Notes for Space-Efficient Quantum Computer Simulato r
Michael P. Frank (mpf@eng.fsu.edu)

Started Thursday, December 20, 2007
Version 2.1.
Last modified Sunday, April 20, 2008

1. TeXt TOr PrOPOSALoieeiiiiiiiie e e ettt et e e e e et e e e eanaeeees 1
2. OVETAll SIFALEOY ..eevenieiiiie ettt e et e e e e et e eaanns 3
3. Testhbed ENVIFONMENTiiiiiiiiii sttt e e e et e e e e e eaanas 3
A INPUE FIIES ...ttt e e e e e e e e et e e e eaa s 4
5. OULPUL FIES ...ttt ettt e e e et e e e et e e e e e e et e e e eannaeeees 5
6. COre Data SIIUCLUINESeiiei et e e ettt ettt e e e et e e e e e e e eanns 5
7. Outline of Core AIQOItNMccue e 6
7.1. BOhMIAN VANATIONccuuiiiiiiii it et e ettt e e e e e eea e eees 7
7.2. Pruning Of the TrajeCtory TrEE........ . i ueuummmeeeteeeeeie e e et e et e e e e eaaaeees 8
8. FHlE FOIMALS ... e et e et e et e e et e et e eaan s 8
goperators.txt (Quantum Logic Operator DefINItIONS) wee v eevvvneeeeiinieiiiiieeiiiiieeeenn. 8
gconfig.txt (Quantum Computer Configuration).......... ... eeeeeeeeeeinneeerinneeeennnnn 9
gopseq.txt — Quantum Operation SEQUENCEicccammeerneeeeiiaeeeiiaeeeainaaeeees 10
INPUL.tXt — INPUL CONTIGUIALIONccuiiiiiii e 11

1. Text for Proposal

Simulating quantum computers on ordinary classicataligiardware is useful for many
purposes, particularly for testing and debugging of new quaalgonithms.

Unfortunately, nearly all of the published systems ag@rahms for quantum-
computer simulation suffer from a severe limitatidrtiee size (in qubits) of quantum
computers they can simulate [give citations], due to expiad growth (as a function of
the numbern of qubits) in the memory required for most of the comipased
simulation techniques. This is due to the fact that icawdit techniques work by storing
the entire quantum state vector (wavefunction) ahqamnt in time, and stepping it
forwards in time via a direct time-domain emulatiortred quantum algorithm.

The reason for the large space requirement in this agpisahat the state vector
itself is exponentially large in the numbermf qubits, requiring storage of Zomplex
numbers. In many cases it can be compressed subégabtid in a worst-case analysis
of useful quantum algorithms, even the compressed fothedadtate vector in the known
useful encodings is exponentially large.

However, an alternative exists to this approach. rRany purposes, including
validation of quantum algorithms through direct testingsample inputs, the entire state
vector is never really required, since in a real quantompater, one never sees it
anyway—all that one sees is a random statistical sagnpf the measurement results on
the final quantum state. If one can generate outputh thie same probability
distribution as the real quantum computer would, thasuicient for purposes of

emulating the real quantum computer’s observable input-otgfattonship. This can be
done without ever storing the state vector, using antgah inspired by Feynman’s path-
integral formulation of quantum mechanics [1,2], in whioche obtains final-state
amplitudes by summing over possible sequences of conciselgseepable (e.g.,
computational basis) configurations proceeding from th@&lirstate to a candidate final
state. Expressing the difference between two successniigu@tions in such a
sequence requires only a few bits of storage, so as lotigg apiantum algorithm being
simulated is a time-efficient one, requiring< 2" steps, the ordermemory required to
temporarily store the trajectory currently being exgtbcan be far smaller than what
would be required to store even a single general staterve

It has been known that this general class of simulaichniques was possible
since at least 1993, when the fact of its existence was[@§to first prove the important
resultBQP O PSPACE which is now a well-known fact of quantum complexigdry
[4]. However, this approach has rarely been implendceimeractice, due most likely to
the fact that the traditional algorithm is somewhatiezato understand and explain, and
also because the path-integral approach appears more iargffichen it is not well
optimized. But we have realized [5] that the path-irdegpproach turns out to be
actually fairly simple to implement as well, evenemha number of optimizations are
applied to maximize its performance. Moreover, dueéstanodest memory requirement,
it can easily be implemented in relatively memomgiled environments such as FPGA-
based SoC (System-on-Chip) designs, which are alsoswigdd to high performance,
since execution can take place directly in (reconfigurataejvirare without suffering the
code execution overhead and off-chip memory latencig¢satieainherent to a traditional
microprocessor-based system.

