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ABSTRACT

Conventional vector-based simulators for quantum compuaier quite limited in the size of the quantum circiney/t
can model, due to the worst-case exponential gronmverfi sparse representations of the full quantum &tater as a
function of the number of quantum operations applied. Howévisrexponential-space requirement can be avoided by
using general space-time tradeoffs long known to compléxé@orists, which can be appropriately optimized fos t
particular problem in a way that also illustrates samerésting reformulations of quantum mechanics. Inghjper, we
describe the design and empirical measurements of a worddingage prototype of a quantum computer simulator that
avoids excessive space requirements. Due to its sgaserady, this design is well-suited to embedding in saditip
environments, permitting especially fast execution #vaids access latencies to main memory. We planctotype

our design on a standard FPGA development board.

Keywords: Quantum computing, simulation, special-purpose architecttR&SAs, embedded design

1. INTRODUCTION

Since a scalable, widely accessible quantum computer hgstrizeen built, it is important to be able to demmtstthe
theoretical operation of quantum computers using simuatoes! lagsexisting classical computing hardware. Such tools
are useful for the validation and testing of new quanturorigiigns in research settings, as well as for the edurcafio
students as well as more experienced scholars who may/te tiee emerging field of quantum computing.

Unfortunately, most or all of the existing widely-avale quantum computer simulators are severely limitedersthe

of the quantum circuits that they can simulate. Thuis to the fact that traditional simulators operateyating an
explicit representation of the quantum state vector@ftmulated quantum circuit. In the worst case (whsciiso the
case that is typically encountered in practice, in mbshe interesting quantum algorithms), the number of nonzero
elements of the state vector increases exponentidhythe number of operations (gates) that are dyndiyigplied in

the quantum circuit, and therefore increases exponentélythe size of the problem to be solved. Thisansethat,
even when a sparse representation of the staterieatsed, the finite available memory on any givenf@la imposes

a rather strict limit on the size of the quantumuiicthat can be feasibly simulated.

For example, if a given machine has 8 GB of main mentben it might only be able to simulate general quantum
circuits containing 30 or fewer nontrivial gates, singpresenting the resulting quantum state would typicatjyire
storing 2° = 1G eight-byte floating-point complex numbers. Furtr@ensince accessing main memory (as opposed to
on-chip caches) is relatively slow, the large amount@&fory required for simulating even circuits of sizeshinithis

limit can still impair the simulator’s performance.

It would be desirable to have a simulator whose céifiebiwere not so strictly limited by the availabfemory, so that
the simulator can be implemented on a fast singletthigware platform, and so it can also simulate cirafitsizes
beyond the limits of traditional simulators, with mgraceful performance degradation.

Fortunately, computational complexity theorists have loegn aware that there is a general algorithmic tramsfoon

that can be applied to reduce the space requirements ofttalggar The basic concept is simply to recalculate data
values dynamically when needed, rather than storing theaticitly. As long as an algorithm’s dataflow grapmat as
deep as it is wide, using this approach can reduce the higlrispace complexity.
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This condition applies to the simulation of quantum conmrgutBach element of the quantum state vector atem gitep
of a quantum algorithm typically depends only on the valudsaf2 elements of the state vector at the precedapg st
These values can be recomputed on demand from the vathesn@xt preceding step, and so forth, in recursivedash
The recursion back through the entire histori}Ngifreviously applied qguantum operations requires only)SGpace on a
stack, to keep track of which path through the dataflow graplriently being traversed.

Possibly the first person to realize that this gdniéral of procedure could be applied to the calculation of quant
mechanical amplitudes was the famous physicist Richeydrfan, who in his dissertation wBtlshowed how quantum
mechanics could be reformulated in terms of a quantity hedcthe path integral, which essentially amounted to a
continuous analogue of a sum over paths through a disctafeadegraph.

