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Abstract

Today’s computers are based on irreversible logic devices, which have been known
to be fundamentally energy-inefficient for several decades. Recently, alternative re-
versible logic technologies have improved rapidly, and are now becoming practical.

In traditional models of computation, pure reversibility seems to decrease overall
computational efficiency; I provide a proof to this effect. However, traditional models
ignore important physical constraints on information processing.

This thesis gives the first analysis demonstrating that in a realistic model of com-
putation that accounts for thermodynamic issues, as well as other physical constraints,
the judicious use of reversible computing can strictly increase asymptotic computa-
tional efficiency, as machine sizes increase. I project real benefits for supercomputing
at a large (but achievable) scale in the fairly near term. And with proposed future
computing technologies, I show that reversibility will benefit computing at all scales.

Next, the thesis demonstrates that reversible computing techniques do not make
computer design much more difficult. I describe how to design asymptotically efficient
processors using an “adiabatic” reversible electronic logic technology that can be
built with today’s microprocessor fabrication processes. I describe a simple universal
reversible parallel processor chip that our group recently fabricated, and a reversible
instruction set for a more traditional RISC-style uniprocessor.

Finally, I describe techniques for programming reversible computers. I present a
high-level language and a compiler suitable for coding efficient reversible algorithms,
and I describe a variety of example algorithms, including efficient reversible sort-
ing, searching, arithmetic, matrix, and graph algorithms. As an example applica-
tion, I present a linear-time, constant-space reversible program for simulating the
Schrödinger wave equation of quantum mechanics.
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Chapter 1

Introduction and background

In this chapter, we describe (§1.1) and motivate (§1.2) the topic of this thesis, outline
some of the history of the body of research upon which this work builds (§1.3),
summarize the major contributions of this thesis (§1.4), and give a brief overview of
the contents of the later chapters (§1.5).

1.1 What this thesis is about

This thesis is a detailed study of the advantages (and disadvantages) of the use of
reversibility in computing. What do we mean by reversible computing? For our
purposes, there are two important meanings:

Logical reversibility. First, a computational operation can be logically reversible,
meaning that the logical state of the computational device just prior to the operation
(its input state) is uniquely determined by its state just after the operation (its output
state). Computing in a logically reversible fashion implies that no information about
the computational state of the system can ever be lost; any earlier state can always be
recovered by computing backwards from a given point. Another way to understand
logical reversibility is that the system is deterministic looking backwards in time.

In chapter 10 we will see that logical reversibility, in itself, has some interesting
computational applications. Chapter 9 will discuss how to program logically re-
versible computers. But the larger emphasis of this dissertation will not be on logical
reversibility by itself, but on the benefits to be gained from using logical reversibility
to enable another important kind of reversibility, namely, physical reversibility .

Physical reversibility. A physically reversible process is a process that dissipates
no energy to heat, and produces no entropy . It seems that absolutely perfect physical
reversibility is technically unattainable in practice in a complex, controlled dynamical
system, simply because there will always be some nonzero probability for a random
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event to occur (e.g., the impact of a cosmic ray, or an asteroid) that is sufficiently
energetic that it will interfere with even the most carefully-controlled and well-isolated
of systems. Nevertheless, physical reversibility is a useful concept, because (as we
will see in ch. 7) even with present-day electronic technology, we can already make
logic devices that are almost physically reversible, and we do not yet know of any
fundamental limits to how close we can get to perfect reversibility, as technology
improves.

As we will see in §2.5, logical reversibility is necessary in order to approach com-
plete physical reversibility. Chapters 6 and 7 will focus on the study of computing
devices that are both logically and physically reversible, and on their resulting im-
plications for the potential efficiency of computation. Usually when we speak of
reversibility in this thesis, we will be referring to this combination of logical and
physical reversibility, rather than to just logical reversibility by itself.

1.2 Motivation

Why study reversible computing? Aside from pure academic interest, we feel that the
study of reversible computing can be motivated in a fairly strong way, in terms of the
long-term goals of society in general and the field of computer science in particular.

For the productivity of society, and the growth of the economy, efficient informa-
tion processing is critical. A relatively small improvement in the speed and power of
computers facilitates progress in virtually every industry. The great value of informa-
tion processing has motivated the enormous technological investments fueling Moore’s
law, the trend of exponential improvement in computer speed and cost-efficiency that
has been maintained over the last half-century.

It is in society’s interest that computer technology continue to improve rapidly for
as long as possible. Therefore, it is important to identify various potential obstacles
to further improvements far enough in advance so that the research community has
time to develop solutions before such an obstacle has a chance to stall the rate of
progress. Or, if some truly insurmountable barrier to further improvement can be
identified early on, at least society will have time to prepare for the consequences.

The semiconductor electronics industry is well aware of a variety of potential ob-
stacles to further improvements of its technology over the next 10 to 15 years [145].
Even if these obstacles are overcome, we can expect that eventually a point will be
reached where it is technically or economically impossible to refine semiconductor
technology further. At that point, perhaps alternative computing technologies will
eventually emerge and supersede semiconductors. (We discuss several potential al-
ternatives in ch. 8.)

However, in the longer term, we can foresee a variety of more fundamental limits to
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the improvement of computer technology, limits that are qualitatively independent of
the particular technology used (such as semiconductors), and whose existence depends
only on well-established fundamental laws of physics. These fundamental limits will
become increasingly important as computer technology improves, whatever path it
takes. If we can, right now, identify some techniques that will allow technology to
perform as well as possible given these ultimate physical limits, then we will be well
prepared to cope with these limits once they become dominant concerns in computer
engineering. (We discuss this research philosophy in more detail in ch. 5.)

Not to keep the reader in suspense, one fundamental physical limit, known since
at least 1961 (Landauer, [97]), is that for every bit’s worth of computational infor-
mation that is discarded within a computer, at least one bit’s worth of new physical
entropy must be generated. Moreover, due to basic thermodynamic principles, this
entropy cannot simply be destroyed, but must instead be physically moved out of the
computer, if one is to keep the machine from eventually overheating. (We will explain
these constraints in more detail in chapter 2.)

In chapter 6 of this thesis, we establish that in order for a scalable computer
architecture to be as efficient as possible in the face of these constraints, the machine
must contain the capability to perform computations in a logically and physically
reversible manner, which minimizes the production of unnecessary entropy, and the
overhead of its removal from a densely-packed machine. This suggests a framework
for algorithm design in which information is considered as a conserved material-like
thing, embedded in 3-D space. As we will see, this is what information really is like.
The expert programmer should not mind expanding his expertise to working with
such a model, because it allows designing the best algorithms that are physically
possible.

The capability of reversibility is completely lacking from today’s processor de-
signs. But the technology now exists to remedy this situation, and Part II of this
thesis discusses how to design and program machines that use reversibility to achieve
asymptotically optimal efficiency. The high-level concepts of reversible circuits in
chapter 7 are described in terms of existing semiconductor technology, but are not
dependent on it: they can be applied equally well to a wide range of future logic-device
technologies that might emerge.

Near-term benefits. Present-day technology is far from the fundamental physical
limits of computation, but reversibility offers some of the same benefits today that
it will offer in the limiting technology. We now know how to build approximately
physically reversible computers using today’s electronic technology. These techniques
may have benefits in the near-term, in applications where energy dissipation is of
paramount importance (see §7.10). There may even be some near-term uses for logi-
cal reversibility by itself, regardless of physical reversibility, as discussed in chapter 10.
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But one must be careful: chapter 3 reveals some of the theoretical inefficiencies in-
curred when using logical reversibility by itself, in situations where saving energy and
minimizing entropy production are unnecessary.

In summary, motivations for studying reversible computing include both short and
long-term applications; the long-term ones being more fundamental. The major mo-
tivation lies in the economic value of making computers more efficient through re-
versibility, under any of a variety of measures of efficiency that are influenced by
energy dissipation. This thesis focuses on exploring how this can be done.

1.3 Brief history of reversible computing

In this section we briefly summarize some of the history of reversible computing
research. This is not intended to be a complete account. Some additional historical
information about particular sub-areas will be provided in later chapters. A more
comprehensive review of the early history of part of the field is provided in Bennett
1988 [18].

1.3.1 Early thermodynamics of computation

The study of thermodynamically and logically reversible computational processes has
historically been motivated by concerns in fundamental physics. For example, the
proper resolution of the famous “Maxwell’s Demon” paradox of thermodynamics (see
the papers in [100]) required understanding that the means of disposal of unwanted
information can be important when considering the thermodynamics of a system.

The first connection between computation and fundamental thermodynamics was
apparently made by John von Neumann ([182], p. 66). In a December 1949 lecture
at the University of Illinois, he reportedly performed a calculation of the thermody-
namical minimum energy that is dissipated “per elementary act of information, that
is, per elementary decision of a two-way alternative and per elementary transmittal
of 1 unit of information.” He quantified this energy as kBT lnN , where kB is Boltz-
mann’s constant, T is the temperature, and N = 2 is the number of alternatives to
be decided between. Unfortunately, there is apparently no existing complete record
of this lecture, or of any corresponding written analysis by von Neumann, so it is
difficult to determine exactly how he explained this analysis, how seriously he took
it, and whether it was actually original to him.

Rolf Landauer (1961, [97], §4) was apparently the first person to explicitly state
the argument establishing that the irreversible erasure of a bit of computational in-
formation inevitably requires the generation of a corresponding amount of physical
entropy (namely 1 bit = ln 2 “nats” = kB ln 2 ≈ 9.57×10−24 J/K). In that paper, Lan-
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dauer also recognized that reversible operations need not incur such dissipation, and
that any irreversible computation can be performed via a sequence of reversible oper-
ations by saving a history of all the information that would otherwise be irreversibly
dissipated. However, Landauer then proceeded upon the mistaken assumption that
the space occupied by this history record would have to be irreversibly cleared in or-
der to be reused, and concluded that therefore, reversible operations could not avoid
the fundamental unit dissipation incurred by each computational step, but could only
postpone it until the memory needed to be reused. To his credit, Landauer realized
that this argument was not rigorous, and did not present it as such.

1.3.2 Development of reversible models of computation

Landauer’s error was not caught until Charles Bennett (1973, [16]) discovered that the
reversibly-recorded history of an irreversible computation could also be cleared in a
logically reversible way, leaving only the input and the desired computational output
in memory. This refuted Landauer’s argument that each useful computational step
must incur, in the long run, at least about kBT energy dissipation. With Bennett’s
trick, the amount of memory that would need to be irreversibly cleared between runs
could be smaller, by an arbitrarily large factor, than the number of useful irreversible
computation steps that are reversibly simulated during the course of the computation.

Bennett described his technique using a formal Turing machine model, but later
researchers showed that Landauer’s trick of recording a history could also be applied
to permit other models such as cellular automata (Toffoli 1977 [160]) and logic cir-
cuits (Toffoli 1980 [161], Fredkin & Toffoli 1982 [74]) to operate reversibly as well.
Indeed, the Laundauer/Bennett techniques seem to apply generally to “reversiblize”
any model of computation.

1.3.3 Development of physically reversible logic devices

However, showing that logically irreversible operations can be avoided in useful com-
putations is only part of the problem of demonstrating that reversible computing
can save energy. The other part requires showing that physically reversible primitive
logic devices can actually be built. Bennett’s 1973 paper [16] suggested the possi-
bility of an enzymatic reversible computer using biomolecules, and in later papers
such as (1982, [17]) he described a clockwork mechanical Turing machine powered
by Brownian motion. Meanwhile, Fredkin and Toffoli had described an electronic
implementation (1978, [73]), and an idealized model based on the ballistic motion
of rigid spheres (1982, [74]), which we will describe in more detail in §7.7.1, p. 201.
Konstantin Likharev showed in 1982 [108] that superconducting Josephson junction
circuits could be used to compute in a reversible fashion.
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Later reversible device proposals (see ch. 8) include various mechanical and elec-
tronic proposals by the pioneering molecular nanotechnologists Drexler and Merkle
(Drexler 1992 [51], ch. 12; Merkle 1993 [123, 124]; Merkle & Drexler 1996 [126]), and
a single-electron system analyzed by Likharev and Korotkov (1996, [111]).

So at present, there is no shortage of reversible device ideas. Moreover, in the
years since Fredkin & Toffoli’s 1978 proposal [73] it has become quite feasible and
economical to build reversible devices using conventional VLSI electronic fabrication
techniques (cf. Athas et al. 1994 [5], Younis & Knight 1994 [193]); we will review
those developments in more detail in chapter 7.

1.3.4 Previous reversible computing theory

Independently of the type of reversible devices that are used, there are algorithmic
issues involved in performing large computations using logically reversible primitives.
For example, Bennett’s original reversible simulation technique is limited by the fact
that the algorithm requires an amount of temporary storage space that is proportional
to its run-time. In contexts where digital storage is expensive and energy is cheap,
one might do better by just discarding the bits instead.

So, in 1989, Bennett developed a more space-efficient version of his algorithm
[19]. Unfortunately, it incurs a polynomial slowdown factor that cannot be made
arbitrarily close to linear without making the space usage exponentially large (Levine
and Sherman 1990 [103]). Similarly, in 1997, Lange, McKenzie, and Tapp [98] gave
a general algorithm for reversible simulation of irreversible computations using no
extra space, but with exponentially inflated run-times. It remains an important open
problem to prove whether or not there is a single reversible simulation technique that
incurs overheads in neither space nor time, but, as we will prove in §3.4, any such
technique cannot be totally general, in the sense of applying to any conceivable model
of computation.

1.3.5 Optimal scaling of physical machines

This thesis takes the study of reversible computing beyond the traditional focus on
devices and classical complexity theory; chapter 6 introduces a new area of study,
namely of how reversibility affects the scaling behavior of the most powerful physically
possible computers, based on fundamental physical arguments.

The optimal scaling of computation within physically realistic constraints is an
issue that has been studied previously (cf. Vitányi 1988 [180], Bilardi & Preparata
1993 [24], Smith 1995 [152]), but never before with particular attention to how the
reversibility of physics allows reversible computation to improve physical scaling be-
havior. The research reported in this thesis is, to our knowledge, the first work that
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explores this new angle.

1.3.6 Programming reversible machines

We will save our review of the history of this area until chapter 9.

1.4 Major contributions of this thesis

The primary novel, original contributions of this thesis are the following:

• Chapter 2 gathers together and presents in an organized form a variety of
known fundamental physical constraints on information processing, that are
expected to apply to any physically possible computing technology, at least
in the non-relativistic regime. We conjecture that this is the first such listing
that is sufficiently complete that it encompasses all the fundamental physical
constraints (within that regime) that determine the maximum asymptotic scal-
ability of computers and algorithms.

• Chapter 3, section 3.4 (work done with Josie Ammer) underscores the over-
heads for reversibility in traditional models of computation by proving, for the
first time, that any completely general transformation of irreversible machines
to reversible ones must sometimes increase either the asymptotic computational
time or space requirements for solving some problems. It gives lower bounds
on the amount of increase required. The proof applies to cases where there
is reversible access to an external black-box ROM or oracle. It is conjectured
to also be true for pure models with no external black box. The proof might
be extensible to that realm if it assumes that one-way functions exist, as is
frequently assumed in cryptography.

• Chapter 5 presents a novel physically-realistic model of computation (the R3M
or “reversible 3-D mesh”) and conjectures a “tight Church’s thesis” claiming
that this model is asymptotically as powerful as is physically possible given the
constraints from ch. 2, within a constant factor.

• Chapter 6 proves that the proposed R3M model is asymptotically strictly
more powerful than any irreversible model of computation, by small polyno-
mial factors in the machine size. Specifically, reversible machines of physical
diameter D are shown to be asymptotically faster than diameter-D irreversible
machines, by a factor of Θ(

√
D ). Also, reversible machines of mass M are both

faster and more hardware-efficient than mass-M irreversible machines by a fac-
tor of Θ( 18

√
M ). These bounds are shown to apply to a wide class of parallel
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computations that require sufficiently tight communication, but that need not
be inherently reversible.

I consider the previous item to be the central, most important contribution of
the thesis.

• Chapter 8 uses the scaling results from ch. 6 together with parameters of
present-day and proposed future technologies to show that with present-day
technology, reversibility becomes advantageous at a reasonable scale, and in
future technologies, it will be advantageous at just about any scale.

• Chapter 7, section 7.6 does some novel analysis showing how to choose
speeds, voltages and temperatures so as to minimize energy dissipation in one
form of reversible electronics.

• Chapter 7, section 7.7 and appendix A present the design (for which I
was primarily responsible) of the world’s first ever fabricated reversible parallel
processor, which in principle obeys the scaling results of chapter 6 and thus is
asymptotically faster than all previous parallel processing architectures, which
are irreversible.

• Chapter 9 and appendices B through E present examples of reversible
instruction sets, programming languages, and algorithms. Similar efforts have
been undertaken before by other researchers, so this area of contribution is
not completely novel. However, much of my work proceeded independently of
the earlier efforts. This reinvention helps underscore my point that reversible
programming concepts are not difficult to master.

That completes our summary of the major contributions of the thesis. We will
revisit this list once again in chapter 11.

1.5 Overview of thesis chapters

Here we summarize the contents of the various chapters of this thesis.

Chapter 2 surveys what is currently known about the fundamental constraints that
known physics places on the potential capabilities of computing systems. We describe
limits on the speed at which information can travel, the density at which it can be
stored, and the rate at which it can cross a surface. We also review recent fundamental
limits from Margolus and Levitin (1996, [118]) on the rate at which a computer can
change state. We discuss the meaning and the computational implications of physical
reversibility and the second law of thermodynamics.
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Chapter 3 examines various formal theoretical models of reversible computing,
and describes all the known results in the area. Then the chapter focuses on proving
an important new conjecture in the theory of reversible computing: namely that in
ordinary, nonphysical models of computation, imposing reversibility on the model
must cause either the space or time complexity of some problems to increase. We
prove that the conjecture is indeed true in a model of computation that invokes a
contrived (but computable) oracle, and we establish lower bounds on the resulting
increase in complexity. This proof implies that if there is an algorithm for simulating
irreversible machines on reversible ones with perfect efficiency, then that algorithm
cannot be totally general (relativizable to all oracles), in contrast to all the reversible
simulation algorithms that are known currently.