The algorithm can be briefly summarized as followsartthg from an initial state

| x), we compute a random real marker vataan [0,1), initialize the accumulated
probability of final states tgp= 0, and then iterate through all possible final-state

configurationsy. For eacly, we compute the quantum probability-amplitede (x |y)
for the system to pass from the initial state to firatl state, based recursively on the
amplitudesay = (x| y") for the possible predecessgf®fy, and we accumulate they?|

of they's into p until p > m. The final configuratiory at this time is our randomly-
sampled final output state. The run time for this pagicalgorithm is of order™, but
with further optimization, it can be reduced to order 2

In this proposal, we aim to implement an optimized veargibthis algorithm in
VHDL, test it on an FPGA development board, and dematesthat it can replicate the
correct statistical distribution of outputs for onemore standard quantum algorithms
being simulated.

[1] Laurie M. Brown ed.Feynman's Thesis: A New Approach to Quantum Thedfyrld Scientific,
2005. (Original copyright date: 1942.)

[2] R. P. Feynman, "Space-time approach to non-reféitvjjuantum mechanicsRev. Mod. Phy0
(1948), pp. 367-387.

[3] Bernstein, E. and U. Vazirani, Quantum complexity thielm Proceedings of the 25th ACM
Symposium on the Theory of Computation. New York: ACMsBr@p. 11-20, (1993).

[4] Michael A. Nielsen and Isaac L. Chuafgantum Computation and Quantum InformatiGambridge
University Press, 2000, pp. 201-202.

[5] Michael Frank and DoRon Motter, "Quantum Computerhitectures for Physical Simulations,"
invited talk presented by Frank at tQeantum Computation for Physical Modelwgrkshop sponsored
by the Air Force research labs, held at Martha's Yyands Wed., May 8, 2002. Slides in PowerPoint at
http://www.cise.ufl.edu/research/revcomp/talks/QCPM -talk.ppt

2. Overall Strategy

We will first implement and test the simulator inrCai conventional OS environment,
then port the code over to VHDL, possibly via a Matatmulink block from which we
can automatically generate VHDL code from the MDE.filThis VHDL code can then
be tested, first in a simulation-based testbed, andithean embedded development-
board based testbed.

3. Testbed Environment
Our overall picture of the testbed scenario is asvidlo

First, a standard quantum algorithm and problem size aremchssmple inputs are
chosen, and the quantum algorithm is precompiled (possitityhelp from some

existing quantum computing toolkits / programming language envinotsnieat are out
there) to a fairly low-level form, e.g., ANDX/ORX/NQXTplus H-gates and other
required 2-bit gates. For measurements, we can haveierpasurement operations on
specific qubits at different times, or else implicjilgt measure the entire state at some
predetermined final time point).

Next, an output modality is selected: Options for th@dude: (1) outputting a sequence
of randomly-selected trajectories (generated in Bohmfdikhion using a tracer
configuration), each of a predetermined length, (2) outgegaence of randomly-
selected final output states, (3) like 2, but binning theutstand collecting statistics on
them which are periodically output, (4) similar again, thig time calculating all of the
exact probabilities for all possible configurations foubset of qubits which are to be
measured.

A particularly cool option: For any selected 20-qubit palog, the accumulated
probabilities for that subspace can be projected down to a 1024xpixel color display,
which can be directly output to a monitor using a SVGA driv&/e can watch the
algorithm walk through the subspace calculating all theatdities. When the frame is
finished, we can step the display forwards in time by f, sted then watch the
probability masses move around. (This gets exponentlailyes as the simulation
progresses.)