When the complexity theory of quantum computing was being ofgeelin the early 1990s, it was quickly reallZed
that the same idea, back now in the discrete realniedpp the simulation of quantum computers as well, fegth

the important complexity-theoretic relation that BQPPSPACE, where BQP is the set of problems solvable by
probabilistic quantum algorithms with a polynomial numdbieoperations (as a function of problem size), anBACE

is the set of problems solvable by classical compuisirsy a polynomial amount of memory. More generally,can
show® that a quantum algorithm withqubits and operations can be simulated using space+@)

Although this essential insight has been known fdeadt 16 years now, to our knowledge it has not yet bpphied to
develop a flexible and widely-available tool for simulatingrguan algorithms in such a way that the available mgmor
is not a significant limiting factor on the size oetquantum computations that can be simulated. It igdlaéof the
SEQCSim (say “SEEK-sim”) project at Florida Stateivérsity to remedy this situation by providing flexible,lwe
optimized freely-available software and hardware impteatens of a face-HEficient Quantum @mputer_Simalator.

To date, we have developed a working software prototypero$imulator in C++, and have empirically demonstrated
its correctness and space-efficiency on a variesirople test cases. We present some of these rasséstions 2-4.
Next steps include the development of a more powerful pragimagnenvironment for the software version of the
simulator, as well as a performance-optimized specigdgaer hardware implementation of the simulator, to be
prototyped using a standard FPGA (field-programmable gaég)aplatform, which we will describe in section 5.
Section 6 concludes.

2. SEQCSIM ALGORITHM

The presently-available software prototype of our &houn (version 0.8) operates according to an extremehyplsi
procedure.

The simulator first obtains a definition of the quanttinouit to simulate from a set of four ASCII text indiliés, called
gconfig.txt, ginput.txt, qoperators.txt, andqopseq.txt, examples of which are shown in listings 2-5.
These files are structured in a simple throwawayfditenat, which will be replaced in later versions af gimulator by

a general-purpose quantum programming language based on C++corffiguration file, given ingconfi g. t xt,
specifies the width of the quantum circuit, and assigm®us named registers to bit-fields within it. The quantum
algorithm, specified explicitly as a gate sequencgdpseq.txt, may use any fixed-width quantum gates, whose
matrix elements are given igoperators.txt. The initial input state (which must be a classicakestin the
computational basis) is given g nput . t xt .

The goal of the simulator is to progress forwards thrdhghguantum algorithm (circuit) one operation (gate)taha,
while keeping track of the amplitude of only a single $asate, in the classical computational basis, wiidelected
randomly at each step in accordance with the flow obaidity mass in the quantum algorithm, such that the
simulator’s probability of ending up at each final basate precisely matches what would be obtained from @leten
calulation of the final quantum state vector.

This approach evokes an old interpretation of quantum mieshiay Bohnf!, who showed that a quantum system can
be conceived of as having a unique classical state atissckvhich evolves (either deterministically or nondeieist-
ically) in accordance with the probability currentabhgh the system’s phase space that is induced by the Schrodinge
time-evolution. In this model, a complete wavefunctith exists mathematically, but it is conceived of astjbeing a
“pilot” wave that guides the evolution of the physistdte, rather than being thought of as being the galwalcal state
itself. In accordance with the subordinate status ofvenefunction in Bohm'’s philosophy, rather than storirgyehtire
wavefunction, and conceiving of it as being the simulatatéswe only calculate values of the wavefunction attpoi
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that are needed to compute the transition probabilifi@sgathe specific possible trajectory through the atass
configuration space that is presently being explored.

The core algorithms for updating the stochasically-evohasilststate (procedure “run()”) and calculating wavefoncti
amplitudes for specific basis states (function “calcAf)@re outlined below in Listing 1.

