

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 1 of 9

A space-efficient quantum computer simulator suitable for high-speed
FPGA implementation

Michael P. Franka, Liviu Oniciuca, Uwe H. Meyer-Baese*a, Irinel Chiorescub

aFAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL, USA 32310-6046;
bNational High Magnetic Field Lab., 1800 E. Paul Dirac Dr., Tallahassee, FL, USA 32310-3706

ABSTRACT

Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they
can model, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a
function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by
using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this
particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we
describe the design and empirical measurements of a working software prototype of a quantum computer simulator that
avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip
environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype
our design on a standard FPGA development board.

Keywords: Quantum computing, simulation, special-purpose architectures, FPGAs, embedded design

1. INTRODUCTION

Since a scalable, widely accessible quantum computer has not yet been built, it is important to be able to demonstrate the
theoretical operation of quantum computers using simuators based on existing classical computing hardware. Such tools
are useful for the validation and testing of new quantum algorithms in research settings, as well as for the education of
students as well as more experienced scholars who may be new to the emerging field of quantum computing.

Unfortunately, most or all of the existing widely-available quantum computer simulators are severely limited in the size
of the quantum circuits that they can simulate. This is due to the fact that traditional simulators operate by updating an
explicit representation of the quantum state vector of the simulated quantum circuit. In the worst case (which is also the
case that is typically encountered in practice, in most of the interesting quantum algorithms), the number of nonzero
elements of the state vector increases exponentially with the number of operations (gates) that are dynamically applied in
the quantum circuit, and therefore increases exponentially with the size of the problem to be solved. This means that,
even when a sparse representation of the state vector is used, the finite available memory on any given platform imposes
a rather strict limit on the size of the quantum circuits that can be feasibly simulated.

For example, if a given machine has 8 GB of main memory, then it might only be able to simulate general quantum
circuits containing 30 or fewer nontrivial gates, since representing the resulting quantum state would typically require
storing 230 = 1G eight-byte floating-point complex numbers. Furthermore, since accessing main memory (as opposed to
on-chip caches) is relatively slow, the large amount of memory required for simulating even circuits of sizes within this
limit can still impair the simulator’s performance.

It would be desirable to have a simulator whose capabilities were not so strictly limited by the available memory, so that
the simulator can be implemented on a fast single-chip hardware platform, and so it can also simulate circuits of sizes
beyond the limits of traditional simulators, with more graceful performance degradation.

Fortunately, computational complexity theorists have long been aware that there is a general algorithmic transformation
that can be applied to reduce the space requirements of algorithms. The basic concept is simply to recalculate data
values dynamically when needed, rather than storing them explicitly. As long as an algorithm’s dataflow graph is not as
deep as it is wide, using this approach can reduce the algorithm’s space complexity.

* umb@eng.fsu.edu; phone 1 850 410-6220; fax 1 850 410-6479; www.eng.fsu.edu

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 2 of 9

This condition applies to the simulation of quantum computers. Each element of the quantum state vector at a given step
of a quantum algorithm typically depends only on the values of 1 or 2 elements of the state vector at the preceding step.
These values can be recomputed on demand from the values at the next preceding step, and so forth, in recursive fashion.
The recursion back through the entire history of N previously applied quantum operations requires only O(N) space on a
stack, to keep track of which path through the dataflow graph is currently being traversed.

Possibly the first person to realize that this general kind of procedure could be applied to the calculation of quantum-
mechanical amplitudes was the famous physicist Richard Feynman, who in his dissertation work[1] showed how quantum
mechanics could be reformulated in terms of a quantity he called the path integral, which essentially amounted to a
continuous analogue of a sum over paths through a discrete dataflow graph.

When the complexity theory of quantum computing was being developed in the early 1990s, it was quickly realized[2]
that the same idea, back now in the discrete realm, applied to the simulation of quantum computers as well, leading to
the important complexity-theoretic relation that BQP ⊆ PSPACE, where BQP is the set of problems solvable by
probabilistic quantum algorithms with a polynomial number of operations (as a function of problem size), and PSPACE
is the set of problems solvable by classical computers using a polynomial amount of memory. More generally, we can
show[3] that a quantum algorithm with s qubits and t operations can be simulated using space O(s + t).