Another, super-cool animated output option: Render oW @& display a representation
of the entire quantum configuration trajectory thatus-ently being explored. For
example, one could display the (classical) qubit values ¢ubits (up to the number of
scan lines on the display) in a single vertical colwhB&W pixels. A different time-

step of the algorithm can be displayed in each columwsadhe screen (up to the
horizontal resolution of the display). Below eactuen of pixels could be a pixel-wide
vertical line of color, intended as an annotation gitimgtotal complex amplitude
accumulated so far for that particular configuratiorhat point in time. At the top of the
screen can be a numerical scale showing which isOste@, 20, etc. of the quantum
program being executed. To support longer-running quantum algsrithendisplay can
even be scrolled horizontally if necessary to follbm progress of the “cursor,” the
current point being explored along the current trajgctor

Third, the testbed is configured, to have it input the dégjtantum algorithm, and
produce the desired output modality.

Fourth, the testbed is run, for a predetermined perioidhef t

Fifth, if statistics were generated, in a data file,aan post-process this file to compare it
to theoretically-derived predictions (or output from otheantum simulators) to check
for correctness and accuracy.

4. Input Files

These are described as they would be set up for a C-langraigéyping environment.
For the VHDL implementation, the same basic infororatvould likely be precompiled
into binary-format data structures residing within ROM bfotkthe design.

goperators.txt — This text file, in a predefined file format, definesadlthe quantum
“gates” (which really should be called “operators”) toused in the given quantum
algorithms. These can include any classical revergdtles up to say 3 qubits wide (out
of the 8!=40,320 possible such gates), together with any gezeeraiitary gate up to
say 2 qubits wide (requires specifying a matrix of 16 complarbers, or 4 numbers for
the 1-qubit gates). Other special operators, such aspségdaration and state-
measurement operators, may also implicitly exist éendystem and do not need to be
defined here. Other interesting possibilities include ‘imagndow” operators, that are
really just flags telling the simulator to output inforroatabout the probability
distribution over a particular bit or set of bits ajien point in time, but without actually
simulating a collapsing measurement at that point.

gconfig.txt — This text file specifies the configuration of the quamttomputer to be
simulated. This includes specifying its size, in termigsabtal number of qubits. Labels
for the qubits can also be defined here, if desired. (@tbe qubits can just be
referenced by their numerical index, like a single flaaddressed memory.)

gopseq.txt — This text file, in a predetermined file format, defines ¢quantum circuit to
be simulated, i.e., the sequence of quantum gate oper&bidie applied. Each operation
in the sequence applies an operator to a selected gebitd at a particular stage (time
point) in the simulated sequence. This file should usl&lgenerated automatically by
some sort of compiler starting from a higher-level quanprogramming language.
However, for simple circuits, it can just be typedynhand.

outmod.txt — This text file, in a predefined file format, configurke simulator’s output
modality. This may include specifying which output files (andfisplays) to generate,
as well as specifying things such as how many sampledtoags or measurement
results to produce.

prefsitxt — This text file, in a predetermined file format, configtkings like: Whether
to use forward-branching or backward-branching for enumerataertories for
accumulating the propagators. Forward-branching means weldpth-first forward
search of all trajectories starting from the knownahgtate. Backward-branching
means a depth-first backwards search of all trajectendsg up at a given final state.
Another thing to specify here would be things like the isrec for representing
amplitudes; fixed-point vs. floating-point, and how many pésreal value?

input.txt — The input state of the quantum algorithm. A singles@tasconfiguration of
all n bits.

Additional config files may be needed to specify a classifgorithm to be wrapped
around the quantum algorithm (as is done in Shor’s algoriitmexample).

5. Output Files

These are described as they would be set up for a C-langraigéyping environment.
For the VHDL implementation, the same informationwdolikely be output into binary-
format data structures residing within RAM blocks withia tlesign, or perhaps
streamed out along some serial I/0 interface.