For a more detailed illustration of the functioning of thligorithm on a particularly simple example circuit, péeesfer
to our previous papék

Listing 1. Outline of the core algorithm used in the @néversion of SEQCSim. The selection of a particopearation
(gate and operand bits) on lines 5 and 18 determines fys®tsible “neighbor” or “predecessor” basis statebef t
current one, differing from the present state on the opeiigsd b

1 procedure SEQCSim::run

2 curSate :=inputState;  // Current basis state, in the computational basis

3 curAmp := 1; /I Amplitude of current basis state

4 forPC =: 0 to #gates, // Index of current operation in the gate sequence

5 with respect to the operator g&€J and its operands,

6 for each neighbabr; of curState,

7 ihbr; = curSate, amp[nbr;] :=curAmp;

8 elsamp[nbr;] := calcAmp¢br));

9 amp[] := opMatrix * amp[]; /I Complex matrix product

10 probl[] := normSqramp[]); /I Calc probs as normalized squares of amplitudes.
11 i := pickFromDistprobl]); /I Pick a random successor of the current state.

12 curSate := nbr;; /Go to that neighbor.

13 curAmp := amp[nbr;]. /I Remember its amplitude, calculated earlier.

14

15 function SEQCSim::calcAmp(Statber): /I Recursive amplitude-calculation procedure
16 curState := nbr;

17 if PC=0, return ¢urSate = inputSate) ? 1 : 0;// At t=0, input state has all the amplitude.
18 else, with respect to the operator g2@={1] and its operands,

19 for each predecesgmed of curSate,

20 PC:=PC-1;

21 amp[pred] = calcAmppred); // Recursive calculation of pred. amp.
22 PC:=PC+ 1;

23 amp[] := opMatrix * amp[];

24 returnamp[cur Satey;

3. EXAMPLE QUANTUM CIRCUIT USED IN TESTING

For purposes of testing the correctness and performanmer aflgorithm, we focused on a simple family of inegla
binary adder circuits based on an algorithm by DfélpeFhese adders use a Quantum Fourier Transform (QFT)sand it
inverse to convert one of the addends into and out of a plpseEsentation, and uses phase gates between addends to
carry out the addition in the phase representation seThdders are not particularly efficient (since theyire ordem?

gates for am-bit add) but they require no ancilla bits and provide adgst case which includes both trivial and
nontrivial gates. For our purposes, a ‘trivial” gateans a gate like the phase gate whose unitary matrix i
diagonalizable in the computational basis; with suchsg&&ch basis state has only one possible predecessioess

gates do not have a significant impact on the time cexitglof the simulation — in our approach, a sequence\oaltri
gates can be simulated in linear time.

An example of the adders used is shown in fig. 1 belos illustration was prepared using the freely-avail&AD
design/simulation tool, version 1.96, available framt p://apoll on.cc. u-tokyo. ac.j p/ ~wat anabe/ qcad/
i ndex. ht ni . In this figure, H represents the Hadamard bate(s, + 0,)-2?=[1, 1; 1, -1)/2"% or in displayed form,
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J211 -1
A numberk in a box represents a controlled-phase gator a phase rotation d&f degrees. In terms of the rank-2
identity operatorl = [1, 0; 0, 1], number operatdi = [0, O; 0, 1], its complemerfi = | — A, and tensor produdi, or

more explicitly as a displayed matrix, this operator camwitten

¢, =N O 1 +A0 exp(iikr /180)

100 0
o1 0 0 2)
1o 0 1 0 '

0 0 0 exp(ik/180)

The phase gate rotates the phase of a given basibpthte specified number of degrees if and only if botthefibput
bits are 1. It is symmetrical with respect to theteol and target bits. It is a trivial gate — nitdematrix is diagonal.

{180}

EEE]
B
8]

¥
@©
L

H {90 &5 }Hny

225145 90H H

o {=H{w HEB
: l RN +—+ e J. L B
> l l HH% 'SEI: H J l %

g
——{¥]
2]
e
+——a]
t—-;;|

ElEE]

L !