Chapter 4 reviews the possibility of computation using large coherent superposi-
tions of states (quantum computation). Quantum computers are inherently reversible.

Chapter 5 introduces the concept of “ultimate” physical models of computing,
which are designed to accurately capture the true asymptotic complexity of all com-
putational problems under the laws of physics. Then the chapter outlines the form
that we will argue such models must take—namely, some sort of three-dimensional
mesh of potentially reversible processors.

Chapter 6 discusses how the use of reversibility affects the scaling behavior of
computers in several important respects. Due to their unavoidable generation of
entropy which must be removed, irreversible computers turn out to ultimately be
limited to processing rates that are only proportional to their surface area. In contrast,
if a computer uses devices that are reversible, even in a limited sense that takes
frictional effects into account, then it can perform Θ(

√
d ) times more operations per

second within a physical space of diameter d. Even if we do not constrain the physical
area of the computer, but only its mass (number of processors), reversible computers
are still faster at some problems by a factor that grows as Θ( 18

√
n ) where n is the

number of processors.

Chapter 7 describes and analyzes in detail some known reversible circuit tech-
nologies, how they perform as various parameters are scaled, how they compare to
traditional circuits, and how to design processors based on these techniques that real-
ize the scaling benefits described in the previous chapter. We describe a very simple
example of such a processor that we designed.

Chapter 8 reviews a variety of advanced logic technologies that have been proposed
for use when the limits of traditional VLSI are reached. Then, we use our scaling
results from chapter 6, together with parameters of the proposed technologies, to show
that if we assume reasonable limits on future cooling systems, then any computers
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of macroscopic size that are built using these future technologies will be considerably
faster if their logic elements are operated reversibly.

Chapter 9 illustrates in detail how to program reversible computers.
Instruction sets. We start with a description of some properties that a good

reversible microprocessor machine instruction set needs to have, and how we achieved
these properties in our group’s Pendulum instruction set architecture.

High-level languages. Next we describe important issues in the design of high-
level programming languages for reversible processors. Special programming lan-
guages are required in order to permit optimum efficiency on reversible processors.
We describe the simple reversible programming language “R” which we designed and
wrote a compiler for.

Algorithms. Finally, we describe some good reversible algorithms for a num-
ber of problems, including sorting, searching, arithmetic, matrix operations, graph
problems, and simulations of physical systems.

Chapter 10 briefly discusses some potential alternative applications for reversible
computing, aside from the energy dissipation issues. These include applications in
hardware error detection, protecting against accidental or malicious data destruction,
program debugging, transaction processing and database rollback, and speculative
execution in multiprocessors.

Chapter 11 summarizes the progress in reversible computing achieved in the thesis,
and points out the main areas where future work is needed.

Appendix A shows circuit schematics and VLSI layouts for the proof-of-concept
parallel reversible processing element we describe in chapter 7.

Appendix B gives program-level specifications for PISA, the instruction set archi-
tecture for Pendulum, our group’s reversible RISC processor design.

Appendix C gives a complete account of “R,” the simple C-like reversible pro-
gramming language we developed.

Appendix D describes our compiler, written in Common Lisp, which translates R
source programs into reasonably efficient PISA assembly code.

Appendix E gives the detailed derivation and code for our reversible program for
simulating the Schrödinger wave equation of quantum mechanics (our illustration of
an efficient reversible physical simulation).

Appendix F gives tables of mathematical units, constants, and notations used in
the text, for easy reference.
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1.6 Overall message of thesis

The overall message of this thesis is that (1) reversible computing techniques are not
very different from or more difficult than ordinary computing techniques, and (2)
they will definitely be a necessary part of the long-term future of computing.

It is hoped that this thesis will help to convince the larger computing community
of these very important points, and thus help to spur further research in this field.
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Part I

Foundations of reversible
computing
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Chapter 2

Physical constraints on
computation

In this chapter we briefly review some of the important fundamental constraints that
physical law places on computational capabilities. These constraints will serve as the
basis for the arguments in chapter 6, which will establish that reversible models are
necessary for permitting the maximum possible computational power in the limiting
technology.

Most of existing computer science theory today deals not with physics, but with
abstract realms of pure mathematics, exploring a plethora of different models of
computation having wildly varying capabilities. Sometimes these theoretical models
have capabilities substantially different from those of physics as we know it.

But real-world computers are physical devices, and their ultimate potential capa-
bilities are defined not by some arbitrarily-chosen model, but rather by the hard facts
of physical law. Unfortunately, physics is not yet completely understood (witness the
lack of an accepted unification of quantum mechanics with general relativity), and
even those parts that are well understood are not usually described in terms that
facilitate the use of physics itself as a model of computation.

However, physics does constrain information processing in a number of important
ways that can already be identified with fairly high confidence.

2.1 Propagation speed limits

The most obvious physical limit important to information processing is the lightspeed
bound for the speed at which information may propagate through space.

Physical dynamics, as currently understood, proceeds purely through local inter-
actions; there is no “action at a distance.” Even gravity, thought by Newton to be
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an instantaneous force, is now understood, in the context of general relativity, to
propagate through space at only the speed of light, c ≈ 3× 108 m/s.

Even the quantum-mechanical systems that are sometimes interpreted as demon-
strating “spooky action at a distance” (such as separated EPR pairs), can be ex-
plained instead in terms of local interactions. As we will review in chapter 4, quantum
dynamics is based on an “amplitude function” which is a function of the global state
of a system (the whole universe if you like). This leads to a statistical behavior that
may at first appear to require nonlocal interactions, but the wavefunction actually
evolves over time through a transformation (the Hamiltonian) that can be expressed
as a composition of interaction terms that are entirely spatially local.

In general, due to the locality of underlying physical law, all influences are re-
stricted to traveling, at most, at the speed of light. Thus, the physical transmission
of information in a computer is limited to this speed as well.

This bound is “tight” in the sense that it is, of course, already achieved in practice
in our ubiquitous telecommunication systems, and in optical interconnection networks
in some computers. Signals in typical electrical transmission lines travel a bit slower,
about half the speed of light. But propagation times are still linear in the distance
traveled.

One important exception is that signals in low-inductance, resistive wires (such
as the wires on integrated circuit chips) do not actually travel at constant speed, but
rather, for long wires, require propagation time that is proportional to the square of
the length ` of the wire, in accordance with the diffusion equation. This unfavorable
scaling presents problems in integrated circuit design today. However, even with
current technology, this `2 scaling is not inevitable, but can be avoided through simple
schemes such as periodic re-buffering of the signal.

2.2 Information density limits

Another important constraint for computation results from physical limits on the
amount of information that can be stored within a given volume of space (such as
memory in a computer). We can say with confidence that some such bounds do exist,
but unfortunately their exact value is hard to determine. However, these bounds will
be very important in our later arguments about the advantages of reversibility, so we
will now take some time to look at the various possible answers in some detail.

Fundamental quantum mechanics appears to dictate a particular finite upper
bound on the total amount of information (including entropy) that can be contained
in any system, as a function of the system’s physical volume and the amount of energy
it contains. By the amount of information in a system, we mean simply the logarithm
of the number of states that the system could occupy, given some definition of what
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constitutes “the system.” (See §2.5.2.) According to Margolus (1996, [118]),

[The question of the number of states] is really a very old question: the
correct counting of physical states is the problem that led to the intro-
duction of Planck’s constant into physics [137], and is the basis of all
of quantum statistical mechanics. The question can be answered by a
detailed quantum mechanical counting of distinct (mutually orthogonal)
states. It can also be well approximated in the macroscopic limit [87, 184]
by simply calculating the volume of phase space accessible to the system,
in units where Planck’s constant is 1.

Let us look at some particular information density bounds in more detail.

2.2.1 Entropy bounds from black hole physics.

Some particular upper bounds on information content as a function of system size
and energy are given by Bekenstein (1984, [15]) and by Joos and Qadir (1992, [88]).
Bekenstein’s bounds, which originally came out of his studies of the entropy of black
holes (e.g., [14]), are fairly loose, in the sense that his bounds may conceivably be
much higher than the maximum information content for systems other than black
holes. One bound Bekenstein gives ([15], eq. 1) is:

S < 2πER/~c, (2.1)

where S is the capacity for entropy or information (in natural log units or nats), E
is the total energy (including rest mass-energy) in a system, and R is the radius of
the system.

The maximum mass-energy for a system of given radius is of course achieved only
in the case of black holes, since anything with a black hole’s mass within a black
hole’s radius has such a high surface gravity that it is a black hole. The radius of a
black hole is proportional to its mass M according to R = 2GM/c2 (Wald 1984 [183],
p. 124, eq. 6.1.45), and so the energy of any system of that radius is bounded by the
black hole rest energy,

E ≤ c4

2G
R (2.2)

where G is Newton’s gravitational constant, G = 6.67259× 10−11 N m2/kg2.
Combining (2.1) and (2.2), we have

S <
πc3

~G
R2. (2.3)
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In other words the entropy of a system is ultimately bounded in proportion to its
minimal surface area, rather than to its volume! This is somewhat counter-intuitive.
Perhaps one way to understand this result is the following: Imagine growing a black
hole up from a tiny size by throwing objects into it. Due to a gravitational time
dialation that stretches to infinity as objects approach the horizon, items we throw at
the hole never actually enter it from our point of view; the objects just keep getting
closer and closer to the event horizon “surface” of the hole (and the light from them
gets more and more red-shifted). From that point of view, all the information about
everything we throw into the hole is held at the hole’s surface. So it is perhaps
understandable that the horizon area should scale up in proportion to the amount of
information held there.

If this is indeed the case, the information density at the event horizon given by
Bekenstein’s bound is truly enormous: 1/4 nat of entropy for each square of area
that is 1 Planck length, or `P =

√
G~/c3 = 1.62 × 10−35 m, on a side. That is, an

astounding 2.21×1070 bits per square meter, or 2.21×1050 bits per square Ångstrom
(roughly atom-size) area. (It’s probably safe to say that DRAM densities won’t reach
that level for a while!)

In any case, black holes are certainly not a very good place to store information
that we might want to retrieve later, although they might conceivably be a good place
to dump unwanted entropy. Macroscopic black holes have intrinsic temperatures near
absolute zero, and in contrast to most systems, they get cooler as you dump more
energy and entropy into them! (Cf. eq. 26 in Smith’s paper [152], and his references
to Hawking, his source.) So a black hole would be a sort of natural heat sink, cooler
even than the cosmic microwave background which is at ∼3 K. But for the foreseeable
future, black holes will remain rather hard to come by, so it behooves us to also
consider where we stand without them.

2.2.2 Entropy bounds for a photon gas.

Much tighter bounds can be given for the entropy of normal (non black-hole) systems,
given additional assumptions about their composition. This is done in Bekenstein’s
paper [15], as well as in papers by Joos and Qadir [88] and Smith (1995 [152]) and
the related literature. Smith argues that for high-temperature systems (above 1000
K or so, roughly the melting point of ordinary solids), the maximum entropy density
for a given mass density is approximately achieved (within a small constant factor)
by a thermal photon gas, in which the entropy density (entropy per unit volume) is
([152], eq. 22)

S

V =
16
√

π

3 · 601/4

(
c

~
· M

V
)3/4

(2.4)
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where M/V is the energy density of the photon gas, in mass units.
This equation would appear to allow arbitrarily high entropy densities to be

achieved by raising the temperature and mass-energy density, except that actually
of course the energy density is itself limited as a function of a system’s size, since
beyond a certain point the system would form a black hole.

A full general-relativistic analysis of the situation would of course be very complex,
but as a simplifying first approximation, let’s derive the maximum entropy density of
a sphere of photons without taking GR into account, except in the sense of allowing
it to set a maximum energy for a system of given radius.

Using eq. (2.2) we find that a sphere of photons of (nonrelativistic) volume V =
4
3
πR3 must have energy density

E

V ≤ 3 c4

8π GR2
(2.5)

i.e., mass density

M

V ≤ 3 c2

8π G R2
(2.6)

to avoid gravitational collapse. Substituting this into eq. (2.4), we find that non-
black-hole entropy is bounded by

S ≤ 64

9 · 601/4

(
3π

8

)3/4
c9/4

(~G)3/4
R3/2 (2.7)

≈ 2.889

(
R

`P

)3/2

(2.8)

where `P is again the Planck length. This bound, interestingly, scales with increasing
radius even less rapidly than in the black hole case, where we had S = π(R/`P)2.
Incidentally, the ratio SBH/SPG between black-hole entropy and maximum photon-
gas entropy in this (admittedly simplistic) analysis is

SBH

SPG

≈ 1.087

√
R

`P

. (2.9)

This ratio is required to be ≥ 1 by Bekenstein’s argument that black holes always
maximize entropy, which implies R & 0.846 `P, perhaps suggesting that R ≈ 0.846 `P,
or thereabouts, is a minimum physical length in some sense. The entropy of either a



36 CHAPTER 2. PHYSICAL CONSTRAINTS ON COMPUTATION

black hole or maximum-energy photon gas sphere having that radius is ∼ 3.24 bits,
suggesting perhaps there is an absolute upper limit to entropy density for objects of
any size, on the order of ∼ 1.28 bits/`3

P, or ∼ 3.03 × 1098 bits/cm3. Of course this
density would not be achievable for any object greater than about a Planck length in
size.

But even for larger objects, our new bound (2.8), though lower than before, is
still extremely high; for example, an object as large as the Earth could still have an
average entropy density of 117 Gigabytes of information per cubic Ångstrom without
exceeding this limit.

Given this, it is probably necessary to back a little further away from fundamental
theoretical arguments, if we want to achieve any sort of meaningful bound.

2.2.3 More reasonable mass densities.

One observation is that if we rule out burying our computers inside star-sized or at
least planet-sized masses of gravitating material, then there is probably no way to
apply enough pressure to get their average mass density to be much greater than in
ordinary solids. At a mass density of 10 g/cm3 (about that of lead), eq. 2.4 gives only
36 kilobytes per cubic Ångstrom.

However, achieving even this much more reasonable entropy density using photons
requires extremely high temperatures. The temperature of a photon gas of energy
density ρE is (solving Smith’s [152] eq. 13 for T ):

T = 4

√
ρEc

4σSB

(2.10)

where σSB is the Stefan-Boltzmann constant,

σSB =
π2

60

k4
B

c2~3
(2.11)

Achieving a mass density of 10 g/cm3 (That’s one heavy field of light!) thus
requires a temperature of roughly 109 Kelvins. It is difficult to see how such high
temperatures can possibly be maintained at ordinary pressures without completely
destroying any structure the computer might have. Thus we need to move to still
more conservative estimates.

2.2.4 More reasonable temperatures.

For example, at a more feasible temperature such as the melting point of copper,
1356 K, the energy density of light is only 2.56× 10−9 J/cm3, so it is essentially
weightless, at 2.85×10−23 g/cm3. Moreover, the entropy density is then only 0.74 bits
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per cubic micron. (This makes sense since ordinary visible light, emitted by glowing
but still-solid blackbodies, has wavelengths on the order of a micron.) This clearly is
much less than the entropy density of the hot copper atoms themselves, which exist
at a density of roughly 0.08 atoms per cubic Angstrom. So at temperatures where
any useful solid structure can exist, the energy density of light is very low, and it is
also far from maximizing the possible entropy density.

What is the entropy density in an ordinary solid material like lead? It may
conceivably be on the order of kilobytes per atom, as we calculated above for light of
the same density, if information about the nuclear structure is included in the count—
after all, Smith’s argument tells us to count the total mass-energy of the system in
computing his bound.

However, without a reliable way to probe the structure of nuclei, most of this
information, even if it is there, will be inaccessible as a place to store information for
later retrieval. The nucleus may nevertheless be capable of absorbing some amount
of thermal information (heat entropy), but I have not researched whether a figure
as high as 36 kilobytes of entropy at normal temperatures is consistent with what is
known about nuclear structure and the heat characteristics of atomic materials. If
variability in the nuclear structure does not make a large contribution to total atomic
entropy, then the actual maximum entropy per atom in normal solids is probably
much lower than the 36 kilobyte figure.

However, at room temperatures, entropy density is probably not much lower than
on the order of 1 bit per atom (or per cubic Ångstrom), since at those temperatures
atoms have enough energy to jiggle around a little, and so will have on average
1 nat (kB) of entropy (kBT energy) per vibrational degree of freedom. For three-
dimensional vibrations, there are six degrees of freedom, three of position and three
of momentum, so this gives 6 nats/ ln 2 ≈ 8.66 bits per atom. There should also
be entropy contributions from variability in the nuclear spin orientation, and from
electrons that are free to roam in molecular orbitals or in conduction bands. But
most atoms are somewhat larger than 1 Å

3
in volume, so 1–10bit/Å3 is still probably

the right overall order of magnitude for entropy density in normal materials.
A more detailed (but still fairly crude) analysis based on actual thermochemical

data from the CRC handbook [107] suggests that experimentally, at atmospheric
pressure, the entropy density for copper is indeed found to be in the rather narrow
range 0.5-1.5 bits/Å3 for a wide range of temperatures from room temperature up to
its boiling point, and moreover that the entropy densities in a variety of other pure
elemental materials are also close to this level. For mixtures, we would expect the
entropy density to be potentially greater, due to the additional degree of freedom
implicit in choosing what species of atom resides at any given location.

Table 2.1 summarizes the above results by giving the average entropy density of a
sphere of radius 1 meter that contains the maximum entropy according to the various
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Material
Upper bound on
entropy density

Caveats

Black hole 4.14×1039 b/Å3 Need mass ≈ Saturn; can’t get info. out
Non-black hole 1.53×1022 b/Å3 Requires nearly as much mass
Normal density ∼ 3×105 b/Å3 May require billion-degree temperatures
Atomic matter ∼ 1–10 b/Å3 Hand-waving estimate.

Table 2.1: Theoretical limits on entropy or information density for a 1-meter-radius
sphere, in various scenarios. The radius is important because in the high-gravity
regime, the maximum average entropy density decreases with increasing size. It is
difficult to know which of these limits, if any, might someday be approachable in real
computational systems.

bounds. (Keep in mind that entropy actually scales less rapidly than volume for the
systems near black-hole mass.)