Depending on the output modality selected, not all outlast fhay be produced in a
given run.

windows.txt — For each magic window in the program, this file shtdvescomplete
probability distribution over its possible configuratio@3real numbers for asbit
window).

traces.txt — This file contains a sequence of Bohmish traces, ramdgactories
generated consistently with the flow of probability syagithout imposing collapsing
measurements in the middle of the system.

samples.txt — Contains a set of random samples for all the measnt operators in the
circuit.

6. Core Data Structures

The core internal engine of the simulation algoriteuires the following data
structures, in addition to others specifying miscellaneonggraation information.
Parameters here anenumber of qubits;, number of time-steps (ops),; number of
distinct gate types.

n bit ROM specifying the initial state

(Ig t)-bit writable register specifying the current cursor posiin time

n bit RAM specifying the current (cursor) state

For generating Bohmish traces, we also need anothgfl{igwide counter

register specifying the location of the current endpaitinne, and another-bit

RAM specifying the configuration at the current endpoint, a@eword fractional

register (with whatever precision we’re using for atages) for specifying the

current amplitude.

5. [(lg g) + 3(lgn)]xt bit ROM specifies the sequence of operations to beeappli
(the quantum circuit, i.e. the dynamic execution tradd@fjuantum algorithm),

6. 2t-bit writable array specifying the branching decision madedéch 2-bit
general-unitary operation applied at each point in tilmegathe present
trajectory. For the VGA “trajectory strip” displaig,might be possible to
generate the configurations themselves dynamically dunmgpan of a dot-
clock, in which case an explicit sequence of configunatitzeed not be stored.

7. 2t-word writable array for the amplitudes accumulatedasdadr the propagators
to the configurations in the present trajectory. The vpoegision affects the size
of this.

8. 1-word fractional register (with whatever precision weistng for probabilities)
specifying a random coin value in [0,1) for purposes of sagcandom full
trajectories for purposes of output or binning of stasistisfter each sampling
run is completed, this should be recalculated to a aedam value.

9. Additional RAMs if statistics are being binned here. nfcautput file or stream is

generated, the binning can also be done offline.

PwpnpE

If we want to use fixed-point arithmetic for amplitude/pabliity values, one wrinkle to
all this is that some quantum algorithms may requit I&Xs of precision in the
probabilities, if the probability mass gets spread outransay 2intermediate states at
some point midway through the algorithm. This implies iigem 7 above actually needs
to be ordef? bits big, in which case it by far dominates the spacein@ments of the
algorithm. However, this problem can be avoided by simpiyg floating-point instead,
so this might be advisable.

7. Outline of Core Algorithm

Here is the outline of the core simulation algoritimea simple case with a prespecified
number of steps, no Bohm-trace, and no measurementeipstgaration operators or
magic windows being done in the middle of the quantum dlgorio be simulated. Also
no binning — we're just sampling random outputs. This cagldi®rated upon as needed
to add more features.

1. Given: Initial state configuratiox

2. Generate a random “marker” valoein [0,1) — this will be used in a roulette-
wheel algorithm for picking a random final state with tleerect distribution;

3. Initialize accumulated total probability mgss= 0. This is the current “position”
of the roulette wheel,

4. Enumerate all possible final-state configuratignand for each:

a. Compute its amplituda = <x|y> (the propagator from the initial state to
the final state), by the following recursive procedure:
I. (Base case:) =0, thena=1 if x=y, anda=0 otherwise, and go to
step 4b; else do the following:

il. Generate all o§'s possible immediate predecessors. There is
exactly 1 of these if the immediately preceding op Wasstcal
(specified by a 0-1 matrix), and it is computed by applyingdpat
toy in reverse; there are up to 2 (or 4) of these if thegahag op
is a 1-bit (or 2-bit) general unitary op, in which casedlas
generated by enumerating the possible values of the hd-set
which the op is applied;

iii. For each possible predecessor configuration having a nonzero
matrix element in the operation currently being applied
recursively compute its amplitude by the same procedure,

1. and add the predecessor’'s amplitude (multiplied by the
appropriate matrix element, in the case of generalmynita
ops) intoa;

b. Add R* into p;
c. If p>m, outputy as the randomly-sampled final state.