Fig. 1. lllustration, using the freely-available QCAD toaf a quantum circuit for adding two 4-bit binary numberb in
place using Draper’s algorithm. The top group of 4 qubitsesgmtsh, the bottom four qubits a® and the most-
significant qubit in each group is at the top. The initialesshown at the left =1, b=1. The first (leftmost) 10 gates
perform a quantum Fourier transform (QFT)aoin-place, to convert the value afinto a pattern of phases on the
amplitudes over tha subspace. The next 10 gates increment the phases by thefualughe final 10 gates perform

an inverse QFT to convert the phases back into a valae ®he overall operation performedads= a + b, and the
final value ofa (which is measured after the computation) is 2. Theevaib is unchanged.

ne

The above example circuit can be easily prepared for infuthe SEQCsim simulator by describing it in a simpbd
input format in the four filesqconf i g, qi nput , goper at or s, gopseq}.t xt, as illustrated in listings 2-5 below.
The precise format of these files has some limitexilfility — keywords may be abbreviated, whitespace isrigghcand
lines beginning with “comment:” are ignored. The forrgpécifier on the first line allows for future extemsmf the
file format while retaining backwards-compatibility witthder input files.

Listing 2. Contents of the ASCII text input figgonfi g. t xt , which is used to tell SEQCsim the size and regisfetseo
input circuit, for the circuit shown in fig. 1. (Line numbst®wn at the left are not included in the file.)

gconfig.txt format version 1
bits: 8

naned bitarray: a[4] @O0
naned bitarray: b[4] @4

A WN B

Listing 3. Contents of the ASCII text input figg nput . t xt used to tell SEQCsim the decimal values of the input
registers for the circuit shown in fig. 1. (Line numbdrsven at the left are not included in the file.)

1 gqinput.txt format version 1
2 a=1
3 b=1
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Listing 4. Contents of the ASCII text input fig@per at or s. t xt used to tell SEQCsim the definitions of the quantum

operators (gates) used in the circuit shown in fig.Line(numbers at the left are not included in the file.)

1 qoperators.txt
2 operators: 8
3 operator # 0
4 nanme: H

5 size: 1 bits

6 matrix:

7 (0.7071067812
8 (0.7071067812
9 operator # 1
10 nane: cPiOver?2
11 size: 2 bits
12 matrix:

13 (1 +i*0) (0 +
14 (0 +i*0) (1 +
15 (0 +i*0) (0 +
16 (0 +i*0) (0 +

format version 1

+ i*0)(0.7071067812 + i *0)
+ i*0)(-0.7071067812 + i*0)

i*0) (0 + i*0) (0 + i*0)
i*0) (0 + i*0) (0 + i*0)
i*0) (1 +i*0) (0 + i*0)
i*0) (0 + i*0) (0 + i*1)

... (Six additional operators elidefbr brevity)...

Listing 5. Contents of the ASCII text input fig@pseq. t xt used to tell SEQCsim the sequence of quantum operations
(gate instances) used in the circuit shown in fig. 1. (bimabers shown at the left are not included in the file.)

1 qgopseq.txt for
2 operations: 30
3 operation #0:
4 operation #1:
5 operation #2:
6 operation #3:
...( 22 additional
29 operation #26:
30 operation #27:
31 operation #28:
32 operation #29:

mat version 1

apply unary operator Hto bits a[3]

apply binary operator cPiOver2 to bits a[3], a[2]
apply binary operator cPiOver4 to bits a[3], a[l]
apply binary operator cPiOver8 to bits a[3], a[0]

gate operations elided for brevity)...

apply binary operator inv_cPiOver8 to bits a[3], a[0]
apply binary operator inv_cPiOver4 to bits a[3], a[1]
apply binary operator inv_cPiOver2 to bits a[3], a[2]

apply unary operator Hto bits a[3]

Listing 6. Text output from SEQCSim when run with the aliexéfiles (listings 2-5) as input. (Line numbers shown at th

left are not included in the output.) Note that at thcksion of the computation, the value of registéeast

significant 4 bits) is 00L0= 2, verifying that the simulator has correctly deteedithat 1 + 1 = 2.