Although this essential insight has been known for at least 16 years now, to our knowledge it has not yet been applied to
develop a flexible and widely-available tool for simulating quantum algorithms in such a way that the available memory
is not a significant limiting factor on the size of the quantum computations that can be simulated. It is the goal of the
SEQCSim (say “SEEK-sim”) project at Florida State University to remedy this situation by providing flexible, well-
optimized freely-available software and hardware implementations of a Space-Efficient Quantum Computer Simulator.

To date, we have developed a working software prototype of our simulator in C++, and have empirically demonstrated
its correctness and space-efficiency on a variety of simple test cases. We present some of these results in sections 2-4.
Next steps include the development of a more powerful programming environment for the software version of the
simulator, as well as a performance-optimized special-purpose hardware implementation of the simulator, to be
prototyped using a standard FPGA (field-programmable gate array) platform, which we will describe in section 5.
Section 6 concludes.

2. SEQCSIM ALGORITHM

The presently-available software prototype of our simulator (version 0.8) operates according to an extremely simple
procedure.

The simulator first obtains a definition of the quantum circuit to simulate from a set of four ASCII text input files, called
qconfig.txt, qinput.txt, qoperators.txt, and qopseq.txt, examples of which are shown in listings 2-5.
These files are structured in a simple throwaway file format, which will be replaced in later versions of our simulator by
a general-purpose quantum programming language based on C++. The configuration file, given in qconfig.txt,
specifies the width of the quantum circuit, and assigns various named registers to bit-fields within it. The quantum
algorithm, specified explicitly as a gate sequence in qopseq.txt, may use any fixed-width quantum gates, whose
matrix elements are given in qoperators.txt. The initial input state (which must be a classical state in the
computational basis) is given in qinput.txt.

The goal of the simulator is to progress forwards through the quantum algorithm (circuit) one operation (gate) at a time,
while keeping track of the amplitude of only a single basis state, in the classical computational basis, which is selected
randomly at each step in accordance with the flow of probability mass in the quantum algorithm, such that the
simulator’s probability of ending up at each final basis state precisely matches what would be obtained from a complete
calulation of the final quantum state vector.

This approach evokes an old interpretation of quantum mechanics by Bohm[4-5], who showed that a quantum system can
be conceived of as having a unique classical state at each time which evolves (either deterministically or nondeterminist-
ically) in accordance with the probability current through the system’s phase space that is induced by the Schrödinger
time-evolution. In this model, a complete wavefunction still exists mathematically, but it is conceived of as just being a
“pilot” wave that guides the evolution of the physical state, rather than being thought of as being the actual physical state
itself. In accordance with the subordinate status of the wavefunction in Bohm’s philosophy, rather than storing the entire
wavefunction, and conceiving of it as being the simulated state, we only calculate values of the wavefunction at points

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 3 of 9

1 procedure SEQCSim::run():
2 curState := inputState; // Current basis state, in the computational basis
3 curAmp := 1; // Amplitude of current basis state
4 for PC =: 0 to #gates, // Index of current operation in the gate sequence
5 with respect to the operator gate[PC] and its operands,
6 for each neighbor nbri of curState,
7 if nbri = curState, amp[nbri] :=curAmp;
8 else amp[nbri] := calcAmp(nbri);
9 amp[] := opMatrix * amp[]; // Complex matrix product
10 prob[] := normSqr(amp[]); // Calc probs as normalized squares of amplitudes.
11 i := pickFromDist(prob[]); // Pick a random successor of the current state.
12 curState := nbri; // Go to that neighbor.
13 curAmp := amp[nbri]. // Remember its amplitude, calculated earlier.
14
15 function SEQCSim::calcAmp(State nbr): // Recursive amplitude-calculation procedure
16 curState := nbr;
17 if PC=0, return (curState = inputState) ? 1 : 0; // At t=0, input state has all the amplitude.
18 else, with respect to the operator gate[PC−1] and its operands,
19 for each predecessor predi of curState,
20 PC := PC − 1;
21 amp[predi] = calcAmp(predi); // Recursive calculation of pred. amp.
22 PC := PC + 1;
23 amp[] := opMatrix * amp[];
24 return amp[curState];

that are needed to compute the transition probabilities along the specific possible trajectory through the classical
configuration space that is presently being explored.

The core algorithms for updating the stochasically-evolved basis state (procedure “run()”) and calculating wavefunction
amplitudes for specific basis states (function “calcAmp()”) are outlined below in Listing 1.

For a more detailed illustration of the functioning of this algorithm on a particularly simple example circuit, please refer
to our previous paper[3].