The kernel here is the recursion in step 4a, which ofseocain be implemented
iteratively by a process that steps backwards and forwlaroisgh the quantum circuit
(and the arrays) as necessary.

The implementation of this algorithm should be reditgightforward.

7.1. Bohmian variation

The worst-case run time of the algorithm described amo@enfortunately®(2™). This

is because there are @ossible final states, and then for each one we @eairee of
predecessor states with up tdeaf nodes (given a branching factor of at most 2 dt eac
node, if we restrict ourselves to 1-bit general unitarggand cNOT).

However, it turns out that there is actually a sinwégy to reduce the run time to just
O(2"), although it takes longer to describe. This is thehtBian" method referred to
previously. Basically, it is a kind of Monte Carlo apgeh, inspired by Bohm's
interpretation of quantum theory. In Bohm's model,system is always in a unique
"actual" basis state at any given time, but this stadéves nondeterministically,
following the flow of probability mass through configucatistate, as specified by the
evolution of the wavefunction.

The way this works is as follows. Suppose we kr¢)y the "actual” basis state at
current timet. Initially, for t=0 this is just(0)=x. Andsuppose we also have the current
amplitude (propagatog(t) = <x(0) | x(t)>.

Then to step this information forward in time, and corap(it+1) anda(t+1), we do the

following. For a classical reversible operator, wé apply it tox and leavea

unchanged. For a general 1-bit unitary operdtdhere are two possible next states, call
thems ands, wheres is identical tox(t) ands (call it the "neighbor" state) differs from it
by 1 bit (the bit to whiclJ is being applied).

What we do next is use the recursive algorithm to computex(0) |s'(t)>, the
amplitude to go all the way from the initial sta{®) to theneighborstates' at timet.
Given botha anda’, we can now step both these amplitudes forward in byne step, by
just applying the 2x® matrix to the column vector efanda’ (appropriately ordered).
Knowing these, we now generate a normalized probabiltyiloution (, p') over the
two statess ands' at timet+1: letz = [af* + [a[; thenp = ja%/z, andp' = [a|z. Then we
nondeterministically set(t+1) tos with probabilityp, and tos' with probabilityp’. We
also select eithea or @' as the new value afcorrespondingly.

A simple inductive proof (which we can provide in repodsinonstrates that this
algorithm arrives at any given final statex(t) at any given timeé with the correct

overall probability. (Proof outline: Basically, fomagiven 1-bit unitary gate, for any
given configuration of the bits not involved in that gatée probability of arriving at
each of the two possible input configurations is corred tih@a computed amplitudes of
the two possible input configurations are correct, thercdmputed output amplitudes
will be correct, and the probability of the simulatemiving at each output configuration
(at a given time) is correct.

As for its time complexity, the run time to get to stépO(2'), but the total time for all
steps is also onl@ (2, due to the fact that the sum fdrom 0 tot-1 of 2 is (2)-1. This
algorithm also has the advantage that it generates nohginal state, but an entire
configuration trajectory. This can be useful for understanthe flow of the algorithm.

7.2. Pruning of the Trajectory Tree

Another optimization that will help a little bit (ime recursive calculations of amplitude
values) is if we prune the backwards search tree at nbaesannot possibly receive any
amplitude from the given initial stake This can be done by comparing the Hamming
distance betweexand the current node. We can prune if the Hamming distian
greater than the current node's time intlexthe gate sequence. This is because each
gate can at most modify 1 bit (if we restrict ourseble$-bit unitary gates and 2-bit
cNOT), so if the Hamming distance is larger, there @owit be enough gates to get to
the current node from the initial state.

8. File Formats

goperators.txt (Quantum Logic Operator Definitions)
This is a plain 7-bit US ASCII text file, with linesrteinated by LF or CR/LF.