2

3 (C++ consol
4 By Mchael P.
5 Copyright (O
6 Al rights
..(2 blank lines)..

9 SEQCS i m:run()

11 The new cur

13 The new cur

70 SEQCSi m : done(

Wel come to SEQCSim the Space-Efficient Quantum Conputer SI Milator.

e versi on)

Frank, Uwe Meyer-Baese, Irinel Chiorescu,
2008-2009 Florida State University Board of Trustees.
reserved.

: Initial state is 7->00010001<-0 (8 bits)

10 SEQCSi m : Bohm step_forwards(): (tPC=0)
rent state is 7->00011001<-0 (8 bits) ==> (0.707107 + i*0).
12 SEQCSi m : Bohm step_forwards(): (tPC=1)

rent state is 7->00011001<-0 (8 bits)

...(26 intermediate steps elided for brevity)...

66 SEQCSI m :Bohm step_forwards(): (tPC=28)

67 The new current state is 7->00011010<-0 (8 bits) ==> (0.707107 + i*0).
68 SEQCSi m : Bohm step_forwards(): (tPC=29)

69 The new current state is 7->00010010<-0 (8 bits) ==> (1 + i*0).

): The PC value 30 is >= the nunber of operations 30.

71 We are done!

and Liviu Oniciuc.

==> (1 +i*0).

==> (O 707107 + I*O) .
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4. EMPIRICAL MEASUREMENTS OF SPACE/TIME COMPLEXITY

To show that the space and time complexity of SEQCSinethdespond in the predicted manner to changes in the size
of the simulated circuit, we used the following procedurae ©f us (Oniciuc) wrote a simple tool to automatically
generate the requiregtonfi g. t xt andqopseq. t xt input files for SEQCsim, as well as correspondiggd circuit

files for QCAD, for Draper adders of any desired nunavet size of operands. Using this tool, we generated adfders
size 2x2 (2 addends, 2 bits each) up through size 2x14 (2 adddrts each), and ran QCAD and SEQCsim on each
one, on a typical Dell desktop running Windows Vista, whigasuring each application’s peak memory usage and CPU
time using the shareware Kiwi application monitor. Tésults were tabulated and used to generate the charts below

Fig. 1 shows how that overall memory usage of QCAD ¢ipresumably internally uses a traditional stateevect
based simulation technique) increases exponentially Wihcircuit size, whereas the memory usage of SEQCsim
remains essentially flat — it is dominated by the spaqeired for the standard C++ libraries which we use toige
functions such as text I1/0O and pseudo-random-number generation.

QCAD vs. SEQCsim memory usage

10,000,000
QCAD
@ 1,000,000 o— SEQCsim
X
QO
(@]
@©
(%2}
>
> 100,000
o
£
QO
£
X
& 10,000
a i)
= ——0——0——0—0—0—0—0
1,000

4 6 8 10 12 14 16 18 20 22 24 26 28
QFT adder circuit width (qubits)

Fig. 2. Overall peak memory usage, in kilobytes, of QGA&rsus SEQCsim, for Draper adder circuits of width 4 (2x2)
through 28 (2x14), as measured using the Kiwi application moniigures include pages allocated for shared DLLs,
but a comparison of private working set sizes, as measyréde Windows Task Manager in Vista, gives similar
results. QCAD'’s higher base memory usage is unsurprsimog it requires more libraries to support its GUloteN
that the vertical scale is logarithmic. Beyond about 18 IGICAD’s memory usage increases exponentially, as the
dynamic data set size exceeds the memory requirementsbakesAPI libraries; this behavior would be expected for
any simulator based on an explicit state-vector represmmtaNote that, in comparison, SEQCSim’s memory usage
remains essentially flat, at about 2 MB, throughout thigeaand most of this resides in shared libraries. Tikare