This concludes our discussion of information density limits. Although we were
unable to determine precisely the maximum density that was possible, we saw that
entropy density does appear to ultimately be limited by some function of energy
density, such as in eq. (2.4). Furthermore, much of a system’s rest mass-energy
may not count for purposes of this calculation, if it is energy that is tied up in an
inaccessible nucleus, for example. At this stage I believe it would be premature to
predict that a density greater than say ∼ 10 bits per cubic Ångstrom could ever
actually be achieved for stable, retrievable storage of information. I would need
more information before I could make a similar statement regarding thermal entropy
densities.

2.3 Information flux rate limits

Another physical quantity of importance in computation is the maximum flux (rate
of flow per unit area) of information or entropy through any surface in the computer.
We should point out that one class of bounds on this quantity immediately follows
from the bounds of sections 2.1 & 2.2, as follows.

Suppose a material having entropy density ρS passes through of surface at velocity
v. Then the entropy in that material is crossing the surface with exactly the flux
FS = ρSv. Section 2.2 gave us bounds on the maximum value of ρS, and the maximum
v is of course c, so this leads immediately to corresponding bounds on FS.

One caveat is that in normal materials traveling at near the speed of light, the
relativistic length contraction of the material should increase its effective entropy
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density, according to

ρ′S = γρS (2.12)

where

γ =
1√

1− v2/c2
(2.13)

is the normal relativistic correction factor (cf. [52]). We assume that a given chunk of
material maintains the same entropy at high speed, but is compacted into a shorter
space. This would seem to allow arbitrarily high fluxes to be attained.

However, in addition to this compression into a smaller volume, the chunk will
also have its mass-energy increased (in the reference frame of the stationary surface
through which the material is passing) by another factor of γ, so that the mass-energy
density of the moving material will actually scale as

ρ′M = γ2ρM. (2.14)

and so, solving (2.14) for γ and substituting into (2.12), the entropy density actually
scales as

ρ′S
ρS

=

√
ρ′M
ρM

; (2.15)

i.e., the increase in entropy density only scales as the square root of the energy
density. So asymptotically, we could thereby do no better than with light, which
already travels at lightspeed and where the entropy density scales with the energy
density to the 3/4 power, according to eq. (2.4). So the maximum entropy flux we
derive from our entropy density bounds is not exceeded in materials traveling at
relativistic speeds, if the energy invested in accelerating the material to that speed is
taken into account.

Smith 1995 [152], p. 6, eq. 7 gives an explicit formula for the maximum entropy
flux FS using light, given an energy flux FE:

FS ≤ 4

3
σ

1/4
SB F

3/4
E (2.16)

This is the formula for the entropy flux emitted by a blackbody that is at the appro-
priate temperature to emit energy flux FE. As Smith points out, there is a simple
proof that this is the maximum entropy flux that can be transmitted with photons
given that energy flux. Imagine using photons to continuously transmit energy and
entropy through a small aperture into an insulated box (a perfect blackbody). The
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interior of the box will heat up, and, at equilibrium, will radiate energy out of the
aperture exactly as fast as it is coming in (since energy is conserved), and will also
radiate entropy out at least as fast as it comes in (since global entropy cannot de-
crease). Therefore the entropy flux of the thermal blackbody radiation coming out of
the box upper-bounds the achievable entropy flux of the light coming in, which may
be of any form (coherent, etc.).

At this point we could go on to calculate upper bounds on information flux at any
energy based on the black hole limits to entropy density that we discussed in §2.2.
For example, for a postulated minimum-size (Planck-length scale) black hole moving
at near the speed of light, we estimate entropy flux would be around 10109 bit/s-cm2.
However, this sort of bound is rather far from anything meaningful, since it does not
represent a sustainable rate, or a rate achievable over an area much larger than a
Planck length—black holes placed near each other would rapidly conglomerate into
a larger black hole with lower entropy density. Even if we were so bold as to allow
for the use of such exotic objects as black holes as computer components, properly
accounting for gravitational effects in such systems would make our scaling analysis
of chapter 6 much more complex. So instead, for the rest of the thesis, we will ignore
high-gravity situations, and instead focus only on the bounds obtained for normal
matter.

2.4 Computation rate limits

In chapter 6 we will examine in detail how certain kinds of limits on computation rates
for irreversible and imperfectly-reversible computers can be derived from the limits
on information flux we saw in §2.3. However, there are other limits on processing
rates that apply even to perfectly reversible computers.

In particular, there is the result of Margolus and Levitin (1996, [118]) that the
fundamental laws of quantum mechanics imply that the maximum rate ν⊥ at which
a system at an average energy E (above some minimum energy E0) can transition
between distinguishable (i.e., orthogonal) states is

ν⊥ ≤ 4(E − E0)/h. (2.17)

This bound is derived in a totally general way, and applies even for systems traveling
at relativistic velocities. Insofar as any computational operation requires that some
part of a system change from one distinct state to another, Margolus and Levitin’s
bound is an absolute upper limit on the rate at which operations can be performed
within a computer.

Further, Margolus suggests [personal communication] that for systems in which
not all the system’s energy is accessible for computational purposes (for example, if
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some of it is in the form of heat, or tied up in rest mass), it is the free energy of the
system, rather than its total energy, that determines the maximum rate at which the
system can transition between useful computational states according to eq. (2.17).

As a simple example, a single electron excited to a potential of 1 Volt above its
ground state contains 1 eV of accessible energy and thus can never perform com-
putational steps (or any state change) more rapidly than at a rate of 4 eV/h =
9.67×1014 Hz, or about once per femtosecond.

2.5 Reversibility of physics

Another physical constraint of great importance for computation is that all physical
dynamics is reversible (invertible), that is, it is deterministic looking backwards in
time. (See figure 2.1.)

Quantum mechanics is sometimes described in nondeterministic terms, but it is
actually perfectly deterministic (and reversible) at the level of the evolution of the
quantum wave function. The apparent nondeterminism of quantum events can be
interpreted as merely a subjective, emergent phenomenon that is predicted perfectly
well by the underlying deterministic theory [57].

One possible exception to reversibility may be black holes, which, in some the-
oretical arguments, are found to destroy information (see Preskill 1992 [138] for a
review of the situation). However, there is currently no accepted, complete theory
of black hole physics from which we could draw indisputable theoretical conclusions,
and there is no experimental evidence that supports information loss. The truth of
the issue is still being actively debated (e.g., [55, 120]). Moreover, it appears that
some recent developments in string theory would allow reversibility to be maintained,
if the theory is correct (Myers 1997, [130]).

In any case, it seems to be the general consensus among physicists that reversibility
is certainly maintained in at least all areas of mechanics that do not involve extreme
situations such as black holes. So regardless of the black hole situation, physics
remains reversible for all practical purposes.

2.5.1 Physical reversibility and information erasure

Another way of characterizing physical reversibility is that two states (of a classical
system, or of a quantum wavefunction) that are initially distinct can never evolve to
become the same state at some later time. (In the language of functions, the system’s
transition function over any time period is one-to-one/bijective/invertible.) Conse-
quently, the number of possible states of a system is irreducible over time; we say that
the system’s state space is incompressible. The invertibility is a simple consequence
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Figure 2.1: Forward and reverse determinism in physics. Normal forward determinism
means that a single state cannot evolve to become one of two different states at any
single later time, and similarly, reverse determinism or just reversibility means that
two initially-distinct states cannot evolve to become the same state at some later time.
Physics is both forward and reverse deterministic, and so the possible trajectories of
a system through configuration space-time never intersect.
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of the fact that in any standard description of physics, such as Hamiltonian dynam-
ics, an isolated physical system evolves according to a time-differential equation. The
differentials apply equally well in either time direction.

[Note: Our “incompressibility of state space” concept is closely related to, but not
the same thing as, another property that is shared by all systems with Hamiltonian
dynamics, namely that their “phase space volume” is incompressible. However, we
will not delve into those rather subtle distinctions here, as they are not important for
our immediate purposes.]

In any event, the incompressibility of state space has an important consequence
for information erasure within a computer, first described explicitly by Landauer [97].
Whenever we attempt to irreversibly erase a piece of information from a computer,
that information is not truly destroyed, but instead is simply transferred to another
part of the system, typically to the uncontrolled thermal state of the computer and
its environment. We explain in more detail with reference to figure 2.2.

The figure illustrates a 1-bit piece of computational state within a computer. We
wish to perform an “erasure” operation, which we may characterize as an operation
that transforms that bit to a zero regardless of whether it was originally a 0 or a 1.

In addition to the bit in question, the computer also contains some amount of
other information in the form of other bits in memory, together with the entropy of
its thermal state. Let N denote the number of possible states of the system, apart
from the bit in question.

We want our “erase” operation to operate correctly, independently of which of the
2N possible states the combined system is in. Due to physical reversibility, each of
these 2N states must be mapped to a distinct state after the erase operation—but
all of those states have value 0 in the erased bit. Thus there must be 2N possible
states of the rest of the system, after the operation. The amount of information in
the rest of the system has therefore increased by lg 2N − lgN = 1 bit.

So the presumably erased information has not really been destroyed, but is still
present somewhere, either in some other part of the computational state or in the
thermal state. The original value of the bit could in principle be retrieved by, for
example, running the laws of physics backwards.

However, if the information has been lost in a sea of thermal chaos, then in practice
there is no way to reconstruct the original value of the bit.

2.5.2 Reversibility, entropy, and the second law

We now see how physical reversibility can be understood to imply the second law of
thermodynamics.

The second law of thermodynamics states that the total entropy of any closed
system cannot decrease. What is entropy? Quantitatively, it is the logarithm of the
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Figure 2.2: Information “erasure” under reversible physics. In order to erase an
unknown bit and thereby reduce the number of possible digital states of the computer
by a factor of 2, one has to make up for this by increasing the number of possible
thermal states of the rest of the system by a factor of 2.
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number N of possible states of a system. The base of the logarithm determines the
unit of entropy: if the base is e ≈ 2.718 . . . , the base of natural logarithms, then we
might call the corresponding unit of entropy 1 nat , equal to Boltzmann’s constant
kB. If the base is 2, then the unit of entropy is called 1 bit . Thus, 1 bit = (ln 2) nat ≈
0.693 nat.

If entropy is the log of the number of possible states, what, then, do we mean by a
“possible state?” This depends entirely on the context, specifically on how we define
what constitutes a legal example of “the system” in question.

However, even with this broad definition of entropy, we can already make some
meaningful statements about entropy in connection with reversibility. First, it is
clear that if the entropy of a system were to decrease over time, then the system
would not be reversible, because we would have an example of multiple possible
initial states evolving to become a smaller number of resulting final states, violating
the incompressibility of state space that is implied by reversibility. Therefore, the
reversibility of a system immediately implies that its entropy can never decrease over
time.

There is a similar connection between entropy increase and determinism. In a
deterministic system, state space is “inexpandable” since a given state can not evolve
to more than one possible new state in a given amount of time. Thus the number
of possible states cannot increase, in this strict sense, and so deterministic systems
undergo no “true” increases in entropy.

However, even if a system is deterministic, we may find it convenient to label more
and more states as “possible” over a system’s time evolution, simply because, given an
incomplete model of a system’s initial state, we may lose track of the exact trajectories
of the initially possible states over time, and so many additional states may become
possible over time from the point of view of the model. In such circumstances, it is
convenient to say that entropy increases. An example is the situation in figure 2.2
(p. 44). Suppose we have constructed an initial condition in which only the “1” value
of the bit is possible, so the entropy before the “erase” operation is just lnN . But
since we fail to model what becomes of the information that the bit is 1 after the
“erase” operation is performed, the entropy of the system under the model increases
to ln 2N . This increase will happen whenever a non-entropy bit turns into thermal
form, because the evolution of the micro-state of a thermal system is, by definition,
un-trackable by us.

We thus can state the following principle: Total entropy increases (permanently)
by at least 1 bit’s worth any time a bit that is originally non-entropic moves to reside
in a thermal system. Furthermore, this happens whenever a digital bit is erased,
unless (a) the bit was already entropy, in which case moving it to thermal form does
not necessarily increase total entropy, or (b) the bit is canceled out instead, by un-
computing it from other bits of state with which it is correlated.
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2.5.3 Entropy and energy

As we just saw, the second law of thermodynamics states that the entropy of a closed
system cannot decrease over time. We saw that it also cannot increase, except in the
sense that our incomplete model of the system may lose track of what happens to a
state over time, so that more states become “possible” from the point of view of the
model. However, entropy can be moved from one subsystem to another.

Correspondingly, the first law of thermodynamics states that the energy of a closed
system can neither increase nor decrease, but can only be moved from one subsystem
to another.

How are these conservation laws for energy and entropy related? We find empiri-
cally that in order to increase or decrease the entropy of any subsystem (not counting
increases due to deficiencies in our model), we generally must also increase or decrease
its energy (given a closed, constant-volume system). For sufficiently small changes in
entropy, we find that the change in energy required is proportional to the change in
entropy. The constant of proportionality is called the temperature T of the subsystem.
Formally,

T = ∂E/∂S. (2.18)

This is a perfectly valid definition of temperature, in terms of the relation between a
system’s energy and its number of states.

Under this definition, 1 Kelvin of absolute temperature is definable as a require-
ment of ≈ 1.38×10−23 J of energy per 1-nat increase in entropy. A nat of entropy
can therefore also be expressed in units of energy per unit temperature, such as
1.38×10−23 J/K. In such form, 1 nat of entropy is often referred to as Boltzmann’s
constant kB.

From all this, it follows immediately that the amount of energy E that must be
added to system in order to double its number of possible states is just

E = kBT ln 2 (2.19)

since kB ln 2 is just a 1-bit increase in entropy, and multiplying by the system’s tem-
perature just converts this entropy increase to the required change in energy, by the
definition of temperature.

2.5.4 Logical irreversibility and energy dissipation

We saw in section 2.2 that in any system with particular size and energy there is a
consequent upper bound on the entropy that system can contain. If a given system is
found to contain less entropy than the maximum given the amount of energy in the
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Manipulable
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      Entropy

Figure 2.3: Venn diagram of entropy and information. Any system of finite size
and energy has a finite maximum entropy; however, if the system expands without
bound, the maximum entropy may also. The maximum entropy may be considered
the total amount of information of all kinds in the system. However, much of it may be
redundant and cross-correlated. Bits of information that are uncorrelated, or whose
correlations have become lost beyond all hope of recovery, are entropy, which can only
increase in a reversible universe. Some portion of the system, and the information in
it, is within our ability to manipulate and control, such as bits within a computer.
These bits, too, may either be entropy or not, depending on our ability to know their
correlations.

system, then that must mean our model of the system is imposing further structure
on the system, ruling out some of the states that would otherwise be possible.

For such a system with non-maximal entropy, only a portion of the energy of the
system is actually needed for permitting the entropy that is actually present. This
portion of the total energy will be referred to as the amount of dissipated energy in
the system. The rest of the system’s energy will be referred to as its free energy . The
difference between the entropy of the system and its maximum entropy will be termed
the negentropy or information capacity of the system. Some of this information
capacity may become allocated for storing computational information. (See fig. 2.3.)

As we discussed in §2.5.2, even in the context of a perfectly deterministic under-
lying physics, the entropy of a system can be seen to increase, through a failure to
completely model the determinism inherent in the system’s physical evolution. When
this happens, the amount of the system’s energy that is needed to support this en-
tropy will increase by some amount, and the free energy will decrease by the same
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amount. We say this amount of energy has been dissipated .
We are now in a position to accurately state and explain the central statement on

which the field of reversible computing is based:

Landauer’s principle. The irreversible loss of 1 bit of computational information
requires the dissipation of kBT ln 2 energy , where T is the temperature of the sub-
system in which the lost bit finally ends up. By the “irreversible loss,” we mean
that some bit of computational information (not a bit that is already entropy!) be-
comes transformed in such a way that our computational models can not track it,
for example by becoming mixed up with parts of the system whose state is already
thermal , or unknown. Thus by definition the bit has become entropy, and the entropy
of the system as a whole is increased by 1 bit. This increase is eventually reflected
in some subsystem at temperature T , and by definition of temperature, the energy
of this subsystem must be increased by kBT ln 2. The energy invested in the entropy
increase is heat. If T is the lowest available temperature, then this energy must come
out of the free energy, because all the dissipated energy in the system is already fully
occupied with containing the pre-existing entropy. Thus the free energy is decreased
by kBT ln 2.

The above principle was first explicitly conjectured by Landauer [97].

Note that since T is the temperature of the system where the entropy finally ends
up, not the temperature of the device that held the entropy originally, cooling a
computer cannot in the long run decrease the total energy dissipation required to
erase bits, if the dissipation in the cooling system is taken into account. The entropy
that is generated can not build up indefinitely in the cooling system, or else it would
not stay cool. Instead, it ultimately ends up in some natural thermal reservoir in
the environment. The coolest thermal reservoir of effectively unlimited capacity that
might be available in the foreseeable future is the interstellar microwave background,
at a temperature of ∼2.73 K. Thus, no process that generates entropy can, in the
long run, sustain an energy dissipation cost less than kB(2.73 K) ln 2 ≈ 2.6×10−23 J
per bit generated, and this can only be attained if the entropy can be transmitted
directly into space. For terrestrial systems that use the atmosphere as their thermal
reservoir, the relevant temperature is in the neighborhood of room temperature or
300 K, for a minimum energy dissipation of ∼ 3×10−21 J/b.

2.6 Quantum computation

One area in which physics may actually constrain computation less than might be
expected is in the possibility of quantum computation (cf. [60, 47, 23, 22, 21, 149,
146]), that is, computation using large, complex, coherent superpositions of states. If
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it can be implemented successfully, quantum computation seems likely to be strictly
asymptotically faster than classical computation on certain problems, by as much as
an exponential factor. But it is not yet known if quantum computation would be
beneficial for purposes other than obsoleting the RSA cryptosystem, or simulating
physical quantum systems. Still, if the recent progress on implementing quantum
computers [56, 168, 35, 39, 76, 40, 158, 49, 150, 10, 34] eventually culminates in
success, then we would certainly like to consider quantum computation as a physically
possible means of computation. But even a quantum computer would still need to
obey the fundamental constraints discussed above affecting the maximum density and
propagation speed of information.

We will review quantum computing in more detail in chapter 4.

2.7 Physical constraints—conclusion

This concludes our discussion of fundamental physical limits on computation. Ta-
ble 2.2 summarizes the limits we discussed, and the presumed effect on the form of a
physically-realistic model of computation, which we will discuss further in ch. 5.