 Listing 1. Outline of the core algorithm used in the present version of SEQCSim. The selection of a particular operation
(gate and operand bits) on lines 5 and 18 determines a set of possible “neighbor” or “predecessor” basis states of the
current one, differing from the present state on the operand bits.

3. EXAMPLE QUANTUM CIRCUIT USED IN TESTING

For purposes of testing the correctness and performance of our algorithm, we focused on a simple family of in-place
binary adder circuits based on an algorithm by Draper[6]. These adders use a Quantum Fourier Transform (QFT) and its
inverse to convert one of the addends into and out of a phase representation, and uses phase gates between addends to
carry out the addition in the phase representation. These adders are not particularly efficient (since they require order n2
gates for an n-bit add) but they require no ancilla bits and provide a good test case which includes both trivial and
nontrivial gates. For our purposes, a “trivial” gate means a gate like the phase gate whose unitary matrix is
diagonalizable in the computational basis; with such gates, each basis state has only one possible predecessor, so these
gates do not have a significant impact on the time complexity of the simulation – in our approach, a sequence of trivial
gates can be simulated in linear time.

An example of the adders used is shown in fig. 1 below. This illustration was prepared using the freely-available QCAD
design/simulation tool, version 1.96, available from http://apollon.cc.u-tokyo.ac.jp/~watanabe /qcad/
index.html. In this figure, H represents the Hadamard gate H = (σx + σz)·2

−1/2 = [1, 1; 1, −1]/21/2, or in displayed form,

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 4 of 9

1 qinput.txt format version 1
2 a = 1
3 b = 1

1 qconfig.txt format version 1
2 bits: 8
3 named bitarray: a[4] @ 0
4 named bitarray: b[4] @ 4

 1 11
.

1 12
H

 
=  − 

 (1)

A number k in a box represents a controlled-phase gate φk for a phase rotation of k degrees. In terms of the rank-2

identity operator ̂I = [1, 0; 0, 1], number operator n̂ = [0, 0; 0, 1], its complement ˆ ˆn I n= − , and tensor product ⊗, or
more explicitly as a displayed matrix, this operator can be written

ˆ ˆ ˆexp(i π /180)

1 0 0 0

0 1 0 0
.

0 0 1 0

0 0 0 exp(iπ /180)

k n I n nk

k

ϕ = ⊗ + ⊗

 
 
 =
 
 
 

 (2)

The phase gate rotates the phase of a given basis state by the specified number of degrees if and only if both of the input
bits are 1. It is symmetrical with respect to the control and target bits. It is a trivial gate – note its matrix is diagonal.

Fig. 1. Illustration, using the freely-available QCAD tool, of a quantum circuit for adding two 4-bit binary numbers a, b in
place using Draper’s algorithm. The top group of 4 qubits represents b, the bottom four qubits are a, and the most-
significant qubit in each group is at the top. The initial state shown at the left is a=1, b=1. The first (leftmost) 10 gates
perform a quantum Fourier transform (QFT) of a in-place, to convert the value of a into a pattern of phases on the
amplitudes over the a subspace. The next 10 gates increment the phases by the value of b. The final 10 gates perform
an inverse QFT to convert the phases back into a value of a. The overall operation performed is a := a + b, and the
final value of a (which is measured after the computation) is 2. The value of b is unchanged.

The above example circuit can be easily prepared for input into the SEQCsim simulator by describing it in a simple text
input format in the four files {qconfig, qinput, qoperators, qopseq}.txt, as illustrated in listings 2-5 below.
The precise format of these files has some limited flexibility – keywords may be abbreviated, whitespace is ignored, and
lines beginning with “comment:” are ignored. The format specifier on the first line allows for future extensions of the
file format while retaining backwards-compatibility with older input files.

Listing 2. Contents of the ASCII text input file qconfig.txt, which is used to tell SEQCsim the size and registers of the
input circuit, for the circuit shown in fig. 1. (Line numbers shown at the left are not included in the file.)

Listing 3. Contents of the ASCII text input file qinput.txt used to tell SEQCsim the decimal values of the input
registers for the circuit shown in fig. 1. (Line numbers shown at the left are not included in the file.)