data point for QCAD for circuit width 28 because the rezgiimemory (about 4 GB) exceeded what was available on
the PC that was used for testing.
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The next chart, shown in fig. 3, shows in more detail the memory usage of SEQCsim increases as a furaftibe
number of gates in the quantum circuit (for the saateoftest circuits). There are some irregularitieshie graph,
which we hypothesize result from the fact that the remobpages allocated by the dynamic memory allocatyrvary
slightly from run to run depending on unpredictablédesz These irregularities could be minimized by averadieg t
results over multiple runs, but we have not yet dbiee tDespite the irregularities, there is a clearoalrinear trend in
the memory usage which is well accounted for by the &sing number of stack frames that must be allocated as the
number of levels of recursion (which is proportionathe depth of the circuit) increases. The actual trowate, if
measured more precisely and over a larger range, mayllpdbeaslightly faster than linear, because our current
implementation is somewhat inefficient in that itre®the values of multiple temporary local variabkesaah level of
the recursion. It would be possible to eliminate thésficiency through a more direct implementation that regalathe
recursion with a more specialized iterative routinetfaversing the tree of predecessors. This routine wanlidneed

to keep track of a single complex number (the accumuéatgglitude) at each level of the trée, for each gate.

Linear growth of SEQCsim memory usage with size of

guantum circuit
1960

1956

1952 y=0.1656x + 1895.9
R®=0.9282

1948
1944
1940
1936
1932
1928
1924
1920
1916
1912
1908
1904
1900
1896
1892

Peak memory usage (KB)

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

Fig. 3. This graph shows how the peak memory usage o€SiEQaried with the size in gates of the QFT-basedradde
circuits that were used for testing. The vertical skate is linear, and we can see there is a slight, rouglebyr|
increase in memory usage from 1900 KB to 1956 KB, in pagetgiK increments, as we go from 9 operations for the
2x2 adder to 315 operations for the 2x14 adder. The resibs@ewhat noisy due to slight runtime variations in
pages allocated by the memory manager because thess weselinot averaged over multiple runs. The extra 56K
required for the largest circuit size is easily accedrior by the increased number of stack frames that must be
allocated in order to get through all 315 levels of reonri the calcAmp() function in the final step. If desiréws
size of these stack frames could be further reduced freroutfient maximum of ~187 bytes to only a single complex
number (say about 8 bytes), by replacing the recursive funetibra more specialized iterative tree traverser.
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Finally, fig. 5 shows how the CPU time used by both QCa&ial SEQCsim varies with the width of the simulated
circuit. At present, SEQCSIim is about a factor of@velr than QCAD for larger circuit sizes. This is unssipg,
given that presently SEQCSim is highly flexible (gabésany width can be defined) and uses a relatively etdbor
recursive procedure to apply gates, as opposed to the maighttrward state-vector updating that must be done in
QCAD. There is much room for further improvement irQ&ESim’s performance.

It would be fairly straightforward to modify SEQCSimdarry out an ordinary state-vector representatiothefstate
until the limit of memory (or on-chip cache) is reachaull then revert to the recursive amplitude-calculagracedure
only for further state evolution beyond that point. Thaaild allow us to take full advantage of the available mgrtoor
boost performance, while retaining the ability to handlauis of larger sizes without crashing.

Alternatively, we can keep SEQCsim’s memory usage miniwidle giving it a substantial constant-factor penfance
boost by reimplementing its kernel using a custom or semorcustardware architecture. That approach will be

discussed in the next section.

QCAD vs. SEQCsim CPU time usage

100,000.
10,000. QCAD
1,000. —— SEQCsim
100.