In chapter 6 we will see how these limits affect the scaling of computation speeds
in reversible and irreversible computers. But first, in the next chapter, we review the
non-physical theoretical underpinnings of reversible computing, and show that in an
imagined non-physical computational framework, reversibility leads to unfavorable
scaling. The contrast between that result and the results of chapter 6 underscores
that traditional non-physical theoretical frameworks for computation are inadequate
for realistically modeling the advantages of reversibility, and thus, more sophisticated
models of computation that take the above-described physical constraints into account
are required for a correct analysis. Such models will be discussed in chapter 5.
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Fundamental Constrained Quantitative Impact on
principle quantity Symbol constraint our model

Quantum Entropy ρS . 1–10 b/Å3? Finite state/
mechanics density processor

Entropy flux FS ≤ ρSv Finite info.
flux

Rate of state ν⊥ ≤ 4(E − E0)/h Finite oper.
change frequency

Locality Info. prop. v ≤ c ≈ 3×108 m/s Mesh arch.
velocity (Vitányi ’88)

3-dimensionality Connec- O(t3) 3-D mesh
of space tivity
Micro- Entropy ∆S ≥ 0 always, Logical
reversibility, change ≥ 1 bit/bit erasure reversibility,
thermodynamics Energy ∆E ≥ 0 always, entropy

dissipation ≥ kBT ln 2/eras. accounting
Frictional Entropy kS > 0 b/Hz? Time-prop.
effects coefficient reversibility

Table 2.2: Fundamental physical constraints on computation, and their effects on
the form of a physically-realistic model of computation. The value of the bound on
ρS is very uncertain, but the assertion that some such bound exists is not. For any
particular computing technology through the foreseeable future, there will generally
be much stricter limits than the above on most of these quantities.



Chapter 3

Reversible computing theory

In the previous chapter, we set the stage for our research by reviewing the known
physical limits on computation, including the entropic cost of logically irreversible
information loss. We saw that avoiding this cost requires the use of computational
primitives that possess the special property of logical reversibility. This observation
leads naturally to the question: What implications would logical reversibility have in
the context of the traditional theory of computation?

This chapter addresses that question, while also introducing the related question
of how the traditional measures of complexity and models of computation will need to
be adjusted to more effectively cope with thermodynamic issues and other important
physical considerations. That line of study is continued in chapters 5 and 6.

One reason that computer designers have not yet rushed to adopt reversible com-
puting principles is that purely reversible operation is not necessarily optimal in all
circumstances. For many applications of computer technology today and in the fu-
ture, energy dissipation may not be a limiting factor. In such circumstances, purely
reversible operation appears to incur significant computational overheads compared
to irreversible operation. If energy dissipation is modeled as costing exactly noth-
ing, then it seems that the total cost overhead factor for pure reversible computing
becomes unboundedly large as problem sizes increase.

In §3.4 of this chapter, we will rigorously prove a technical theorem in computa-
tional complexity theory which suggests that such overheads are inevitable, and that
no amount of clever improvements of reversible algorithms can avoid these overheads
on all problems. This result indicates that if we wish to be able to perform asymp-
totically optimally even under cost models in which the energy cost is zero, then our
computer models should at least include the option of not being completely reversible.

However, in chapter 6, we will show that if energy dissipation has any non-zero
cost, then our physical model of computation must also include the option to have an
arbitrarily high degree of reversibility, if it is to achieve asymptotically optimal speed
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and cost-efficiency on all problems.
But first, in §3.1 and §3.2, we will review general concepts of models of computa-

tion, computability, and complexity, and introduce a few new measures of complexity
that attempt to better capture important physical considerations. Then in §3.3 we re-
view the major results of existing reversible computing theory, leading up to our own
contributions in §3.4. Finally, §3.5 sums up the comparison of traditional reversible
and irreversible computing models.

3.1 Models of computation

Discussions of the theory of computation often start with the definition of a par-
ticular model of computation to work with, such as, for example, Turing machines.
However, in this thesis, we do not wish to pick a particular model, since our interest
is in comparing the relative efficiency of different models. If we wished to pursue a
completely formal mathematical approach, we would need to give a precise definition
of what a model of computation is in general, describe various particular models in
terms of that general framework, define what it means to compare two models under
that framework, and then prove various theorems comparing the different models.
This would be straightforward but tedious, and it is unclear whether we would learn
anything important from that highly formal approach that is not already sufficiently
clear using our more informal understanding of the situation.

Therefore, in this thesis we will refrain from presenting a detailed formal expli-
cation of the concept of a “model of computation,” and instead we will rest our dis-
cussion on the intuitive understanding of the phrase that the reader will be expected
to have, given a general background in computer science. To refresh the reader’s
memory, a partial list of existing models of computation may be helpful (table 3.1).

Informally speaking, a model of computation merely delineates a space of ab-
stract computing machines, and the computations that run on them. Most models
were originally introduced as an attempt to approximate some class of physical ma-
chines; however, the existing models unusually end up ignoring one or another of the
important realities of physical law that we saw in chapter 2. Sections 5.2 and 5.3
of ch. 5 review some of the problems with the existing models, and discusses candi-
dates for a new model (which we might call PM, the “physical machine”) intended
to exactly represent the computing capabilities of physics.

Physically realistic or not, any abstract model of computation needs to be reduced
to a physical implementation in order to actually run. In chapter 6 we will compare the
power of two fairly realistic classes of models of physically-implemented machines: the
FIA (fully irreversible architectures) and the TPRA (time-proportionally reversible
architectures), and we show that the TPRAs are strictly more efficient, in several
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Notation Model name Example references
PRF Primitive recursive functions Rogers 1987 [141], §1.2, pp. 5–9
RF Recursive functions [141], ch. 1
FA Finite automata Hopcroft & Ullman 1979 [86],

ch. 2
RFA Reversible finite automata Pin 1987 [136]
TM Turing machines [169]; [86], ch. 7
RTM Reversible Turing machines [99, 16, 98]
NTM Nondeterministic Turing machines [86], §7.5
CA Cellular automata von Neumann 1966 [182],

Toffoli & Margolus 1987 [164]
BBM Billiard-ball model Fredkin [74]
RAM Random access machines Papadimitriou 1994 [133], §2.6

PRAM Parallel random access machines Papadimitriou 1994 [133], §15.2,
pp. 371–375

BLC Boolean logic circuit Papadimitriou 1994 [133], §4.3
3dM 3-d mesh Leighton 1992 [101], ch. 1

Table 3.1: Some existing theoretical models of computation.

physically-relevant senses.

3.1.1 Computability

For any model of computation, an obvious first question is “What computations can
it possibly perform?” (Given unlimited resources.) This question was the subject
of much early research on computation, but eventually it was realized that a large
variety of physically reasonable models of computation can all compute exactly the
same set of functions, namely the recursive (now just called computable) functions
(cf. [141]), and so the issue became less interesting. The famous “Church’s thesis” is
the conjecture that the recursive functions are indeed exactly the functions that real
physically-realizable machines can compute; the conjecture is true as far as anyone
knows, and it would be extremely surprising if physical machines were to turn out to
be able to compute non-recursive functions.

Of course, there also exist weaker models of computation that cannot even com-
pute all recursive functions, such as finite automaton (FA) models.

With computability turning out to be mostly a non-issue, the next natural issue in
computing theory is to discover how difficult or complex one finds various computa-
tional tasks to be under a given model of computation, or (in complementary terms),
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how efficiently the model can perform on various tasks.

3.2 Computational complexity and efficiency

Now we review some of the basic concepts used in traditional computational com-
plexity theory, and extend them to capture some new, more general measures of com-
putational complexity and cost-efficiency that will help us better address real-world
concerns in later sections.

3.2.1 Computational efficiency vs. computational complexity

The focus of this thesis is on how to achieve maximum computational efficiency ,
which can mean several things, but most often we will use it to mean cost efficiency ,
defined as follows.

Given some way U of characterizing the cost of a computation (or any process),
one very general notion of efficiency is the fraction of the cost that is actually well-
spent. In other words, if the minimum possible cost to perform some task is $min,
and the actual costs incurred by a particular computation that performs that task
are $, then we can say that the cost-efficiency %$ of the computation (under the cost
measure U) is

%$ =
$min

$
(3.1)

because only $min out of the total cost $ was really warranted; the remainder $− $min

was wasted.
Thus, whatever the minimum cost $min for a task, in order to maximize the effi-

ciency %$, one should try to minimize the actual cost $. This leads to the frequent
emphasis in computer science on characterizing and studying various abstract mea-
sures of cost, which are often referred to in theoretical computer science as measures
of computational complexity .

3.2.2 Characterizing computational complexity

In this section we examine how measures of computational complexity are tradition-
ally characterized, and propose the use of some new complexity measures that may
allow different computational models to be compared in a more realistic way.

3.2.2.1 Scaling with problem size

When comparing the cost-efficiency of two algorithms or two models of computation,
it is sometimes difficult to make a definitive distinction as to which candidate is better,
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Our Notation for
the Cost Measure Meaning

Computational cost measures.
Nops Number of primitive operations.
T Number of computational clock “ticks”

(called “time” in traditional complexity theory).
S Maximum memory used at any time

(called “space” in traditional complexity theory).
(S, T) Computational “space” paired with “time” (p. 57).
ST Computational “space” times “time” (p. 57).

Physical cost measures.
tphys Physical time taken.
Vmax Maximum physical volume of space used.
Stot Total entropy generated.
$c Comprehensive physical cost complexity (p. 58).
$s Simplified physical cost complexity (p. 58).

Table 3.2: Some measures of cost or complexity. We distinguish the non-physical,
“computational” cost measures from the physical cost measures. The physical mea-
sures can be accurately determined only for models of computation that realistically
take into account physical constraints on computation such as we discussed in chap-
ter 2.

if one of them is more efficient on some problems, and the other one is more efficient
at others. Even within a particular class of problems, one machine may be better at
small problems and the other at large ones.

However, if we look at how the performance of the two machines scales as the
problem size increases, it may often be the case that one machine performs better
than the other at problems of all sizes above a certain size, and the ratio between
the efficiency of the two machines may even grow unboundedly large as problem sizes
increase. Asymptotic order-of-growth analysis (see table F.4, p. 409) is the traditional
tool for determining if such relationships hold, because it allows ignoring the many
details of algorithm design that cause constant-factor differences in complexity, which
often end up being irrelevant in an asymptotic determination of which machine is
better.

Table 3.2.2.1 lists several measures of complexity which we will now discuss.
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3.2.2.2 Traditional measures of complexity

Traditionally in computer science, theoreticians study only very simple measures of
complexity, in order to make their analysis easier. Two of the most popular measures
are time complexity and space complexity.

Time complexity. The “time complexity” of a computation can be characterized
simply as the amount of physical time tphys that the computation takes (from its start
to its end), or as the number Nops of computational “operations” (at whatever level
of interest) that are performed, which is proportionally equivalent to real time if, for
example, operations are performed serially and take Θ(1) (i.e., constant) time each.
If operations are performed in parallel, a better approximation to time would be the
number of “ticks” T of some (real or imagined) computational “clock” that is thought
of as synchronizing the operations of all the processing elements.

The problem with using time complexity alone as a cost measure is that it ignores
the cost of the computer that is needed to solve a problem with the minimum time
complexity. The minimum time complexity might only be achieved by a computer
that is unfeasibly expensive.

One may reply that the machine cost is negligible because it may be amortized
over arbitrarily many uses of the machine into the future, but one can counter with
the point that whenever the computer is fully occupied with solving the given prob-
lem, its components can not meanwhile be used for another problem, so there is an
opportunity cost inherent in using a large machine that must be considered as well.

Thus, minimizing only time complexity may completely miss the solution that
minimizes cost in the real world.

Space complexity. Another measure of computational complexity which attempts
to take the machine cost into account is space complexity, that is, the maximum
amount of digital storage (in bits, say) that is in use at any point during the compu-
tation (we will denote this as S).

Given fixed lower bounds to the physical size and mass-energy required for a bit’s
worth of storage, space complexity can also be equated (within a constant factor) to
the amount of physical volume (Vmax) or mass in the computer, assuming there are
no cost advantages in storing bits with an asymptotically increasing mass-per-bit or
volume-per-bit. We conjecture that asymptotically, this assumption is true.

Of course, like time complexity, space complexity by itself is also inaccurate for
real-world situations. Most significantly, it ignores the impact of the length of time
during which the given amount of storage needs to be used. If the storage requirements
for a computation are large, but the computation is rather short, or even if just the
time during which the bulk of the storage is in use is short, then the computation may
actually be less costly, in real terms, than a computation that has a smaller formal
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space complexity but which occupies that space for an extremely long time.

3.2.2.3 Some new measures of complexity

Given the inadequacies of the most popular traditional measures of complexity, we
now describe some new alternative measures which attempt to more closely approxi-
mate the real-world economics of computing.

Joint space-time complexity. We saw earlier that both space complexity and
time complexity, although they each took important cost factors into account, were
individually incomplete. We can try to improve on the situation by combining both
space and time complexity into a single measure of complexity.

One way to combine a space complexity measure s and a time complexity measure
t is to simply group them into a pair (s, t). We can define a partial order % between
pairs (s1, t1) and (s2, t2) by saying, for example, that (s1, t1) % (s2, t2) iff s1 % s2 and
t1 % t2. (The % notation is defined in table F.4, p. 409.) However, this approach
suffers from the problems that two complexity measurements may be incomparable
(for example if s1 ≺ s2 but t1 Â t2), and that it is difficult to define a numerical
measure of overall efficiency in this system. However, this simple complexity measure
still suffices for some purposes, such as for our proof in §3.4.

Space-time product complexity. One interesting, improved measure of complex-
ity is the product of space and time complexity. This comes closer to a true measure
of cost because it increases monotonically with both space and time and allows com-
parisons between any two instances. It can be viewed as a measure of rental cost , the
cost of renting a computer having storage capacity s for a period of time t; we might
expect such a cost to be roughly linear in both storage capacity and time. Another
way to look at the product is as a measure of the total volume of spacetime (as in
the theory of relativity) that is dedicated to the computation.

However, even the space-time product is still somewhat inaccurate, since it does not
take into account that a particular algorithm may not have constant space usage over
time, and that the resources that are unused by the algorithm during a particular
period of time can (in an appropriate machine architecture) be used for solving other
problems during that time, thus reducing the effective cost of the program whose
complexity we are measuring.

Another point is that besides spacetime volume, there is another resource that a
computation uses up: namely, free energy. Energy that is dissipated by the computer
is forever unavailable for use in other computations, because it is in a disorganized,
maximum-entropy form that cannot do useful work. (We discussed these issues in
much more detail in §2.5.) So this dissipation has a cost. In fact, in contexts such
as battery-powered portable computers, the energy costs may be fairly high because
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the readily-available supply of energy is so limited. So a comprehensive model ought
to take energy costs into account. One way to characterize free energy loss is by the
total amount of entropy that is generated during the computation (Stot).

Finally, there is the point that the storage space itself can be separated into
several constituent entities that separately contribute to the total rental costs: the
mass-energy of the computation/storage medium, the volume of physical space it
occupies, and perhaps even its surface area (real estate it occupies). Mass-energy
can be further broken down into free energy and rest mass, which can be further
decomposed into the cost of various types of constituent components and the raw
materials that they are made of; but we will not go this far in our modeling.

These observations lead to the following new complexity measures.

Comprehensive physical cost complexity. For a computation (or really, any)
process that increases total entropy by S, takes total real time t, and that at times
0 ≤ τ ≤ t (between the start and end of the computation) occupies spatial volume
V(τ), contains free energy E(τ), rest mass M(τ), and has a minimum surface area of
A(τ), we define the comprehensive physical cost $c of the process as

$c ≡ £SS +

∫ t

0

[
£VV(τ) + £EE(τ) + £MM(τ) + £AA(τ)

]
dτ (3.2)

where the various £X ≥ 0 are cost coefficient constants whose values are parameters
of the cost model. The £X convert all cost elements to some canonical cost unit,
perhaps even a monetary unit.

This cost model is very comprehensive, probably more so than needed. In our
explorations of the efficiency of reversible and irreversible machines in chapter 6, we
have found that not all of the above terms need to be included in the cost model in
order to find the optimal machine configurations for the kinds of computational tasks
we have considered so far. So we also suggest a simplified version of this model.

Simplified physical cost complexity. For a computation process that generates
entropy S, takes total real time t, and that at times 0 ≤ τ ≤ t requires a free energy
allocation of E(τ), we define the simplified physical cost $s of the process as

$s ≡ £SS +

∫ t

0

£EE dτ (3.3)

where the £ ≥ 0 constants are parameters of the cost model. Given the Margolus-
Levitin bound on computation rate from §2.4, the second term in this cost measure
can be considered a measure of the maximum number of states that could be traversed
using the given energy profile over the given time.

We propose that cost models like the above are appropriate for exploring the asymp-
totic physical limits of computation.
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3.2.3 Complexity classes

A complexity measure tells us how to assign a cost to a particular instantiation of a
computation process. In chapter 5 we will discuss a variety of models of computation
processes. Given a complexity measure and a model of computation, we can char-
acterize the complexity of any program written for that model, as a function of the
length nin of its input (in bits, say). The program complexity for length nin is often
defined as the worst-case complexity of the program over all the inputs of length nin.

Further, we can define the complexity of a given task under a model of computation
as the complexity of the program that performs that task with the lowest program
complexity, on that model.

A complexity class is the set of all problems that can be solved under a given
model of computation within given bounds on asymptotic complexity, according to a
given complexity measure.

3.3 Review of existing reversible computing

theory

In this section we review the past developments in reversible computing theory. Much
of our predecessors’ work can be interpreted as an attempt to compare the compu-
tational efficiency of reversible and irreversible machines under various complexity
measures and models of computation. In this section we will show how each of the
existing results can be interpreted in this way, and then in §3.4 and ch. 6 we will carry
this effort onward to the new complexity measures that we proposed in §3.2.2.3.

3.3.1 Reversible models of computation

Reversible models of computation can be easily defined in general as models of com-
putation in which the transition function between machine configurations has a single-
valued inverse. In other words, the directed graph showing allowed transitions be-
tween states has in-degree 1. In this thesis we will always deal with machines that
are deterministic, so that the configuration graph always has out-degree one as well.
See figure 3.1, p. 60.