Line 1: Magic cookie stringgoperators.txt format version 1 ”

Line 2: The string 6perators: g’, whereg is a scanf()-readable non-negative integer
that fits in an unsigned short (16 bits), giving the nunabelistinct quantum
operator types to be used in the quantum algorithm.

Line 3: The string 6perator #: i”, wherei is formatted likeg and is the index
0 <i < gof the gate to be specified.

Line 4: The stringfiame: s’, wheresis a string terminated by end-of-line.

Line 5: The stringsSize: b bits”, whereb is 1, 2, or 3.

Line 6: The string rhatrix: "

Lines 6 through (5+%:

Each is a sequence df&rings formatted like:(‘R +i* 1) ”, whereR andl
are scanf()-readable double-precision floating-point values.

and similarly for the remaining operators in the sequefide operators need not be
specified in numerical order, but each of ¢heperators (indexed 0 through1) must be
specified exactly once. The rows and columns of theixrexre implicitly indexed using
big-endian bit ordering; that is, for a three-bit oparatwe ordering i$,b1bo; thus, the
second row and second column, counting from the uppecdafer of the matrix,
correspond to the bit-value assignmestO, b1=0, bp=1. Throughout the file, any
optional extra lines starting witltbmment: ” are ignored.

Example goperators.txt

goperators.txt format version 1

operators: 2

COMMENL; ~mmmmmmmmmmmmmmmmmmmcmmmcmmecemceeeee e
operator #: 0

name: X

size: 1 bits

comment: In-place unary NOT, or Pauli x-axis spin o perator.
matrix:

(0 +i*0) (1 +i*0)

(1 +i*0) (0 +i*0)

COMMENL; ~mmmmmmmmmmmmmmmmmmmcmmmcmmecemeeceee e
operator #: 1

name: cNOT

size: 2 bits

comment: Controlled-NOT; XOR the 1st bit into the 2 nd.
matrix:

(1 +i*0) (0 +i*0) (0 +i*0) (O +i*0)

(0 +i*0) (1 +i*0) (0 +i*0) (O +i*0)

(0 +i*0) (0 +i*0) (0 +i*0) (1 +i*0)

(0 +i*0) (0 +i*0) (1 +i*0) (O +i*0)

COMMENL; ~mmmmmmmmmmmmmmmmmmmcmcmcmmecemceeeee e

gconfig.txt (Quantum Computer Configuration)
This is a plain 7-bit US ASCII text file, with linesrteinated by LF or CR/LF.

Line 1: Magic cookie stringgconfig.txt format version 1 ”

Line 2: The string bits: n’, wheren is a scanf()-readable non-negative integer that
fits in an unsigned short (16 bits), giving the number stfinitt quantum bits
(qubits) making up the quantum computer.

Lines 3+: Each line contains the strintamed bit: S@ i”wheresis an
alphanumeric identifier starting with a letter orndaonsisting of letters, digits,
and _’s, and is a non-negative integer less thaentifying the bit-index in
memory of the named bit; or else it contains thagtihamed bitarray:

g kl @ i” wheresis the array naméis a non-negative integer giving the
number of bits in the arrayjs a non-negative integer less thmailentifying the
bit-index in memory of the first array elemeg0)].

There may be any number of names. A single locatay imve multiple names. If a
name is redefined, the last definition in the file holdifie same identifier may not be
used simultaneously for both a bit and a bit-array. Hrmay overflows memory, it
wraps around.

Example gconfig.txt

gconfig.txt format version 1
bits: 10

named bit: a @ O

named bit: b @ 1

named bit: c @ 2

named bit: d @ 3
named bit: e @ 4
named bit: f@ 5
named bit: g @ 6
named bit: h @ 7
named bit: i @ 8

named bit: j @ 9
named bitarray: arr[5] @ 5
comment: arr[O]-arr[4] are aliases for bits f-]

gopseq.txt — Quantum Operation Sequence
This is a plain 7-bit US ASCII text file, with linesrteinated by LF or CR/LF.

Line 1: Magic cookie stringgopseq.txt format version 1 ”

Line 2: The string “operations” wheret is a scanf()-readable non-negative integer that
fits in an unsigned short (16 bits), giving the number of iurarperations to be
dynamically executed in the given operation sequeneelétigth of the
sequence).