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 5 of 9

1 qoperators.txt format version 1
2 operators: 8
3 operator #: 0
4 name: H
5 size: 1 bits
6 matrix:
7 (0.7071067812 + i*0)(0.7071067812 + i*0)
8 (0.7071067812 + i*0)(-0.7071067812 + i*0)
9 operator #: 1
10 name: cPiOver2
11 size: 2 bits
12 matrix:
13 (1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0)
14 (0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0)
15 (0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0)
16 (0 + i*0) (0 + i*0) (0 + i*0) (0 + i*1)
... (six additional operators elided for brevity)…

1 qopseq.txt format version 1
2 operations: 30
3 operation #0: apply unary operator H to bits a[3]
4 operation #1: apply binary operator cPiOver2 to bits a[3], a[2]
5 operation #2: apply binary operator cPiOver4 to bits a[3], a[1]
6 operation #3: apply binary operator cPiOver8 to bits a[3], a[0]
...(22 additional gate operations elided for brevity)…
29 operation #26: apply binary operator inv_cPiOver8 to bits a[3], a[0]
30 operation #27: apply binary operator inv_cPiOver4 to bits a[3], a[1]
31 operation #28: apply binary operator inv_cPiOver2 to bits a[3], a[2]
32 operation #29: apply unary operator H to bits a[3]

2 Welcome to SEQCSim, the Space-Efficient Quantum Computer SIMulator.
3 (C++ console version)
4 By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.
5 Copyright (C) 2008-2009 Florida State University Board of Trustees.
6 All rights reserved.
..(2 blank lines)..
9 SEQCSim::run(): Initial state is 7->00010001<-0 (8 bits) ==> (1 + i*0).
10 SEQCSim::Bohm_step_forwards(): (tPC=0)
11 The new current state is 7->00011001<-0 (8 bits) ==> (0.707107 + i*0).
12 SEQCSim::Bohm_step_forwards(): (tPC=1)
13 The new current state is 7->00011001<-0 (8 bits) ==> (0.707107 + i*0).
…(26 intermediate steps elided for brevity)…
66 SEQCSim::Bohm_step_forwards(): (tPC=28)
67 The new current state is 7->00011010<-0 (8 bits) ==> (0.707107 + i*0).
68 SEQCSim::Bohm_step_forwards(): (tPC=29)
69 The new current state is 7->00010010<-0 (8 bits) ==> (1 + i*0).
70 SEQCSim::done(): The PC value 30 is >= the number of operations 30.
71 We are done!

Listing 4. Contents of the ASCII text input file qoperators.txt used to tell SEQCsim the definitions of the quantum
operators (gates) used in the circuit shown in fig. 1. (Line numbers at the left are not included in the file.)

Listing 5. Contents of the ASCII text input file qopseq.txt used to tell SEQCsim the sequence of quantum operations
(gate instances) used in the circuit shown in fig. 1. (Line numbers shown at the left are not included in the file.)

Listing 6. Text output from SEQCSim when run with the above text files (listings 2-5) as input. (Line numbers shown at the
left are not included in the output.) Note that at the conclusion of the computation, the value of register a (least
significant 4 bits) is 00102 = 2, verifying that the simulator has correctly determined that 1 + 1 = 2.

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 6 of 9

4. EMPIRICAL MEASUREMENTS OF SPACE/TIME COMPLEXITY

To show that the space and time complexity of SEQCSim indeed respond in the predicted manner to changes in the size
of the simulated circuit, we used the following procedure. One of us (Oniciuc) wrote a simple tool to automatically
generate the required qconfig.txt and qopseq.txt input files for SEQCsim, as well as corresponding .qcd circuit
files for QCAD, for Draper adders of any desired number and size of operands. Using this tool, we generated adders of
size 2×2 (2 addends, 2 bits each) up through size 2×14 (2 addends, 14 bits each), and ran QCAD and SEQCsim on each
one, on a typical Dell desktop running Windows Vista, while measuring each application’s peak memory usage and CPU
time using the shareware Kiwi application monitor. The results were tabulated and used to generate the charts below.

Fig. 1 shows how that overall memory usage of QCAD (which presumably internally uses a traditional state-vector
based simulation technique) increases exponentially with the circuit size, whereas the memory usage of SEQCsim
remains essentially flat – it is dominated by the space required for the standard C++ libraries which we use to provide
functions such as text I/O and pseudo-random-number generation.