10. /

CPU time (secs.)
[

0.1

0.01

4 6 8 10 12 14 16 18 20 22 24 26 28
QFT adder circuit width (qubits)

Fig. 4. Comparison of CPU time used by QCAD vs. SEQUBI 2x2 through 2x14 bit adders. QCAD’s greater CPU
time usage for small circuit sizes can be accountebyftihe fact that it has a GUI which is used to load theiitiand
display results, whereas SEQCSim presently does notcaweee that the CPU time for both algorithms inceease
exponentially, as expected, as the circuit width increaBash increase in circuit width by 2 bits results in alaout
factor of 4 increase in time complexity, as expectedhé case of QCAD this is because the state vectorlerdex;
whereas for SEQCSim it is because, for each additional Aiddends, there are 2 additional non-trivial gates
(Hadamard gates) in the circuit. The performance of GE@ could be significantly improved (beating that of
QCAD) by either leveraging additional memory (recaléotpfewer amplitudes), or by reimplementation in special-
purpose, single-chip hardware, an approach which is madblébstause of SEQCSim’s low memory usage.
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5. FPGA-BASED EMBEDDED ARCHITECTURE

Since the SEQCSim simulator has low memory neediteirisive arithmetic requirements, an FPGA-based hardware
accelerator is currently being designed to improve sitoulperformance. Speed-up factors of 10-100 are typically
achieved with FPGA-based accelerdfbrdn this section we discuss some design approachesvesploring.

5.1 Hardware Resources and Design Tools in FPGA Environmés

FPGAs have a large field of arithmetic resources thathe tailored to the algorithms needed. The new genereaitio
FPGAs like Xilinx Virtex have over 500 embedded 18x18-bit multipliewver a hundred 18 Kb memory blocks, and
over 100,000 logic blocks that can be used, for instance, as3200i@ adders. In contrast, today's cell-based ASIC
designs are relatively expensive (with mask charges of $4BDinm technology) and are often replaced by FPGA-
based solutions. The FPGA market share is growing tfasttwo leaders (Altera and Xilinx) report revenues of over
$1B annually. To make efficient use of the large arithmetsource available in FPGAs, two system level design
approaches are currently being considered.

The first is based on the use of Altera’s new C2H caeripilhich runs on any NIOS 2 based system. NIOS 2 is a
royalty-free 32-bit soft-core microprocessor that carcaefigured with 1-5 pipeline stages, with or without datd a
program caches, and many peripherals like UART or SDRitstfaces. The C2H compiler allows a quasi-automatic
conversion of ANSI-C code into FPGA hardware. Simplykntae function in your C code you would like to accelera
and the C2H compiler translates the C code into hardvieekiding register, arithmetic, memory blocks and the
required Avalon Bus interface. These new blocks are aduedtihe SOPC builder files that also allow running
testbenches in a gate level simulator. Additionab@irgy techniques and compiler directives can be used sofheare
coding of the application to force the use of on-chip drclofp memory, embedded multipliers or LUT-based
multipliers. The features of C2H can be summarized lasg®:

» Tight integration with software design flow

*  Push-button acceleration of ANSI/ISO C code

» Direct connection of hardware accelerators to CPUmongmap

»  Seamless support for pointers and arrays

» Efficient latency-aware scheduling and pipelining of rogniransactions

Since C2H provides automatic parallelization, the speedxtgsnore substantial than the previous often-used custom
instruction interface to NIOSI, that can only usesgister bank to exchange data between the host procasdaro-
processor. Related C2H user application accordiﬁ%;oes performance improvements exemplified by a convalutio
encoder (13x), FFT (15x), and matrix rotation (73><%. dantiast, a 256-point Nios FFT custom user function has been
reported with 45%-77%.e. less than a factor of"?" %?limprovement.

A second approach that is becoming more popular is the wse application-specific microprocessor with a custom
instruction set that can be tailored to the problemhaid avoiding the HW/SW partitioning bottleneck. Mixed
architecture description languages (ADLs) like EXPRESSIOMDES, or LISA that combine both the structural and
behavioral details of the microprocessor architecame preferréd. The language for instruction set architecture
(LISA), for instance, allows us to specify a procesastruction or cycle accurately using a few LI®perations, then

to explore the architecture using a tool generator (ferassembler, linker, and C-compiler) and profiler, andllff
determining the speed/size/power parameters via autorhasigathesized HDL cod®@'". Processor models like 32-hit
5 pipeline stage LT-RISC, 32-bit 3-pipeline stage LT-DSPLDiVLIW 5-pipeline stage are provided IPS and can
easily extended for the custom QC instructions.