3.3.2 Computability in reversible models

As we already noted in §3.1.1, one of the most important questions to answer for any
new kind of computation is “What functions it can compute at all?” This comes before
efficiency questions, since obviously a machine’s efficiency at a task is meaningless if
the machine cannot even perform the task.
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Irreversible

… …

Reversible

Figure 3.1: Machine configuration graphs in (deterministic) reversible and irreversible
models of computation.

In the configuration graphs of irreversible machines, configurations may have many
different predecessor configurations. In reversible models of computation, each config-
uration may have at most one predecessor. The configuration graph therefore consists
of disjoint loops and chains, which may be infinite. In both reversible and irreversible
models we may, if we wish, permit configurations having 0 predecessors (initial states)
and/or 0 successors (final states).

3.3.2.1 Unbounded-space reversible machines are Turing-universal

In his 1961 paper [97], Landauer had already pointed out that arbitrary irreversible
computations could be embedded into reversible ones by simply saving a record of all
the information that would otherwise be thrown away (cf. §3 of [97]). This observation
makes it obvious that reversible machines with unbounded memory can certainly
compute all the Turing-computable functions.

We will call this idea, of embedding an irreversible computation into a reversible
one by saving a history of garbage, a “Landauer embedding,” since Landauer seems
to have been the first to suggest it.

3.3.2.2 Reversible finite automata are especially weak

In contrast, in 1987 Pin [136] investigated reversible finite automata, which he defined
as machines with fixed memory reading an unbounded-length one-way stream of data,
and found that they cannot even decide all the regular languages, which means that
technically they are strictly less powerful than normal irreversible finite automata,
which are in turn strictly less powerful than unbounded-space Turing machines.

So there are functions computable by an irreversible machine with fixed memory
that no purely reversible machine with fixed memory can compute, given an external
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one-way stream of input. We should note, however, that this incapacity might be due
solely to the non-reversible nature of the input flow, rather than to the finiteness of the
automaton memory itself. Conceivably, if a finite reversible machine was permitted
to read backwards as well as forwards through its read-only input, and perform some
sort of “unread” operations, it might then be able to recognize any regular language.
But we have not investigated that possibility in detail.

That issue aside, in the rest of this thesis we consider models of computation that
permit access to arbitrarily large amounts of memory as input sizes increase. For
such machines, pure computability is no longer an issue, and we turn to questions of
computational efficiency.

3.3.3 Time complexity in reversible models

One of the most common simple measures of computational cost we have seen is “time
complexity,” which in a theoretical computer science context often means the number
of primitive operations performed. Landauer’s suggestion (cf. §3 of [97]) of embedding
each irreversible operation into a reversible one makes it clear that the number of
such operations in a reversible machine need not be larger than the number for an
irreversible machine, as was demonstrated more explicitly by many later embeddings
e.g., [99, 16]. So under the time complexity measure by itself, reversibility does not
hurt.

Can a reversible machine perform a task using fewer computational operations
than an irreversible one? Obviously not, if we take reversible operations to just be
a special case of irreversible operations. However, physically speaking, actually it is
the converse that is true: so-called “irreversible” operations, implemented physically,
are really just a special case of reversible operations, since physics is always reversible
at a low level. We will see the implications of this for physical time complexity
in ch. 6. But, using the usual computer-science definition of time as the number
of computational operations required, clearly reversible machines can be no more
“time”-efficient than irreversible ones.

Although Lecerf and Bennett explicitly discussed their time-efficient reversible
simulations only in the context of Turing machines, the approach is easily generalized
to any model of computation in which we can give each processing element access
to an unbounded amount of auxiliary unit-access-time stack storage. For example,
based on Toffoli’s embedding [160], one could use essentially the same trick to create a
time-efficient simulation of irreversible cellular automata on reversible ones, by using
an extra dimension in the cell array to serve as a garbage stack for each cell of the
original machine. (To actually recycle the garbage in a CA, we would also need a
boundary condition that applies globally after an appropriate amount of time in order
to reverse the simulation.)



62 CHAPTER 3. REVERSIBLE COMPUTING THEORY

3.3.4 Reversible entropic complexity

The original point of reversibility was not to reduce time but to reduce energy dissipa-
tion, or in other words entropy production. Can this be done by reversible machines?
In 1961 Landauer [97] argued that it could not, since if we cannot get rid of the
“garbage” bits that are accumulated in memory, they just constitute another form
on entropy, no better in the long term than the kind produced if we just irreversibly
dissipated those bits into physical entropy right away.

3.3.4.1 Lecerf reversal

However, in 1963, Lecerf [99] formally described a construction in which an irreversible
machine was embedded into a reversible one that first simulated the irreversible ma-
chine running forwards, then turned around and simulated the irreversible machine
in reverse, uncomputing all of the history information and returning to a state corre-
sponding to the starting state. If anyone familiar with Landauer’s work had noticed
Lecerf’s paper in the 1960’s, it would have seemed tantalizing, because here was Lecerf
showing how to reversibly get rid of the garbage information that was accumulated
in Landauer’s reversible machine in lieu of entropy. So maybe the entropy production
can be avoided after all!

Unfortunately, Lecerf was apparently unaware of the thermodynamic implications
of reversibility; he was concerned only with determining whether certain questions
about reversible transformations were decidable. Lecerf’s paper did not address the
issue of how to get useful results out of a reversible computation. In Lecerf’s em-
bedding, by the time the reversible machine finishes its simulation of the irreversible
machine, any outputs from the computation have been uncomputed, just like the
garbage. This is not very useful!

3.3.4.2 The Bennett trick

Fortunately, in 1973, Charles Bennett [16], who was unaware of Lecerf’s work but
knew of Landauer’s, independently rediscovered Lecerf reversal, and moreover added
the ability to retain useful output. The basic idea was simple: one can just reversibly
copy the desired output into available memory before performing the Lecerf reversal!
As far as we can tell, this trick had not previously occurred to anyone.

Bennett’s idea suddenly implied that reversible computers could in principle be
more efficient than irreversible machines under at least one cost measure, namely
entropy production. To compute an output on an irreversible machine, one must
produce an amount of entropy roughly equal to the number of (irreversible) operations
performed; whereas the reversible machine in principle can get by with no new entropy
production, and with an accumulation of only the desired output in memory.
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3.3.4.3 Entropy proportional to speed

Unfortunately, absolutely zero entropy generation per operation is achievable in prin-
ciple only in the ideal limit of a perfectly-isolated ballistic (frictionless) system, or
in a Brownian-motion-based system that makes zero progress forwards through the
computation on average, and takes Θ(n2) expected time before visiting the nth com-
putational step. In useful systems that progress forwards at a positive constant speed,
the entropy generation per operation appears to be, at minimum, proportional to the
speed. (We do not yet know how necessary this relationship is, but it appears to be
the case empirically.) A cost analysis that takes both speed and entropy into account
will need to recognize this tradeoff. We do this is chapter 6.

3.3.5 Reversible space complexity

In addition to the number of computational operations performed and the entropy
produced, another important element of cost is the number S of memory cells that
are required to perform a computation.

3.3.5.1 Initial estimates of space complexity.

As Landauer pointed out [97], his simple strategy of saving all the garbage information
appears to suffer from the drawback that the amount of garbage that must be stored
in digital form is as large as the amount of entropy that would otherwise have been
generated. If the computation performs on average a constant number of irreversible
bit-erasures per computational operation, then this means that the memory usage
becomes proportional to the number of operations. This means a large asymptotic
increase in memory usage for many problems; up to exponentially large. Even if the
garbage is uncomputed using Lecerf reversal, this much space will still be needed
temporarily during the computation.

3.3.5.2 Bennett’s pebbling algorithm

In 1989, Bennett [19] introduced a new, more space-efficient reversible simulation for
Turing machines. This new algorithm involved doing and undoing various-sized por-
tions of the computation in a recursive, hierarchical fashion. Figure 3.2 is a schematic
illustration of this process. We call this the “pebbling” algorithm because the algo-
rithm can be seen as a solution to a sort of “pebble game” or puzzle played on a
one-dimensional chain of nodes, as described in detail by Li and Vitányi ’96 [105].
(Compare figure 3.2(a) with fig. 3.7 on page 79.) We will discuss the pebble game
interpretation and its implications in more detail in §3.4.2.
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Figure 3.2: Illustration of two versions of Bennett’s 1989 algorithm for reversible
simulation of irreversible machines. Diagram (a) illustrates the version with k = 2,
diagram (b) the version with k = 3. (See text for explanation of k.)

In both diagrams, the horizontal axis indicates which segment of the original
irreversible computation is being simulated, whereas the vertical axis tracks time
taken by the simulation in terms of the time required to simulate one segment. The
black vertical lines represent times during which memory is occupied by an image of
the irreversible machine state at the indicated stage of the irreversible computation,
whereas the shaded areas within the triangles represent memory occupied by the
storage of garbage data for a particular segment of the irreversible computation being
simulated.

Note that in (b), where k = 3, the 9th stage is reached after only 25 time units,
whereas in (a) 27 time units are required to only reach stage 8. But note also that
in (b), at time 25, five checkpoints (after the initial state) are stored simultaneously,
whereas in (a) at most four are stored at any given time. This illustrates the general
point that higher-k versions of the Bennett algorithm run faster, but consume more
memory.
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The overall operation of the algorithm is as follows. The irreversible computation
to be simulated is broken into fixed-size segments, whose run time is proportional
to the memory required by the irreversible machine. The first segment is reversibly
simulated using a Landauer embedding (§3.3.2.1). Then the state of the irreversible
machine being simulated is checkpointed using the Bennett trick of reversibly copying
it to free memory. Then, we do a Lecerf reversal (§3.3.4.1) to clean up the garbage
from simulating the first segment.

We proceed the same way through the second segment, starting from the first
checkpoint, to produce another checkpoint. After some number k of repetitions of
this procedure, all the previous checkpoints are then removed by reversing everything
done so far except the production of the final checkpoint. Now we have only a single
checkpoint which is k segments along in the computation. We repeat the above
procedure to create another checkpoint located another k segments farther along,
and then again, and again k times, then reverse everything again at the higher level
to proceed to a point where we only have checkpoint number k2 in memory. The
procedure can be applied indefinitely at higher and higher levels.

In general, for any number n of recursive higher-level applications of this proce-
dure, kn segments of irreversible computation are be simulated by (2k−1)n reversible
simulations of a single segment, while having at most n(k − 1) intermediate check-
points in memory at any given time [19].

The upshot is that if the original irreversible computation takes time T and space
S, then the reversible simulation via this algorithm takes time O(T1+ε) and space
O(S log T) = O(S2). As k increases, the ε approaches 0 (very gradually), but unfor-
tunately the constant factor in the space usage increases at the same time [103].

Li and Vitányi ’96 [105] proved that Bennett’s algorithm (with k = 2) is the most
space-efficient possible pebble-game strategy for reversible simulation of irreversible
machines.

Crescenzi and Papadimitriou ’95 [42] later extended Bennett’s technique to provide
space-efficient reversible simulation of nondeterministic Turing machines as well.

3.3.5.3 Achieving linear space complexity

Bennett’s results stood for almost a decade as the most space-efficient reversible
simulation technique known, but in 1997, Lange, McKenzie, and Tapp [98] showed
how to simulate Turing machines reversibly in linear space—but using worst-case
exponential time. Their technique is very clever, but simple in concept: Given a
configuration of an irreversible machine, they show that one can reversibly enumerate
its possible predecessors. Given this, starting with the initial state of the irreversible
machine, the reversible machine can traverse the edge of the irreversible machine’s
tree of possible configurations in a reversible “Euler tour.” (See figure 3.3.) This is
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Figure 3.3: Illustration of an Euler tour of an irreversible machine’s computation tree.
Although the tree has branches, the Euler tour is itself both forward- and reverse-
deterministic, and so can be traversed in purely reversible fashion, using no more
space than is needed to keep track of the current irreversible machine configuration
[98].

analogous to using the “right-hand rule” technique (move forward while keeping your
right hand on the wall) to find the exit of a planar non-cyclical maze. The search
for the final state is kept finite, and the space usage is kept small, by cutting off
exploration whenever the configuration size exceeds some limit. Unfortunately, the
size of the pruned tree, and thus the time required for the search, is still, in the worst
case, exponential in the space bound.

Lange et al. originally thought that a limit on the size of the final state was
required to be known in advance of the computation in order to guarantee finding the
final state, but after seeing a draft of their paper, I pointed out to them (in personal
discussions) that in fact, one could determine the appropriate limit dynamically by
simply traversing repeatedly around and around the tree, advancing to a successively
higher size limit each time the initial state is re-encountered, until the size limit is
made large enough that the final state is found. This approach does not increase the
worst-case asymptotic run-time, because that time is dominated anyway by the final
traversal around the tree, due to the exponential nature of the worst-case branching.

As with Bennett’s techniques, the Lange-McKenzie-Tapp technique was defined
explicitly only in terms of Turing machines, but it is easily generalized to many
different models of computation.

The above time and space complexity results for reversible simulation (§3.3.3 & §3.3.5)
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are very interesting in themselves, but to our knowledge, no one has yet directly
addressed the question of whether a single reversible simulation can run in linear
time like Bennett’s 1973 technique and in linear space like the new Lange et al.
technique. Li and Vitányi’s analysis [105] of Bennett’s 1989 algorithm [19] leads to
our proof in §3.4 that if such an ideal simulation exists, it would not relativize to
oracles, or work in cases where the space bound is much less than the input length.

3.3.6 Miscellaneous developments

Here, we mention in passing a few more miscellaneous developments in reversible
computing theory, but we do not go into them in detail.

Coppersmith and Grossman (1975, [37]) proved a result in group theory which
implies that reversible boolean circuits only 1 bit wider than a fixed-length input
can compute arbitrary boolean functions of that input. (Thanks to Alain Tapp for
bringing this paper to our attention.)

Toffoli (1977, [160]) showed that reversible cellular automata can simulate irre-
versible ones in linear time using an extra spatial dimension. Fredkin and Toffoli also
developed much reversible circuit theory (1980–1982, [161, 162, 74]).

As we already mentioned in §3.3.2.2, Pin (1987 [136]) showed that reversible finite
automata (defined in a certain way) cannot decide all regular languages.

3.4 Reversible vs. irreversible space-time

complexity

In this section we prove that reversible machine models require higher asymptotic
complexity on some problems than corresponding irreversible models, if a certain new
reversible black-box operation is made available to both models. Thus, no completely
general technique can exist for simulating irreversible machines on reversible ones
with no asymptotic overhead.

However, the new primitive operation that we defined in order to make this proof
go through is not itself physically realistic. The operation implements a computable
function, but the operation is modeled as taking constant (Θ(1)) time to perform
independent of the size of its input, which violates physical locality (ref. §2.1) and
the asymptotically very large number of steps that it would take to compute the
operation using the algorithm that corresponds directly to the operation’s definition.

Therefore, technically, even given our proof, it is still an open question whether
a perfect simulation technique might still exist that works in the case of reversible
machines simulating irreversible machines that are composed only of primitives that
are physically realistic in the sense of obeying locality. However, if one wishes to
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progress to complete physical realism, then irreversible machines are themselves al-
ready reversible at the micro-level (§2.5), and therefore are efficiently implementable
on reversible machines, as we will see in ch. 6.

Nevertheless, we conjecture that if the constraint of physical reversibility is ig-
nored, then reversible machines are strictly less efficient on some problems than irre-
versible machines, even if the machines are constrained to be physically realistic in all
other respects. If this conjecture is true, then in combination with our results of ch. 6,
it would follow that the constraint of physical reversibility is not independent of other
physical constraints from a computational complexity perspective, and that it must
be taken into account in order to have a realistic physical model of computational
complexity, as we will discuss in ch. 5.

If our conjecture were false, and irreversible models can be simulated with no
overhead on reversible machines, then one would not necessarily have to explicitly
incorporate reversibility in a model of computation in order for it to qualify as an
accurate model for predicting problem complexity, such as we advocate in ch. 5. But
as a matter of opinion, we consider that possibility a priori to be very unlikely.

In this section, we will prove our results in both oracle-relativized and non-oracle
forms for serial (uniprocessor) machines. The oracle results cover a large family of
possible asymptotic bounds on the joint space and time requirements of machines.
For all bounding functions within this family, we show that there exist an oracle and
a language such that the language is decidable within the given bounds by serial
machines that can query the oracle only if the machines are irreversible. This result
is non-trivial (compared to Pin’s, for example) because the individual oracle calls are
themselves reversible and easy to undo.

A similar result, not involving an oracle, covers cases where the space bound
is much smaller than the length of the randomly (and reversibly) accessible input.
Corollaries to both the oracle and non-oracle results give loose lower bounds on the
amount of extra space required for a reversible machine to decide the language within
the time bounds.

Another contribution of our proof is to illustrate ways to use incompressibility
arguments in analyzing reversible machines. It is conceivable that similar techniques
might increase the range of reversible and irreversible space-time complexity classes
that we can separate without resorting to the oracle.

Acknowledgment. Some ideas in the proof below originated with M. Josephine
Ammer, who was an undergraduate research assistant in our group at the time this
work was done. Ms. Ammer also assisted with the writing of the original manuscript
[69] from which this section is derived. That manuscript has not yet been formally
published, but some version of it may be in the future.
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3.4.1 General definitions

Space-time complexity classes. Given any reversible model of computation (e.g.,
reversible Turing machines), and given any computational space and time bounding
functions S(nin), T(nin), we define the reversible space-time S, T complexity class ,
abbreviated RST(S, T), to be the set of languages that are accepted by reversible
machines that take worst-case space of O(S(nin)) memory bits and worst-case time
O(T(nin)) ticks, where nin is the length of the input. Similarly, we define the un-
restricted space-time S, T complexity class , abbreviated ST(S, T), to be the set of
languages accepted in that same order of space and time on the corresponding nor-
mal machine model, without the restriction on the in-degree of the transition graph.
For oracle-relativized complexity classes, we use the notation CO, as is standard in
complexity theory, to indicate the class of problems that can be solved by the ma-
chines that define the class C if they are allowed to query oracle O.