QCAD vs. SEQCsim memory usage

1,000

10,000

100,000

1,000,000

10,000,000

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

P
ea

k
m

em
or

y
us

ag
e

 (K
B

)

QCAD

SEQCsim

Fig. 2. Overall peak memory usage, in kilobytes, of QCAD versus SEQCsim, for Draper adder circuits of width 4 (2×2)
through 28 (2×14), as measured using the Kiwi application monitor. Figures include pages allocated for shared DLLs,
but a comparison of private working set sizes, as measured by the Windows Task Manager in Vista, gives similar
results. QCAD’s higher base memory usage is unsurprising since it requires more libraries to support its GUI. Note
that the vertical scale is logarithmic. Beyond about 18 bits, QCAD’s memory usage increases exponentially, as the
dynamic data set size exceeds the memory requirements of its base API libraries; this behavior would be expected for
any simulator based on an explicit state-vector representation. Note that, in comparison, SEQCSim’s memory usage
remains essentially flat, at about 2 MB, throughout this range, and most of this resides in shared libraries. There is no
data point for QCAD for circuit width 28 because the required memory (about 4 GB) exceeded what was available on
the PC that was used for testing.

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 7 of 9

The next chart, shown in fig. 3, shows in more detail how the memory usage of SEQCsim increases as a function of the
number of gates in the quantum circuit (for the same set of test circuits). There are some irregularities in the graph,
which we hypothesize result from the fact that the number of pages allocated by the dynamic memory allocator may vary
slightly from run to run depending on unpredictable factors. These irregularities could be minimized by averaging the
results over multiple runs, but we have not yet done this. Despite the irregularities, there is a clear almost-linear trend in
the memory usage which is well accounted for by the increasing number of stack frames that must be allocated as the
number of levels of recursion (which is proportional to the depth of the circuit) increases. The actual growth rate, if
measured more precisely and over a larger range, may actually be slightly faster than linear, because our current
implementation is somewhat inefficient in that it stores a representation of the entire current basis state at each level of
the recursion. It would be possible to eliminate this inefficiency through a more direct implementation that replaced the
recursion with a more specialized iterative routine for traversing the tree of predecessors in an Euler tour.

Linear growth of SEQCsim memory usage with size of
quantum circuit

y = 0.1656x + 1895.9

R2 = 0.9282

1892
1896
1900
1904
1908
1912
1916
1920
1924
1928
1932
1936
1940
1944
1948
1952
1956
1960

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

P
ea

k
m

em
or

y
us

ag
e

(K
B

)

Fig. 3. This graph shows how the peak memory usage of SEQCsim varied with the size in gates of the QFT-based adder
circuits that were used for testing. The vertical scale here is linear, and we can see there is a slight, roughly linear
increase in memory usage from 1900 KB to 1956 KB, in page-sized 4K increments, as we go from 9 operations for the
2×2 adder to 315 operations for the 2×14 adder. The results are somewhat noisy due to slight runtime variations in
pages allocated by the memory manager because these results were not averaged over multiple runs. The extra 56K
required for the larger circuit sizes is easily accounted for by the increased number of stack frames that must be
allocated in order to get through all 315 levels of recursion in the calcAmp() function in the final step. If desired, the
size of these stack frames could be further reduced from the current maximum of ~187 bytes to only a few bits, by
replacing the recursive function with a more specialized iterative tree traverser that requires only enough bits at each
level to keep track of which branch to visit next.

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 8 of 9

Finally, fig. 5 shows how the CPU time used by both QCAD and SEQCsim varies with the width of the simulated
circuit. At present, SEQCSim is about a factor of 2 slower than QCAD for larger circuit sizes. This is unsurprising,
given that presently SEQCSim is highly flexible (gates of any width can be defined) and uses a relatively elaborate
recursive procedure to apply gates, as opposed to the more straightforward state-vector updating that must be done in
QCAD. There is much room for further improvement in SEQCSim’s performance.

It would be fairly straightforward to modify SEQCSim to carry out an ordinary state-vector representation of the state
until the limit of memory (or on-chip cache) is reached, and then revert to the recursive amplitude-calculation procedure
only for further state evolution beyond that point. This would allow us to take full advantage of the available memory to
boost performance, while retaining the ability to handle circuits of larger sizes without crashing.

Alternatively, we can keep SEQCsim’s memory usage minimal, while giving it a substantial constant-factor performance
boost by reimplementing its kernel using a custom or semi-custom hardware architecture. That approach will be
discussed in the next section.

QCAD vs. SEQCsim CPU time usage

0.01

0.1

1.

10.

100.

1,000.

10,000.

100,000.