5.2 Design concepts for an FPGA-based SEQCSim

In the present software-only implementation of SEQCHRi@++, the execution time of the compute-intensive &eim
the recursive calcAmp() routine is dominated by operatsoiech as basic bit manipulation (extraction and modifinat
of individual bits and small groups of bits in packed bittees representing classical basis states of thatagume
computer), basic arithmetic (addition and multiplication ftdfating-point complex numbers representing state
amplitudes), and control-flow operations implementirgyricursive procedure calls.

A custom multi-ported register structure for holding therenir basis state being explored would be useful for fast
extraction and modification of operand bits.
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A specialized multiply-accumulate unit for complex numharsed on a simplified floating-point number represemtatio
(which need not conform to the IEEE 754 standard) @aifisiantly speed up calculation of complex amplitudes.

The recursive C++ routine calcAmp() can be rewrittsnaacompact iterative kernel in plain C, which caentlibe
automatically transformed into equivalent dataflow &estamachine hardware by a tool such as Altera’s C2H cempil

A custom stack memory structure can be designed to replacele of the C procedure-call stack. Insteadafrey a
full C stack frame, it can store only the minimaloimhation needed for the algorithm, mainly just a complexiver
tracking the amplitude accumulated so far at a given levibledfree of possible trajectoriese(for a given gate).

Finally, the available RAM on-board the FPGA can bafigured as an associative cache memory to storathece
calculated amplitudes with LRU replacement, which vighgicantly speed up the recursive amplitude calculatioit, as
will avoid redundant recalculation of amplitude valuesofar as possible, given the limit of available mgmor

Using techniques such as the above, we believe that we tzn aldurther speedup of at least 50% in our FPGA-based
implementation of SEQCSim, as compared with our preSemtsoftware prototype running on standard PC hardware,
at which point SEQCSim will be significantly fasteanh existing simulators, as well as able to handigtarircuits.

6. CONCLUSION AND FUTURE WORK

We have developed and demonstrated a working softwaretypet of an extremely memory-efficient quantum
computer simulator, which will soon be released publichpigh the site http://www.eng.fsu.edu/~mpf/SEQCSim.htm.
Our prototype uses an amount of memory that increasgdiearly in the size of the quantum circuit beingnsiated,

at a proportion which was empirically found to be l&ss two hundred bytes of memory per gate in the pregeht s

A more carefully-optimized implementation should be dbldo even better, and achieve an asymptotic memaigeus
of only 1 bit per qubit, plus 1 complex number per typical naatrgate (such as a Hadamard gate or a general
controlled-Uy gate).

Due to its miniscule memory requirements, a simulatahisf class would be quite amenable for implementation in
custom or semi-custom special-purpose hardware arch#éeethich can be easily prototyped using FPGAs loaded with
embedded soft-core microprocessors such as Altera’s MIORilinx’s MicroBlaze, or a semi-custom processor
designed with the help of tools such as Altera’s C2HherLiSA tool set. Such a hardware-augmented implementatio
is expected to be able to outperform traditional softveag-quantum computer simulators by a factor of 50-100x.

As for the software-only version of our simulatos, jirogramming interface is presently rather cumbersoeqgijring
the user to define his or her quantum gates and gate segueplicitly using an ad-hoc text input format. Howeiter,
would be straightforward to reimplement the simulasyrsay, a set of classes in C++, or other objéetvad language,
which would allow the programmer to describe quantum dlgos using the full expressive power of the host
language, while observing a statistical behavior ofQibit objects that matches what would be obtained frondeal
guantum computer, whose operation can be mimicked by a vefsiom simulator that is running “behind the scenes.”

This future version of our simulator would be a neardideal for allowing students and researchers to veniui@
guantum programming and experiment with new quantum algoriththewvihaving to either learn a new programming
language first, or worry about running out of memory.
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