We want to know whether RST(S, T)
?
= ST(S, T), for all S, T, in normal sorts of

serial computational models such as multi-tape Turing machines or RAM machines.
Unfortunately, we have found this question, in its purest form, very difficult to

definitively resolve. We do not see any general way to simulate normal machines on
reversible machines without suffering asymptotic increases in either the time or space
required. But neither do we know of a language that can be proven to require extra
space or time to recognize reversibly in ordinary machine models. The difficulty is in
constructing a proof that rules out all reversible algorithms, no matter how subtle or
clever.

But is the RST(S, T)
?
= ST(S, T) question truly difficult to resolve, or have we

just been unlucky in our search for a proof? Often in computational complexity
theory, we find ourselves unable to prove whether or not two complexity classes (for
example, P and NP) are equivalent. Traditionally (as in [9]), one way to indicate
that such an equivalence might really be difficult to prove is to show that if the
machine model defining each class is augmented with the ability to perform a new
type of operation (a query to a so-called “oracle”), then the classes may be proven
either equal or unequal, depending on the behavior of the particular oracle. This
shows that any proof equating or separating the two classes must make use of the
fact that normal machine models are only capable of performing a particular limited
set of primitive operations. Otherwise, we could just add the appropriate oracle
call as a new primitive operation, and invalidate the supposed proof. In complexity
theory, it is said that any proof of the equivalence or inequivalence of the two classes
must not “relativize,” that is, it does not remain valid relative to models that are
augmented with oracles. Reputedly, this rules out a large number of proof techniques
from recursion theory, and means that resolving the question will be more difficult.

In this section we will demonstrate, for any given S, T in a large class, an oracle
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A relative to which we prove RST(S, T)A 6= ST(S, T)A, for the case of serial machine
models with a certain kind of oracle interface. For these same S, T we have not yet
found an alternative oracle B for which RST(S, T)B = ST(S, T)B. It may be that
none exists, but this is uncertain.

Reversible oracle interface. First, we define an oracle interface that allows a re-
versible machine to call an oracle. Ordinarily, oracle queries are irreversible, and thus
impossible in reversible machines. For example, a bit of the oracle’s answer cannot
just overwrite some storage location, because regardless of whether the location con-
tained 0 or 1 before the oracle call, after the call it would contain the oracle’s answer.
The resulting configuration would thus have two predecessors, and the machine would
be irreversible.

Our reversible oracle-calling protocol is as follows. Machines will have reversible
read and write access to a special oracle tape which has a definite start, unbounded
length, and is initially clear. At any time, the machine is allowed to perform an oracle
call , a special primitive operation which in a single step replaces the entire contents
of the oracle tape with new contents, according to some fixed invertible mapping
A : C → C over the space C of possible tape contents. The function A is called
a permutation oracle. Further, if A is its own inverse, A = A−1, it will be called
self-reversible. Presented more formally:

Definition 3.1. A permutation oracle A is an invertible (bijective) function
A : C → C, where C is the space of possible contents of a semi-infinite oracle tape.

Definition 3.2. A self-reversible (permutation) oracle is a permutation oracle A such
that A = A−1.

In the below, we will deal only with self-reversible oracles. Self-reversibility ensures
that machines can easily undo oracle operations, just as they can easily undo their
own internal reversible primitives. If oracle calls were hard to undo, then the oracle
model would be unlikely to teach us anything meaningful about ordinary machines.

ST-constructibility. In order for our proof to go through, we will need to restrict
our attention to space and time functions S(nin), T(nin) which are ST -constructible,
meaning that given any input of length nin, an irreversible machine can construct
binary representations of the numbers S(nin) and T(nin) using only space O(S(nin))
and time O(T(nin)). We state here without proof that many reasonable pairs of
functions are indeed ST-constructible. For example, S = n2

in, T = n3
in can both be

computed in time O(log2 nin) plus O(nin) to count the input bits, and space O(log nin)
plus O(nin) if we include the input.

Next, we need some basic definitions to support the notion of incompressibility that
will be crucial to the proof of our theorem. The following definition and lemma follow
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Figure 3.4: Illustration of the structure of (a) a permutation oracle, and (b) a self-
reversible permutation oracle.

In either case, the oracle call operation replaces the old contents of the oracle
tape with new contents according to a transition function A : C → C that is a per-
mutation mapping—a bijective function—over the space C of possible tape contents.
The bijectivity of this function means that a call to a permutation oracle is always
a reversible operation. After an oracle call, the previous oracle tape contents can be
uniquely determined by applying the inverse mapping A−1. In self-reversible oracles,
A = A−1.
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the spirit of the discussions of incompressibility in Li and Vitányi’s excellent book on
Kolmogorov complexity [104].

Description systems and compressibility. A description system s is any func-
tion s : {0, 1}∗ → {0, 1}∗ from bit-strings to bit-strings, that is, from descriptions
to the bit-strings they describe. We say that a bit-string d describes bit-string x in
description system s if s(d) = x. We say that a bit-string x is compressible in de-
scription system s if there is a shorter bit-string that describes it; i.e. if there exists a
string d such that s(d) = x and |d| < |x|, where the notation |b| denotes the number
of bits in bit-string b.

Lemma 1. Existence of incompressible strings. For any description system s, and
any string length `, there is at least one bit-string x of length ` that is not compressible
in s.

Proof. (Trivial counting argument.) There are 2` bit-strings of length `, but
there are only

∑`−1
i=0 2i = 2` − 1 descriptions that are shorter than ` bits long. Each

description d can describe at most one bit string of length `, namely the string s(d) if
that string’s length happens to be `. Therefore there must be at least one remaining
bit-string of length ` that is not described by any shorter description. ¤

In our main proof, we will be selecting incompressible strings from a series of
computable description systems.

Notational conventions. In the following, we will often abbreviate the space and
time function values S(nin) and T(nin) by just S and T, respectively; likewise for other
functions of nin. For comparing orders of growth, we will use both the standard Θ,
O, Ω, o, ω notations, and our mnemonic custom ∼, -, %, ≺, Â notation, defined in
table F.4 on p. 409.

3.4.2 Oracle results

Theorem 3.1. Relative separation of reversible and irreversible space-time
complexity classes. Let S, T be any two non-decreasing functions over the non-
negative integers. Then the following are true:

(a) If S % T or T % 2S, then RST(S, T)O = ST(S, T)O for any self-reversible
oracle O.

(b) If S ≺ T ≺ 2S, and if S, T are ST-constructible, then there exists a computable,
self-reversible oracle A such that RST(S, T)A 6= ST(S, T)A.

Proof.
Part (a). (Cases S % T and T % 2S.) First, if S Â T, then obviously we have both

RST(S, T)O = RST(T, T)O and ST(S, T)O = ST(T, T)O simply because in time T
no more than S ∼ T memory cells can be accessed on a machine that performs Θ(1)
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operations per time step. Similarly, if T Â 2S, then RST(S, T)O = RST(S, 2S)O

and ST(S, T)O = ST(S, 2S)O, because no computation using only S bits of memory
can run for more than 2S steps without repeating. So part (a) reduces to proving
RST(S, T)O = ST(S, T)O only for the case where S ∼ T or T ∼ 2S.

From here, the result follows due to the existing relativizable simulations. When
S ∼ T, Bennett’s simple reversible simulation technique [16] can be applied because
it takes time O(T) and space O(T). Similarly, when T ∼ 2S the simulation of Lange
et al. [98] can be used because it takes time O(2S) and space O(S). Both techniques
can be easily seen to relativize to any self-reversible oracle O. Thus, in both cases,
any irreversible machine can be simulated reversibly in O(T) and space O(S), and
therefore RST(S, T)O = ST(S, T)O.

Part (b). (Case S ≺ T ≺ 2S.) Outline: We will construct A to be a permuta-
tion oracle that can be interpreted as specifying an infinite directed graph of nodes
with outdegree at most 1. We will also define a corresponding language-recognition
problem, which will be to report the contents of a node that lies T/S nodes down an
incompressible linear chain of nodes that have size-S identifiers, starting from a node
that is determined by the input length. The oracle will be explicitly constructed via
a diagonalization, so that for each possible reversible machine, there will be a par-
ticular input for which our oracle makes that particular reversible machine take too
much space or else get the wrong answer. In the cases where the reversible machine
takes too much space, we will prove this by equating the machine’s operation with
the “pebble game” for which Li and Vitányi [105] have already proven lower bounds,
and by showing that if the machine does not take too much space, then we can build
a shorter description of the chain of nodes using the machine’s small intermediate
configurations, thus contradicting our choice of an incompressible chain.

For the formal proof of part (b), we need some special definitions.

Definition 3.3. A graph oracle is a self-reversible permutation oracle with the follow-
ing property: There exists a partial function f : {0, 1}∗ → {0, 1}∗, called a successor
function, such that for any bit string (node) b ∈ {0, 1}∗ for which f is defined, the
oracle’s permutation function maps the tape contents b to the tape contents b#f(b),
and also maps b#f(b) back to b, where # is a special separator character in the ora-
cle tape alphabet. For all tape contents x not of either of these forms, the oracle’s
permutation function maps them to themselves. See fig. 3.5.

Given that we will be working only with graph oracles, we can now specify an
oracle by specifying just the successor function f that it embodies. But before we
actually construct the special oracle A that proves our theorem, let us define, relative
to A, the language that we claim separates RST(S, T)A from ST(S, T)A.

Definition 3.4. Given two ST-constructible functions S(n), T(n), and graph oracle
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Figure 3.5: Encoding outdegree-1 directed graphs in self-reversible permutation ora-
cles. Letters stand for nodes represented as bit-strings, except for x which represents
any other bit-string not explicitly shown. The # is a special separator character.

On the left, we show an example of an outdegree-1 directed graph with bit-string
nodes abbreviated a,b,c,d,e,g. The graph function f gives the successor of each node:
f(a) = c, f(c) = d, etc. This f is a partial function; e.g. f(d) is undefined. For each
edge in this graph, there is a corresponding pair of strings that are mapped to each
other by the self-reversible oracle. To represent the edge a → c, for example, the
permutation oracle maps tape contents “a” to “a#c” and maps “a#c” back to “a”.
Any other string x (including those for terminal nodes of the graph) is simply mapped
to itself. In this way the permutation oracle allows easily and reversibly looking up a
node’s successor, or uncomputing a node’s successor given the node and its successor.
But finding a node’s predecessor(s), given just the node itself, is designed to be hard.
Thus the oracle call resembles the reversible computation of a “one-way” invertible
function that is easy to compute, but whose inverse is difficult to compute.
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A with successor function f , we define the difficult language L(A) to be the language
decided by the irreversible machine described by the following pseudocode:

Given input string w,
Let n = |w|, compute S = S(n), T = T(n).
Let bit-string b = 0S.
Repeat the following, t = bT/Sc times:

Write b on oracle tape, and call oracle.
If result is of the form b#c, with c a bit-string,

assign b ← c (note c = f(b)),
else, quit loop early.

Accept iff b[0] = 1.

In other words, given a string of length n, construct a string of zeros of length S(n).
Treat this string as a node identifier, and use oracle queries to proceed down its chain
of successors for up to bT/Sc nodes. Finally, return the first bit of the final node’s
bit-string identifier.

We will be explicitly constructing the successor function f so that it always returns
a string of the same length as its input. Given the corresponding oracle, the above
algorithm requires only space O(S) and time O(T) on on irreversible machine in
any standard serial model of computation. (Recall that S, T are ST-constructible.)
Therefore the language L(A) will be in the class ST(S, T)A.

Now, we will specify how to construct f so that the language L(A) will not be
computable by any reversible machine that takes space O(S) and time O(T). The
way we will do this is to make each of the node identifiers be a different incompressible
string. Intuition suggests that the only way to decide L(A) is to actually follow the
entire chain of nodes, to see what the final one is. But having obtained a node’s
successor, the reversible machine cannot easily get rid of its incompressible records
of the prior nodes. The graph oracle provides no convenient way to compute f−1 and
find a node’s predecessor, even if the successor function f happens to be invertible.
Thus the reversible machine will tend to accumulate records of previous nodes, of
size S(nin) each, and thus, for sufficiently long enough chains, it will take more than
a constant factor times S(nin) space. The reversible machine could conceivably find
and uncompute predecessor nodes by searching them all exhaustively, but this would
take too much time.

The situation with this oracle language resembles the non-oracle problem of it-
erating a one-way function, i.e. an invertible function whose inverse much is harder
to compute than the function itself (e.g., MD5). Public-key cryptography depends
on the (unproven, but empirically reasonable) assumption that some functions are
one-way. The same assumption might allow us to show that RST(S, T) 6= ST(S, T)
without an oracle, by using a one-way function instead.
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Figure 3.6: The problem graph defined by our oracle for inputs of size n. The “correct
answer” is just the first bit of the final node qt. If the reversible machine Mi that we
are trying to foil happens to get the right answer, but never asks for the successor of
node qt−1, we redefine qt−1’s successor to be a new node q′ having a different initial
bit.

Oracle construction. We now construct a particular oracle A and prove that
L(A) /∈ RST(S, T)A.

First, fix some standard enumeration of all reversible oracle-querying machines.
The enumeration is possible because reversible Turing machines, for example, can
be characterized by local syntactic restrictions on their transition function, as in
Lange et al., so we can enumerate all machines and pick out the reversible ones. Let
(M1, c1), (M2, c2), . . . be this enumeration dovetailed together with an enumeration
of the positive integers. If a given machine always runs in space O(S) and time O(T)
then it will eventually appear in the enumeration paired with a large enough ci so
that the machine Mi takes space less than ci+ciS(nin) and time less than ci+ciT(nin)
for any input length nin.

We will construct the oracle A so that each machine Mi will fail to decide L(A)
within these bounds. When considering Mi, f(q) will have already been specified for
all oracle queries q asked by machines M1,M2 . . . ,Mi−1 when given certain inputs of
lengths n1, n2, . . . , ni−1, respectively. Now, choose ni (henceforth called n), the input
length for which our oracle definition will foil Mi, to be such that S(n) is greater than
the maximum length z of any of those earlier machines’ oracle queries. Some other
lower bounds on the size of n will be mentioned as we go along.

Later we will specify a description system si based on Mi, ci, the value of n, and
all the f(q) values defined so far (for bit-strings smaller than S(n)). The description
system will be a total computable function, i.e., there is an algorithm that computes
si(d) for any d and always halts. We will use this description system to define f(q)
for bit-strings of length S(n), as follows:

Let x be a bit-string of length T(n) that is incompressible in description system
si (to be defined as we go along). This x will be used as the sequence of size-S(n)
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node identifiers that will define our graph for inputs of size n.
Break x up into a sequence of t(n) ≡ bT/Sc bit-strings of length S(n) each; call

these our graph nodes or query strings q1, . . . , qt. We will design our description
system si so that all the qj’s must be different. How? By allowing descriptions of the
form (j, k, x′), where j and k are the indices of two equal nodes qj = qk, j < k, and
x′ is x with the qk substring spliced out. The description system would be defined
to generate x from such a description by simply looking up the string qj in x′ and
inserting a copy of it in the kth position. The indices j and k would take O(log(T/S))
space, which is O(log T) space, which is o(S) space, whereas we are saving S(n) space
by not explicitly including the repetition of qj. Therefore as long as n is sufficiently
large, the total length of this description of x would be less than T(n). With x being
incompressible in a description system that permits such descriptions, we know that
q1, . . . , qt includes no repetitions.

Now we can specify exactly how the oracle defines our problem graph for inputs
of size n, as follows. Define query string q0 = 0S (a string of S 0-bits). Provisionally,
set f(qj−1) = qj for all 1 ≤ j ≤ t. These assignments are possible since all the qj’s are
different, as we just proved. (They also must be different from q0, but this is easy to
ensure as well.) Given these assignments, all strings of length n are in the language
L(A) if and only if qt[0] = 1, due to the earlier definition of L(A). (Definition 3.2.)

Suppose temporarily that our oracle definition was completed by letting f remain
undefined over all strings w for which we have not yet specified f(w). (I.e., let
A(w) = w for these strings.) Under that assumption, simulate Mi’s behavior on the
input 0n. If Mi runs for more than ci + ciT steps, then it takes too much time, and
we are through addressing it. Otherwise, Mi either accepts (1) or rejects (0). If this
answer is different from qt[0], then Mi already fails to accept the language L(A), and
we are through with it.

Alternatively, suppose Mi’s answer is correct with the given qj’s and it halts within
ci + ciT steps. But now suppose that Mi never asked any query dependent on f(qt−1)
during its run on input 0n. That is, suppose Mi never asked either query qt−1 or query
qt−1#qt. In that case, let us change our definition of f(qt−1) as follows, to change the
correct answer to be the opposite of what Mi gave. Let q′ be a bit-string whose
successor was never requested in any query by Mi, and whose first bit is the opposite
of Mi’s answer. To ensure such strings exist, note there are 1

2
2S bit-strings of length

S having the desired initial bit, but Mi can make at most ci + ciT queries since that
is its running time. We know T ≺ 2S, so with sufficiently large n, 1

2
2S > ci + ciT,

and we can find our node q′. Now, given q′, we change f(qt−1) to be q′. This cannot
possibly affect the behavior of Mi since it never asked about f(qt−1). But the correct
answer is changed to the first bit of q′, the new node number t in the chain. Thus
with this new partial specification of f , Mi fails to correctly decide L(A), and we can
go on to foil other machines.
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Finally, suppose Mi does ask query qt−1. We now show how to complete the
definition of our description system si, source of our incompressible x, so that if Mi

does ask query qt−1, then it must at some point take more than ci + ciS space.
To do this, we show that Mi can always be interpreted as following the rules of

Bennett’s reversible “pebble game,” introduced in [19] and analyzed by Li and Vitányi
in [105].

Pebble game rules. The game is played on a linear list of nodes, which we will
identify with query strings q1, . . . , qt. At any time during the game some set of nodes
is pebbled. Initially, no nodes are pebbled. At any time, the player (in our case, Mi)
may, as a move in the game, change the pebbled vs. unpebbled status of node q1 or
any node qj for which the previous node qj−1 is pebbled. Only one such move may
be made at a time.

