

As submitted, 2069 (plus headers/footers)

Finally, once the design of the simulator algorititeelf has
stabilized, we also intend to implement, in an FR@#tform, a
special-purpose hardware architecture to signifigaspeed up
the simulation by a constant factor of ~50-100xhisTwill be
done by using custom high-bandwidth memory strestuand
parallel arithmetic datapaths to reimplement irdiare the ker-
nel of the time-consuming recursive part of theudation algori-
thm. The higher-level control can remain in sofsyaunning on
an embedded RISC soft-core (such as Altera’s NIOSilx's
MicroBlaze), augmented with new special-purposérirsions
to invoke the custom hardware. Further, numeroasdhes of
the recursive path-integral computation (or theleye!l stochas-
tic simulation) can be performed in parallel oniagke large
FPGA chip, boosting performance even further.

5. CONCLUSION

We have implemented and verified a working quantemputer
simulator that requires only an amount of memoat tirows in

Page 5 of 6

Space-Efficient Simulation of Quantum Computers PMFranket al. To appear in ACMSE 2009

linear proportion to the size of the quantum cirtxg@ing simulat-
ed. The simulator still requires worst-case exptiaétime, but
its performance can be improved in ways we areybogs

The structure of our simulation algorithm (and fiure
version in development) suggests an interesting orwlogical
interpretation of quantum mechanics, which may helglispel
the philosophical unease sometimes associated tretlitional
interpretations — since the simulation requires‘magic,” nor
exponentially large numbers of parallel universesher, just
qubits with classical states that also carry witbnt a link into
the graph of interactions in their causally-conaddtistory.

SEQCSIim (especially the future object-library vengiis
thus potentially useful as a tool for teaching $&f®about quan-
tum computing and the broad computational pictdrguantum
mechanics that it offers. One can construct quarducuits that
model “weird” quantum phenomena such as non-logtdrele-
ment, “teleportation,”etc., and understand how these circuits
work in terms of an underlying simulation that igieely classi-
cal and locally generated (if rather time-consurhing

If we can accept a mental picture of the univessavarking
analogously to our simulatarg., doing a complex graph compu-
tation behind the scenes each time it updates ticlpss state,
then we need not find nature’s quantum-mechaniebhbior to
be particularly mysterious or paradoxical any lang8o perhaps
Feynman’s famous lament that “no one understandsitgm
mechanics” [12] can finally be put to rest.

6. ACKNOWLEDGMENTS

This work was graciously supported by a plannirangfrom the
Council on Research and Creativity of the OfficeRefsearch at
Florida State University.

7. REFERENCES
[1] Nielsen, M. and Chuang, I. 2000. Quantum Compuartati
and Quantum Information. Cambridge University Press

[2] Shor, P. W. 1994. Algorithms for quantum compuiati
discrete logarithms and factoring. In Proceedfghe
35th Annual Symposium on Foundations of Computér Sc
ence, (November 20 - 22, 1994). SFCS. IEEE Computer

[5]

[6]
[7]

[8]
[9]

Society, Washington, DC, 124-134. DOI=
http://dx.doi.org/10.1109/SFCS.1994.365700

Lloyd, S. 1996. Universal Quantum Simulators. eSce
273, 5278 (23 Aug. 1996), 1073-1078. DOI=
10.1126/science.273.5278.1073

Bernstein, E. and Vazirani, U. 1993. Quantum comiple
theory. In Proceedings of the Twenty-Fifth Annu&M
Symposium on theory of Computing (San Diego, Catif,
United States, May 16 - 18, 1993). STOC '93. ACMWN
York, NY, 11-20. DOI=
http://doi.acm.org/10.1145/167088.167097

Bohm, D. 1952. A Suggested Interpretation of thaium
Theory in Terms of “Hidden” Variables. (I & II.) Hysical
Review85, 2 (Jan. 1952), 166-193. DOI=
http://link.aps.org/doi/10.1103/PhysRev.85.166

Brown, L. M., Ed. 2005. Feynman'’s Thesis: A NewAp
proach to Quantum Theory. World Scientific.

Einstein, A., Podolsky, B., Rosen, N. 1935. Cam@um-
Mechanical Description of Reality Be Considered €om
plete? Physical Revied7, 10 (May 1935), 777-780. DOI=
http://link.aps.org/doi/10.1103/PhysRev.47.777

Bell, J. S. 1964. On the Einstein Podolsky Rosamadox.
Physics 1, 3, 195-200, 1964.

Draper, T. G. 2000. Addition on a Quantum Computer
Preprint, arXiv:quant-ph/0008033vL1.

[10] Sofge, D. A. 2008. A Survey of Quantum Programming

Languages: History, Methods, and Tools. In Prdicegs of
the Secondnternational Conference on Quantum, Nano and
Micro Technologies, IEEE Computer Society, 66-TI0I=
http://doi.ieeecomputersociety.org/10.1109/ICONMEd5

[11] Bettelli, S., Serafini, L. and Calarco, T. 2003wEod an

architecture for quantum programming. Europearsiehly
Journal D 25, 2 (Aug. 2003), 181-200. DOI=
10.1140/epjd/e2003-00242-2.

[12] Feynman, R. P. 1967. The Character of Physical LIshil

Press.

Final revised submission, v1.01 As submitted, 2069 (plus headers/footers) Page 6 of 6