Lines 3 through 2t+ Each contains one of the following:

1. The string bperation # | : apply unary operator oto
bit Db”, wherej is a nonnegative integer less thaa is the name or
index number of a 3-bit operator (as defined in qoperatgrsaixtb is the
name or index number (as defined in qconfig.txt) of a pdatiqubit.

2. The string bperation # | : apply binary operator oto
bits bi, by’, whereo is the name or index number of a 3-bit operator
(as defined in qoperators.txt), and eacis the name or index number
(from gconfig.txt) of a particular qubit.

3. The string bperation # | : apply ternary operator oto
bits by, by, Dby’, whereo is the name or index number of a 3-bit
operator (as defined in goperators.txt), and éachthe name or index
number (from gconfig.txt) of a particular qubit.

4. The string bperation # | : measure bit b’ whereb is the name
or index number (as defined in gconfig.txt) of a particqlait.
5. The string bperation # | : measure bits bs-b” whereb is the

name or index number (as defined in gconfig.txt) of a pdaticqubit. All
qubits in the range of memory starting atlgiand continuing upwards
(wrapping around, if necessary) to hitvill be measured.

Note that the ordering of the bits within the operattihéssame as that used in
the matrix ordering in qoperators.txt. In each Jileea sequence number and the
values 0 through-1 should occur in the correct order.

If the name of a bit or operator is not found, or & lreitside the defined range of the
guantum computer’s memory, this should be reported as@mn diine number of
operations listed must be exadtlylf no measurement operations are specified, the
intended semantics is that all qubits are implicithaswed simultaneously at the end of
the algorithm.

Example qopseq.txt

gopseq.txt format version 1

operations: 4

operation #0: apply binary operator cNOT to bits a, b
operation #1: apply binary operator cNOT to bits b, ¢
operation #2: apply binary operator cNOT to bits ¢, a
operation #3: apply unary operator X to bit b

ginput.txt — Input configuration

This text file should be a single line, a simple seqgaef 0’'s and 1's (in 7-bit ASCII)
exactlyn characters long, giving the initial values of mtsl down to 0 (big-endian). It
may be terminated with a LF or CR/LF sequence.

Slightly more sophisticated:

Line 1: Magic cookie string “ginput.txt format version 1”

Lines 2+: Each contains one of the following:

1. The string b =Vv’, whereb is the name (from gconfig.txt) or index number of
a qubit or bitarray member, ards a bit value, specified by one of the strings:
a. “0”, “zero ", “Zero ", “ZERQ" “f ", “F”, “false ", “False ”, or
“FALSE’
b. “1”, “one”, “One”, “ONE, “t ", “T", “true ", “True ”, or “TRUE
2. The string a =V’, wherea is the name (from qconfig.txt) of a bitarrayits
long, andv is a bit-array value, specified by one of the followngans:
a. A sequence of exactlycharacters that are eadi ‘or “1”.
b. A non-negative decimal integer less thAn&ny commas appearing
in the digit sequence are ignored.

Bits that are unset by a given input file are assumée taitialized to (prepared as) 0. If
a given bit is set multiple times, the last assignngérén is the effective one, and a
warning may be reported.

Example ginput.txt

ginput.txt format version 1
a=1
arr =31

The above input files are sufficient to define and run Empantum algorithms.

9. C++ Data Types

Here are some C++ data types suitable for storinghtbemation contained in the input
data files (formats summarized in sec. 8) and executmgdre simulation algorithm
(outlined in section 7).

9.2. Operator class

public class Operator {

public: /I For simplicity, let a Il fields be public.
unsigned short id; // Numerical unique ID f or this operator.
char name[]; /I Zero-terminated alpha numeric identifier; the operator name.
unsigned char arity; // The arity (number of bits) of this operator.
Complex matrix[][]; // Two-dim. array (index ed by row, column) of cpx no’s.

/I Note there are 2™ar ity rows and columns.