The idea of the pebbled set is that we will make it correspond to the set of
nodes that is currently “stored in memory” by Mi. Pebbling or unpebbling node qj

will require querying the oracle with query string qj−1 or qj−1#qj, respectively. The
goal of the pebble game is to eventually place a pebble on the final node qt. This
corresponds to the fact already established that Mi must at some point ask query
qt−1 or the oracle can be constructed to foil it trivially.

Li and Vitányi’s analysis of the pebble game [105] showed that no strategy can win
the game for 2k nodes or more without at some time having more than k nodes pebbled
at once. We will show that our machine Mi and its space usage can be modeled using
the pebble game, so that for some sufficiently large n, the space required to store
the necessary number of pebbled nodes will exceed Mi’s allowable storage capacity
ci + ciS.

For the oracle A as defined so far, consider the complete sequence of configurations
of Mi given input 0n, notated C1, C2, . . . , CT′ , where T′ ≤ ci + ciT is Mi’s total
running time, in terms of the number of primitive operations (including oracle calls)
performed.

Now, for any time point τ , 1 ≤ τ ≤ T′, and for any node qj in the chain of
nodes q1, . . . , qt, define the previous query involving qj (written prev(qj))to mean the
most recent oracle query in Mi’s history before time τ in which the query string
(the one that is present on the oracle tape at the start of the query) is one of
{qj−1, qj, qj#qj+1, qj−1#qj}. There may of course be no such query in which case
prev(qj) does not exist. Similarly define the next query involving qj (written next(qj))
to mean the most imminent such query in Mi’s future after time τ .

Definition 3. Node qj is pebbled at time τ iff at time τ either (a) prev(qj) exists
and is either (a1) qj−1, (a2) qj, or (a3) qj#qj+1, or (b) next(qj) exists and is (b1) qj,
(b2) qj#qj+1, or (b3) qj−1#qj. (Exception: the final node qt is only considered pebbled
in cases (a1) and (b3).)

Note that this definition implies that qj is not pebbled iff prev(qj) = qj−1#qj (or
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Figure 3.7: Bennett’s reversible pebble game strategy. Highlights point out the move
made at each step. (Compare with fig. 3.2(a), page 64, rotated 90◦.)

A node qj can be pebbled or unpebbled only if it is node q1 or if the previous node
qj−1 is pebbled. The strategy invented by Bennett [19], illustrated here, was shown
by Li and Vitányi to be optimal [106] in terms of the number of pebbles required.
But even with this optimal strategy, to pebble node 2k we must at some time have
more than k nodes pebbled. In this example, we reach node 23 = 8 but must use 4
pebbles to do so. (After pebbling node 8, we can remove all pebbles by undoing the
sequence of moves.) The fact that a constant-size supply of pebbles can only reach
outwards along the chain a constant distance is crucial to our proof.
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Figure 3.8: Triangle representation of oracle queries.
The shape and direction of the triangle is meant to evoke the fact that at the

times just before and after an oracle query, the oracle tape contains the shorter string
qj at one of the times, and the longer string qj#qj+1 at the other time. The set of
triangles defines the set of pebbled nodes at any time, as illustrated in figure 3.9.

nonexistent) and next(qj) = qj−1.
Figure 3.9 illustrates the intuition behind this definition using the graphical nota-

tion introduced in fig. 3.8. This graphical notation is especially nice because it evokes
the image of playing the pebble game or running Bennett’s algorithm (compare fig. 3.9
with figs. 3.7 and 3.2).

The times at which a node is to be considered “pebbled” during a machine’s exe-
cution are indicated by the solid horizontal lines on 3.9. These times are determined,
according to definition 3 above, solely by the arrangement of triangles (representing
oracle queries, see fig. 3.8) on the chart. Each vertex of a triangle generates a line
of pebbled times for the corresponding node, extending horizontally away from the
triangle until it hits another triangle. Query string 0 is never considered pebbled
because it is not considered to be a node.

Let p denote the number of distinct nodes out of q1, . . . , qt that are pebbled at
time τ . We now lower bound the size of Cτ , i.e. Mi’s space usage at time τ .

Lemma 2. Space to pebble p nodes. |Cτ | > 1
4
pS.

Proof. Suppose Cτ were no larger than 1
4
pS bits. Then we can show that x

(the sequence of all qj’s) is compressible to a shorter description d which we will
now specify. Our description system si will be defined to process descriptions of the
required form.

First, note that for each node qj that is pebbled at time τ , that node is pebbled
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Figure 3.9: Visualizing the definition of the set of pebbled nodes. The times at which
a node is pebbled (indicated by solid horizontal lines on the chart) are determined, by
definition, solely by the identities and timing of oracle queries and the corresponding
arrangement of triangles (see fig. 3.8) on the chart. Each vertex of a triangle generates
a line of pebbled times for the corresponding node, extending horizontally away from
the triangle until it encounters another triangle. (Except query string 0 is never
pebbled, because it is not considered to be a node.)

The above example shows a pattern of queries similar to the one that would occur
if one tried to apply Bennett’s [19] optimal pebble game strategy. (Compare with
figs. 3.7 and 3.2.)

Node 2 is considered pebbled at time (a) both because of the previous and next
queries (triangles) involving node 2. Node 1 is not pebbled at times (b) because the
previous and next queries are q0#q1 and q0 respectively. Node 4 is pebbled at all times
after (c) because even though there is no next query involving node 4, the previous
query involving node 4 exists and is of the right form (q3). Node 3 is pebbled at time
(d) because although the previous query (e) is of the wrong form (q2#q3), the next
query is okay.

Query (e) does not change the set of pebbled nodes and so is not considered to
be a move in the pebble game. All the other queries are considered to be pebbling or
unpebbling moves in the pebble game, depending on the direction of the corresponding
triangle.

In the machine configuration Cτ at time τ , nodes 2, 3, and 4 are pebbled. But note
that the query string for node 2 can be found by simulating the machine backwards
from time τ until query (e), and reading q2 off of the oracle tape. And if q3 is given, we
can continue simulating backwards until we get to time (c), and read q4 off the oracle
tape as well. The ability to perform this sort of simulation, for any arrangement of
triangles, either forwards or backwards in time as needed to find out more than a
constant number of the pebbled nodes is what makes our incompressibility argument
work.
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either because of the previous query involving qj, because of the next query involving
qj, or both. Therefore, either at least 1

2
p nodes are pebbled because of their previous

query, or at least 1
2
p nodes are pebbled because of their next query. Let D be a

direction (forwards or backwards) from time τ in which one can find queries causing
h ≥ 1

2
p nodes to be pebbled.

We now specify the shorter description d that describes x. It will contain an
explicit description of Cτ , which by our assumption is no longer than 1

4
pS. It will

also specify the direction D and contain a concatenation of all the qj’s that are not
pebbled because of queries in direction D. (Space: (t−h)S.) For each of the h nodes
qj that are pebbled because of a query in direction D, the description d will contain
the node index j and an integer ∆τj giving the number of steps from step τ to the
time of the query. Also we include a short tag kj indicating which of the 3 possible
cases of queries causes the node to be pebbled. Each of the indices j takes space
O(log t) ≺ log T ≺ S, and each ∆τj takes space O(log T) ≺ S. The tag is constant
size. Thus for sufficiently large n, all h of the (j, ∆τj, kj) tuples together take less
than 1

2
hS space. Total space so far: less than tS. If tS < T, then x will contain some

additional bits beyond the concatenation of q1q2 . . . qt, in which case d includes those
extra bits as well. The total length of d will still be less than T = |x|.

We now demonstrate that the description d is sufficient to reconstruct x, and give
an algorithm for doing so. The function computed by this algorithm tells how our
description system s will handle descriptions of the form outlined above.

The algorithm will work by simulating Mi’s operation in direction D starting from
configuration Cτ , and reading the identifiers of pebbled nodes from Mi’s simulated
oracle tape as it proceeds. We can figure out which oracle queries correspond to which
nodes by referring to the stored times ∆τj and tags kj. Once we have extracted the
identifiers of all nodes pebbled in direction D, we print all the nodes out in the proper
order.

As an example, refer again to fig. 3.9. In the machine configuration marked at
time τ , nodes 2, 3, and 4 are pebbled. But note that the query string for node 2
can be found by simulating the machine backwards from time τ until query (e), and
reading q2 off of the oracle tape. And if q3 is known, we can continue simulating
backwards until we get to time (c), and read q4 off the oracle tape as well. The ability
to perform this sort of simulation, for any arrangement of triangles, either forwards
or backwards in time as needed to find out at least half of the pebbled nodes is what
makes our incompressibility argument work. The algorithm is described and verified
in more detail in the appendix.

Given d, the algorithm produces x, and with n chosen large enough, the length
of the description will be smaller than x itself, contradicting the assumption of x’s
incompressibility relative to s. Therefore for these sufficiently large n, all configura-
tions in which p nodes are pebbled must actually be larger than 1

4
pS. This completes
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the proof of lemma 2. ¥
Now, given the definition of the set of pebbled nodes from earlier (defn. 3), it is

easy to see how Mi’s execution history can be interpreted as the playing of a pebble
game. Whenever Mi performs a query qj and node qj+1 was not already pebbled
immediately prior to this query, we say that Mi is pebbling node qj+1 as a move in
the pebble game. Similarly, whenever Mi performs a query qj#qj+1 and node qj+1 is
not pebbled immediately after this query, we say that Mi is unpebbling node qj+1.
All other oracle queries and computations by Mi are considered as pauses between
pebble game moves of these two forms. For example, in fig. 3.9, query (e) (the first
occurrence of q2#q3 is not considered a move in the pebble game, since it doesn’t
change the set of pebbled nodes as defined by definition 3.

It is obvious that under the above interpretation, all moves must obey the main
pebble game rule, i.e. that the pebbled status of node qj can only change if j = 1 or if
node qj−1 is pebbled during the change. The move is a query, and the presence of the
query means the node qj−1 is pebbled both before and after the query, by definition
3, unless j = 1; q0 is not considered to be a node.

To show that no nodes are initially pebbled is a only a little bit harder. Suppose
that some node qj was pebbled in Mi’s initial configuration. Then a shorter descrip-
tion of x (for sufficiently large n) can be given as (j, ∆τj, x

′), where x′ is x with qj

spliced out. This description could be processed via simulation of Mi to produce x in
the same way as in lemma 2, except that this time, the starting configuration C1 can
be produced directly from the known values of Mi and n, and need not be explicitly
included in the description. Of course the description system s needs to be able to
process descriptions of this form. Then the incompressibility of x in s shows that the
assumption that qj is initially pebbled is inconsistent.

Thus Mi exactly obeys all the rules of the Bennett pebble game. Now, Li and
Vitányi have shown [105] that any strategy for the pebble game that eventually
pebbles a node at or beyond node 2k must at some time have at least k + 1 nodes
pebbled at once. So let us simply choose n large enough so that t(n) ≥ 2k for some
k ≥ 4(ci + 1), and also so that S ≥ ci. Then at times τ when p is maximum, Mi’s
space usage is |Cτ | > 1

4
pS > 1

4
kS ≥ (ci + 1)S ≥ ci + ciS.

The above discussion establishes that machine Mi takes more than space ci + ciS
if it correctly decides membership in L(A) for inputs of length ni = n and takes only
time ci + ciT, so long as the oracle A is consistent with the definition above. Since
machine Mi’s behavior on the input 0n only depends on the values of the successor
function f(b) for bit-strings b up to a certain size (call it z), we are free to extend the
oracle definition to similarly foil machine Mi+1 by picking ni+1 so that S(ni+1) > z. If
one continues the oracle definition process in this fashion for further Mi’s ad infinitum,
then for the resulting oracle, it will be the case that for any Mi and constant ci in
the entire infinite enumeration, the machine will either get the wrong answer or take
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more than time ci + ciT or space ci + ciS on input 0ni . Thus, no reversible machine
can actually decide L(A) in time O(T) and space O(S), and so L(A) /∈ RST(S, T)A.

Note that this entire oracle construction, as described, is computable. If we are
given procedures for computing S(n) and T(n), we can write an effective procedure
that, given any finite oracle query, returns A’s response to the query. The details of
the oracle construction algorithm follow directly from the above definition of A, but
would be too tedious to present here.

This concludes our proof of theorem 3.1.

Note that in the above proof, we used the fact that the number of pebbles required
to get to the final node grows larger than any constant as n increases. But the actual
rate of growth can be used as well, to give us an interesting lower bound.

Corollary 1. Lower bound on space for linear-time relativizable reversible simula-
tion of irreversible machines. For all ST-constructible S, T and computable S′ such
that S ≺ T ≺ 2S and S′ ≺ S log(T/S), there exists a computable, self-reversible oracle
A such that RST(S′, T)A 6= ST(S, T)A.

Proof. Essentially the same as for Theorem 1 part (b), but with S′ in place of
S in appropriate places. In the last part of the proof, Mi is shown to take more than
ci + ciS

′ space by using Lemma 2 together with the fact that p > blgbT/Scc pebbles
are required to reach the final node. ¤

This result implies that any general linear-time simulation of irreversible machines
by reversible ones that is relativizable with respect to all self-reversible oracles must
take space Ω(S log(T/S)).

The most space-efficient linear-time reversible simulation technique that is cur-
rently known was provided by Bennett ([19], p. 770), and analyzed by Levine and
Sherman [103] to take space O(S(T/S)1/(0.58 lg(T/S))). Bennett’s simulation can be eas-
ily seen to work with all self-reversible oracles, so it gives a relativizable upper bound
on space. There is a gap between it and our lower bound, due to the fact that the
space-optimal pebble-game strategy referred to in our proof takes more than linear
time in the number of nodes. A lower bound on the number of pebbles used by linear
time pebble game strategies would allow us to expand our lower bound on space,
hopefully to converge with the existing upper bound.

3.4.3 Non-relativized separation

We now explain how the same type of proof can be applied to show a non-relativized
separation of RST(S, T) and ST(S, T) in certain cases, when inputs are accessed in
a specialized way that is similar to an oracle query.
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Input framework. Machine inputs will be provided in the form of a random-access
read-only memory I, which may consist of 2b b-bit words for any integer b ≥ 0. The
length of this input may be considered to be n(b) = b2b bits; let b(n) be the inverse of
this function. The machine will have a special input access tape which is unbounded
in one direction, initially empty, and is used for reversibly accessing the input ROM
via the following special operations.

Get input size. If the input access tape is empty before this operation, after the
operation it will contain b written as a binary string. If the tape contains b before
the operation, afterwards it will be empty. In all other circumstances, the query is a
no-op.

Access input word. If the input access tape contains a binary string a of length
b before the operation, afterwards it will contain the pair (a, I[a]) where I[a] is a
length-b binary string giving the contents of the input word located at address a. If
the tape contains this pair before the operation, afterwards it will contain just a.
Otherwise, nothing happens.

Theorem 2. Non-relativized separation of reversible and irreversible spacetime.
For models using the above input framework, and for S(n) = b(n) and any ST-
constructible T(n) such that S ≺ T ≺ 2S, RST(S, T) 6= ST(S, T).

Proof. (Sketch following proof of theorem 1.) For input I of length n = b2b,
define result bit r(I) to be the first bit in the b-bit string given by

I[I[. . . I[︸ ︷︷ ︸
bT/Sc

0b] . . . ]].

Let language L = {I : r(I) = 1}. L ∈ ST because an irreversible machine can simply
follow the chain of bT/Sc pointers from address 0b, using space O(S) (not counting
the input) and time O(T).

Assume there is a reversible machine M that decides L in c+ cS space and c + cT
time for some c. Let b be sufficiently large for the proof below to work. Let s be a
certain description system to be defined. Let t = bT/Sc. Let x be a length-tS string
incompressible in s. Let w1 . . . wt = x where all wi are size b. Restrict s so that all
the words wi must be different from each other and from 0b. Let I be an input of
length n = b2b such that I[0b] = w1, and I[wi] = wi+1 for 1 ≤ i < t, and I[a] = 0b

for every other address a. M must at some time access I[wt−1] because otherwise we
could change the first bit of I[wt−1] to be the opposite of whatever M ’s answer is, and
M would give the wrong answer. Assign a set of pebbled nodes to each configuration
of M ’s execution on input I like in the oracle proof, except that this time, input
access operations take the place of oracle calls. Show, as in lemma 2, that the size of
a configuration is at least 1

4
pS where p is the number of pebbled nodes, by defining

s to allow descriptions that are interpreted by simulating M and reading pebbled
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nodes from the input access tape. As before, the machine must therefore take space
Ω(S log(T/S)) which for sufficiently large n contradicts our assumption that the space
is bounded by c + cS. Thus L /∈ RST(S, T). ¥
Corollary 2. Non-relativized lower bound on space for linear-time reversible simu-
lations. For S = b(n), computable S′ ≺ S log(T/S), and ST-constructible T(n) such
that S ≺ T ≺ 2S, RST(S′, T) 6= ST(S, T).

Proof. As in corollary 1 but with theorem 2. ¤
Such a T exists because b can be found in space and time O(log b) using the “get

input size” operation, after which T = b2, for example, can be found in space O(log b)
and time O(log2 b). Thus, any reversible machine that simulates irreversible ones
without slowdown takes Ω(S log(T/S)) space in some cases.

3.4.4 Decompression algorithm

It is probably not obvious to the reader that the algorithm that we briefly mentioned
in the proof of lemma 2 in §3.4.2 can be made to work properly. In this section we
give the complete algorithm and explain why it works.

The algorithm, shown in figure 3.10, essentially just simulates Mi’s operation in
direction D starting from configuration Cτ , and reads the identifiers of the pebbled
nodes off of Mi’s simulated oracle tape. The bulk of the algorithm is in the details
showing how to simulate all oracle queries correctly.

There is a small subtlety in the fact that this algorithm has, built into it, some
of the values of f that are defined by the oracle. Yet the algorithm is part of the
definition of our description system si, which is used to pick x and define the f(qj)
values. This would be a circularity that might prevent the oracle from being well-
defined, if not for the fact that the portion of f that is built in, that is, f(b) for
|b| < S, is disjoint from the portion of f that depends on this algorithm, that is, only
values of f(b) for |b| ≥ S(ni). Thus there is no circularity.

The f() values for the entire infinite oracle can be enumerated by enumerating
all values of i in sequence, and for each one, computing the appropriate values of Mi

and ci, and choosing an ni that satisfies all the explicit and implicit lower bounds
on n that we mentioned above. Then, ni is used in the above algorithm to allow
us to define si and choose the appropriate x, which determines f(b) for all b where
|b| = S(ni); these values of f can then be added to the table for use in the algorithm
later when running on higher values of i.