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

C
P

U
 ti

m
e

(s
ec

s.
)

QCAD

SEQCsim

Fig. 4. Comparison of CPU time used by QCAD vs. SEQCSim for 2×2 through 2×14 bit adders. QCAD’s greater CPU
time usage for small circuit sizes can be accounted for by the fact that it has a GUI which is used to load the circuit and
display results, whereas SEQCSim presently does not. We can see that the CPU time for both algorithms increases
exponentially, as expected, as the circuit width increases. Each increase in circuit width by 2 bits results in about a
factor of 4 increase in time complexity, as expected. In the case of QCAD this is because the state vector is 4× larger;
whereas for SEQCSim it is because, for each additional bit in addend a, there are 2 additional non-trivial gates
(Hadamard gates) in the circuit. The performance of SEQCSim could be significantly improved (beating that of
QCAD) by either leveraging additional memory (recalculating fewer amplitudes), or by reimplementation in special-
purpose, single-chip hardware, an approach which is made feasible because of SEQCSim’s low memory usage.

A space-efficient quantum computer simulator suitable for high-speed FPGA implementation M. P. Frank et al.
 HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLY – REMOVE BEFORE SUBMISSION

Unfinished working draft, v.0.2 In preparation, 3/15/2009 Page 9 of 9

5. FPGA-BASED EMBEDDED ARCHITECTURE

[Uwe to write this section.]

6. CONCLUSION AND FUTURE WORK

We have developed and demonstrated a working software prototype of an extremely memory-efficient quantum
computer simulator, which will soon be released publicly through the site http://www.eng.fsu.edu/~mpf/SEQCSim.htm.
Our prototype uses an amount of memory that increases only linearly in the size of the quantum circuit being simulated,
at a proportion which was empirically found to be less than two hundred bytes of memory per gate in the present study.

A more carefully-optimized implementation should be able to do even better, and achieve an asymptotic memory usage
of only 1 bit per qubit, plus 1 bit per typical nontrivial gate (such as a Hadamard gate or a general controlled-U2 gate).

Due to its miniscule memory requirements, a simulator of this class would be quite amenable for implementation in
custom or semi-custom special-purpose hardware architecture, which can be easily prototyped using FPGAs loaded with
embedded soft-core microprocessors such as Altera’s NIOS or Xilinx’s MicroBlaze, or a custom processor designed
using the LISA tool set. Such a hardware-augmented implementation is expected to be able to outperform traditional
software-only quantum computer simulators by a factor of 50-100×.

As for the software-only version of our simulator, its programming interface is presently rather cumbersome, requiring
the user to define his or her quantum gates and gate sequences explicitly using an ad-hoc text input format. However, it
would be straightforward to reimplement the simulator as, say, a set of classes in C++, or other object-oriented language,
which would allow the programmer to describe quantum algorithms using the full expressive power of the host
language, while observing a statistical behavior of his Qubit objects that matches what would be obtained from an ideal
quantum computer, whose operation can be mimicked by a version of our simulator that is running “behind the scenes.”

This future version of our simulator would be a near-ideal tool for allowing students and researchers to venture into
quantum programming and experiment with new quantum algorithms without having to either learn a new programming
language first, or worry about running out of memory.

REFERENCES

[1] Richard Phillips Feynman, The Principle of Least Action in Quantum Mechanics, Ph.D. Thesis, Princeton, 1942.
[2] Bernstein, E. and Vazirani, U. 1993. Quantum complexity theory. In Proceedings of the Twenty-Fifth Annual ACM

Symposium on theory of Computing (San Diego, California, United States, May 16 - 18, 1993). STOC '93. ACM,
New York, NY, 11-20. DOI= http://doi.acm.org.proxy.lib.fsu.edu/10.1145/167088.167097 .

[3] Frank, M.P., Meyer-Baese, U.H., Chiorescu, I., Oniciuc, L., and van Engelen, R.A., “Space-Efficient Simulation of
Quantum Computers,” to appear in ACMSE 2009, Clemson, SC, Mar. 19-21, 2009.

[4] Bohm, D. 1952. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. (I & II.)
Physical Review 85, 2 (Jan. 1952), 166-193. DOI=http://link.aps.org/doi/10.1103/PhysRev.85.166.

[5] Bohm, David, The Undivided Universe, Routledge, 1995.
[6] Draper, T. G. 2000. Addition on a Quantum Computer. Preprint, arXiv:quant-ph/0008033v1.