We now explain why the simulation carried out by the (oracle-less) decompression
algorithm imitates the real oracle-calling program exactly. When we come to an oracle
query operation where the queried bit-string(s) do not appear in our q[j] array and
do not have a matching ∆τj, then we know the bit-string(s) must not correspond to a
real node in q1, . . . , qt, because if they did, then either they were not pebbled due to
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queries in direction D, in which case they would have been in the description d and
would have been present in the initial q array, or else the first query that involved
them must have been before the current one (or else some ∆τj would match), in which
case they would have been added to the q array earlier.

Moreover, when we get to a single query qj, we know we can look up qj+1 to answer
the query, because it must already have been stored. Either qj+1 was not pebbled in
direction D in which case it was stored originally, or it was pebbled in direction D
in which case the first query involving it must have been before this one, since this
query is not of the type that would have caused the node to be pebbled in direction
D. In either case we will already have a value in array entry q[j + 1].

Given any description d derived from the execution history of a real Mi, the sim-
ulation will eventually find values for all nodes, since either they were given initially
or they are found eventually as we simulate. Thus the algorithm prints x, as required
for the proof of lemma 2.

3.4.5 Can this proof be carried farther?

Given the work above, an obviously desirable next step would be to show that
RST(S, T) 6= ST(S, T) for a larger class of space-time functions S, T in a reason-
able serial model of computation without an oracle. A similar problem of following a
chain of nodes may still be useful for this. But when there is no oracle, and when the
required time is larger than the input length T Â n, there is no opportunity to specify
an incompressible chain of nodes to follow. Instead, the function f mapping nodes
to their successors must be provided by some actual computation that is specified
by the relatively short input. It will be helpful if f is non-invertible or is a one-way
invertible function, whose inverse might be hard to compute. But the function will
still have some structure, and so it may be very difficult to prove that there are no
shortcuts that might allow the result of repeated applications of the function to be
computed reversibly using little time or space.

3.5 Summary of reversible complexity results

for traditional models

Let us summarize the above results on complexity in reversible machines. In sec. 3.2.2,
p. 54, we described a variety of measures of the cost or “complexity” of a computation.
Now we will summarize how reversible and irreversible models compare under different
measures of computational complexity.

Let M denote an arbitrary (not necessarily reversible) abstract model of compu-
tation such as a Turing machine or RAM machine, in which primitive operations may
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Given description d as described in the text,
Let q[1] . . . q[t] be a table of node values,

initially all NULL.
Initialize all q[j]’s not pebbled in direction D,

as specified by description d.
Simulate Mi in direction D from configuration Cτ ,
as follows:

To simulate a single operation of Mi:
If it’s a non-query operation, simulate it

straightforwardly, and proceed.
Otherwise, it’s an oracle query.
Examine oracle tape.
If it’s not of the form b or b#c for

bit-strings b, c, |b| = |c|, do nothing.
If |b| < S, look up f(b) in a finite table,

and set the oracle tape appropriately.
If |b| > S, do nothing for this operation.
If the query is of the form b, then

If current time matches some ∆τj,
set q[j] = b.

If b = q[j] for some j < t,
set oracle tape to b#q[j + 1],

else go ahead to the next operation.
If query is of the form b#c, then

For each ∆τj matching current time,
set q[j] to b or c depending on tag kj.

If b = q[j] and c = q[j + 1] for some j,
set oracle tape to b,

else do nothing for this operation.
Increment time counter.
Repeat until time exceeds largest ∆τj.

Print all q[j]’s.

Figure 3.10: Algorithm to print the incompressible chain of nodes x via simulation of
the reversible machine Mi.
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be reversible or irreversible, and unbounded memory is available. Let R(M) denote
the corresponding reversible model of computation, like M but with all primitive
operations constrained to be perfectly logically reversible, and with an extra stack
for history information made available to each active processing element from the
original machine.

Number of ticks. Under the cost measure T (number of “ticks” of some syn-
chronous, computational “clock”), a reversible model R(M) is exactly as efficient as
an arbitrary model M. This follows from the Landauer-Lecerf-Bennett ideas as we
discussed in §3.3.3, p. 61, which apply to parallel models as well as to serial models.

Memory requirement. Under the cost measure S (maximum memory used at any
time during the computation), R(M) is exactly as efficient as M. This follows from
the Lange-McKenzie-Tapp technique we discussed in §3.3.5.3, p. 65. However, if the
model includes an input stream that can only flow one way and whose length is not
included in S, then Pin’s proof [136] applies, and the reversible model is structly
less space-efficient, because there are regular languages that cannot be recognized by
constant-space reversible machines.

Memory and number of ops. Under the cost measure (S, T), without additional
assumptions, we only know that R(M) is no more efficient than M. However, given
one-way external inputs, reversible models are less efficient by our argument in the
previous paragraph. Moreover, this is also true given a certain oracle, or given
random-access external inputs, by our two new theorems from §3.4. We conjec-
ture that reversible models are less (S, T)-efficient even given only internal inputs and
simple primitive operations, but this has not yet been proven.

Memory times num. ops. The statements of the previous paragraph also apply to
the cost measure ST (the product of the traditional space and time). Therefore, prob-
ably reversible models are in general strictly less space-time efficient, in traditional
complexity-theory terms.

Note that all the above comparisons deal in measures of complexity that are character-
ized in abstract, computational terms, such as the number of operations performed,
rather than as real physical quantities; and the models of computation that were
compared were all idealized abstract models, rather than models of machines as they
could be physically implemented.

Normally in computer science it is often assumed that such abstract models are a
good enough approximation to reality so that correct conclusions can be inferred from
the resulting abstract theory. In our case, the theory would seem to indicate that
machines that are constrained to be reversible are strictly inferior to unconstrained
machines, including machines that are completely irreversible.
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However, in chapter 6 we will show that this conclusion is actually in error, in
the sense that if one uses more physically realistic models of machines and of costs,
machines that are completely irreversible are instead strictly inferior to machines
that are allowed to be reversible to some degree, and are sometimes even inferior to
fully reversible machines. We anticipate that this inferiority will make itself felt in a
variety of of present-day and projected future computing technologies.

Therefore, for the purpose of deciding between reversible and irreversible modes
of computation in the real world, we see that traditional computer science and tradi-
tional complexity theory are inadequate; they give the opposite of the correct answer
in some cases!

This underscores our overall point, which is that computer scientists must not
become mired in the traditional models of computation, but instead should strive
to keep their models up-to-date with all the new factors that become important as
technology improves.

We believe that computer science, as a field, should look ahead and try to antici-
pate the ultimate physical limits of computer technology, and begin studying models
that are accurate enough to give the right answer even in that limit.

In that spirit, chapter 4 reviews quantum computation, which will stretch the
bounds of computational efficiency, if it turns out to be feasible. Chapter 5 further
motivates our quest for an ultimate physical model of computation, and outlines
some plausible candidates that should remain valid at least through the foreseeable
future. Chapter 6 shows why the ultimate model will need to permit an arbitrarily
high (if not perfect) level of logical and physical reversibility. Then, Part II of this
thesis will present a variety of engineering designs and analyses demonstrating that
reversible computation is indeed quite feasible, and that most concepts from ordinary
irreversible computation remain applicable to reversible computing as well.



Chapter 4

Quantum computation

In chapter 2 we saw various ways in which fundamental physics limits what we can do
with computers. But even within these limits, physics may also afford new, previously
unforeseen opportunities.

In this chapter we review the field of quantum computation, which studies a par-
ticular new kind of computation that takes advantage of known physical principles
in a new way which appears to be fundamentally more powerful than the kinds of
computation employed in any existing computers. Quantum computing may or may
not turn out to be practical in the long run, but its eventual feasibility has not yet
been conclusively ruled out. Therefore it is important for us, when considering the
ultimate limits of computing, to at least be aware of the ways in which quantum
computing may potentially belie the conventional wisdom about what is possible.

Moreover, the basic operations used in quantum computation are inherently re-
versible, and thus constitute a potential realm of application for some of the reversible
algorithm techniques discussed later in this thesis.

Quantitative Church’s Thesis. The “Quantitative Church’s Thesis” [176, 175]
claims that Turing machines are as efficient as any realistic computer, within a poly-
nomial factor. However, Feynman [59] has pointed out that Turing machines seem
to be unable to efficiently simulate quantum physics; that is, they seem to require
an exponential slowdown to simulate it (although this has not been proven). This
leads naturally to the supposition that a computer that was designed to take full
advantage of quantum physical principles might be found to be exponentially faster
than a Turing machine, at least for some problems, thus disproving the Quantitative
Church’s Thesis. Such a development could lead to eventual practical applications,
if and when such quantum computers become buildable.

Shor’s Factoring Algorithm. However, this idea remained pure speculation until
the last several years, when a series of papers on the power of quantum computers

91
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[47, 23, 22, 21, 149] culminated in Peter Shor’s 1994 proof [146, 147] that a (somewhat
idealized) quantum computer could factor large integers in polynomial time in the
number of bits n in the integer. This was an astounding discovery, since mathemati-
cians throughout history have searched for an efficient way to factor numbers without
success, since at least the time of Euclid. The best known classical algorithm [102]
takes exponential time.1

4.1 Some fundamental quantum concepts

Hilbert spaces. The most important thing to understand about the difference
between the quantum and classical paradigms of physics is that in the quantum
paradigm, the classical notion of the state of a system is not sufficient to describe the
dynamical evolution of the system. In fact, if S is the space of possible states of a
classical system, then a corresponding quantum description of the system involves a
consideration of the much larger space of functions from S to the complex numbers
C, i.e. the space H = CS , to use the set theory notation. The number of dimensions
of H is equal to the number of elements of S. This space H is called the Hilbert space
of the system.

Amplitudes and probabilities. So again, the quantum state of a system consists
of a function Ψ : S → C from the classical states of the system to the complex num-
bers. These complex numbers are called amplitudes and their physical significance
is that the square of the absolute value of the amplitude of a classical state x is in-
terpreted as the probability that the system would be found to be in state x if the
system were observed, i.e. Pr(x|Ψ) = |Ψ(x)|2 = <(Ψ(x))2 + =(Ψ(x))2, where <(z)
and =(z) represent the real and imaginary parts of the complex number z, respec-
tively. A simple probability distribution over classical states would suffice instead, if
a static description of the system were all that was required. But if the dynamical
evolution of the system is to be modeled in a quantum-theoretic way, the full power
of a complex function is necessary; the probabilities alone do not suffice to describe
how a quantum system can change over time. The function from states to amplitudes
is commonly referred to as a superposition of states .

Unitary transformations. The fundamental principle of change in quantum sys-
tems is the unitary transformation. If we imagine the amplitude function Ψ being
identified with a vector of complex numbers indexed by the states in S, then a unitary
transformation is simply a multiplication of those vectors by a transformation matrix
whose inverse equals its conjugate transpose. (To briefly review some definitions from
linear algebra and complex arithmetic, the transpose MT of a matrix M is defined

1More precisely, O(exp(n1/3 log(n2/3))).
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by MT(x, y) = M(y, x) i.e. the matrix is flipped around its diagonal axis, and the
conjugate M∗ of M is defined by M∗(x, y) = <(M(x, y))− =(M(x, y))i, that is, the
sign of the imaginary part of each element is negated. The inverse M−1 of M is the
matrix such that M−1M = I, the identity matrix.)

A unitary transformation, intuitively speaking, corresponds to a length-preserving
and information-preserving rotation in the vector space. The length-preserving re-
quirement ensures that the total probability of the set of states always remains the
same (1 if normalized), and the information-preserving requirement reflects what
seems to be a universal conservation principle in fundamental physics (which we dis-
cussed in §2.5), namely that all changes are information-preserving on a microscopic
level; or, in quantum-mechanical terms, the complete quantum state (amplitude vec-
tor) of an isolated system at any time determines the quantum state of the system at
all past and future times.

Measurement phenomena. We have already mentioned that a measurement of
the state of a quantum system (or of part of the state) yields a result with a probability
equal to the square of that state’s amplitude. (Or, if only part of the state is measured,
the probability is equal to the sum of the squares of the amplitudes of all the global
states that are consistent with the state of the part being measured.) However, such a
measurement has an apparent side-effect on the system, namely that the probabilities
of all states inconsistent with the observed result drop to zero, and the amplitudes of
all the states that are consistent with the observed result are scaled up accordingly,
so that the total probability over all states remains 1.

In other words, after observing a measurement (that is, allowing the measurement
to affect the outside world), one cannot in practice just undo the measurement to
restore the amplitudes of all states to their original values, putting the genie back
in the bottle, as it were. Instead, the original superposition seems to be effectively
destroyed, and all further measurements on the system will be in accordance with the
new collapsed superposition.

In the traditional Copenhagen interpretation of this phenomenon, this event of
the collapse of the global wavefunction (which would be a non-unitary and non-local
transition) is said to actually occur. But there is an alternative explanation for the
observed phenomena that is, in our view, philosophically much simpler and thus more
plausible. It does not require postulating any new basic principle of “wavefunction
collapse,” rather, the apparent phenomenon of collapse can be seen to follow auto-
matically from the basic nature of quantum mechanics.

This alternative is Everett’s theory of the Universal Wavefunction [57] which says
that regardless of whatever interactions occur between a quantum system and the
external world, these interactions continue to obey unitarity, and the entire system
as a whole (system being studied, plus rest of world) remains in the superposed state



94 CHAPTER 4. QUANTUM COMPUTATION

predicted by quantum mechanics. If the appropriate inverse transformation could be
applied to the system as a whole, the original state could in principle be restored.
In a measurement experiment, if information about the measurement does not leak
out of the measurement apparatus into the outside world, there is no reason why the
measurement, if carefully controlled, cannot be “undone” to restore the original state.
(In fact, recent experiments reported in [189] confirm this.)

However, we do not have control over the quantum interactions that take place
after a photon (say) that is carrying state information leaves an experiment and
strikes, say, an observer’s eyeball; after that interaction takes place, the information
about the state of the experiment gets all mixed up with the states of billions of
particles, and although a superposition is still present, the states corresponding to the
different outcomes of the experiment have drifted so far about from each other through
random interactions with other particles that there is essentially zero probability that
they will ever drift back together to become the same state again, which is necessary
in order for their amplitudes to again add up and interfere with each other. It
doesn’t really matter whether the photon strikes an eyeball or a rock. The different
states corresponding to different outcomes of the experiment drift so far apart from
each other (in Hilbert space) that it is an excellent approximation to treat them as
completely independent and non-interacting. (But if the photon strikes a waveguide
that directs it back into the experiment in a controlled way, that’s different.)

Therefore, within the context of any state in which information has leaked out
and interacted with an uncontrolled, un-modeled external environment, we can ap-
propriately shift to using a model in which the value of this “measured” information
is simply chosen according to the |Ψ|2 distribution, and the amplitudes of the other
states (those that are inconsistent with the leaked information) are zero. The only
alternative would be to include all of the zillions of interacting particles of the exter-
nal environment in one’s model of the state of the system; this alternative is of course
impossible for any “environment” that is not itself a known and carefully-controlled
quantum system.

In any case, to avoid confusion, a more precise statement of the “measurement
phenomenon” described earlier would define a measurement as any event in which
state information about a part of a system interacts with an uncontrolled, unmodeled
environment.

Unfortunately, distinguishing experimentally between the Copenhagen and Ev-
erett interpretations is difficult, if not impossible. (However, for an argument that
it is possible, see [46].) Many philosophers have found the Everett interpretation to
be highly implausible, and have dismissed it out of hand, because it implies the exis-
tence of enormous numbers of alternate versions of our universe that we are unable to
interact with. However, based on my own personal view of the ideal rational method
for comparing scientific theories, Everett’s is clearly the simpler and less ad hoc the-
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ory, in the sense of having a more concise mathematical formulation, and therefore
it is more likely; the fact that it predicts this amazing and untestable consequence
of a universe that is far more elaborate than we can possibly observe is, in my view,
completely irrelevant to assessing the theory’s plausibility as a scientific explanation
that thoroughly explains the phenomena that we can observe.

Interestingly, the future development of quantum computers (if successful) can be
seen as stretching the bounds of the plausibility of the Copenhagen interpretation,
because the functionality of a quantum computer depends on the assumption that
global superposition states of large and complex systems are indeed possible. The
larger the quantum computer that we can successfully build, the more implausible
seems the Copenhagen viewpoint, which arbitrarily demands that the simple quantum
theory (which says that all physics works through unitary transformations), depite
applying perfectly well to large, complex quantum computing systems, cannot be
applied identically all the way up to cover extremely large systems, e.g., the whole
universe.

4.2 Quantum complexity theory

After Deutsch introduced his quantum generalization of the Turing machine [45],
researchers wondered whether this computational model has computational capabil-
ities greater than those of classical Turing machines. In his original paper, Deutsch
showed that quantum computers could exploit “quantum parallelism” to simultane-
ously compute function values for N inputs using only one mechanism. This works
because the unitary transforms that apply to quantum states operate on the ampli-
tudes of all the possible classical states of the system simultaneously. Thus, a single
unitary transformation that implements the transition function f of a computation
can simultaneously take the state xi to f(xi) for all i in some index of the N initial
states.

Unfortunately, this parallelism does not effectively allow one to do N times as
much work with it as without it, because the N results of one computation cannot
all be measured, since (as described in the previous section) communication of state
information to the outside world effectively isolates the possible values of the measured
state variable from each other, and so effectively causes states inconsistent with the
measured information to have nonzero amplitude. The only way that information
about the amplitudes of different mutually exclusive states can be combined is by
taking unitary, linear transformations of those amplitudes before measuring state
information.

However, for certain problems, such unitary combinations of the amplitudes of
different states may provide information useful for solving the problem. Deutsch
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hinted at this in his original paper, showing that the XOR of the values of a boolean
function on two different inputs could be computed in the time needed to evaluate the
function once, if a certain transformation of the result states was performed before
measuring them. The catch is that half the time, at random, the measurement yields
no information—so the expected rate of finding these XORs is the same as with a
classical algorithm that first computed the value for one input, and then the other,
and XORed them.

In a later paper [47], Deutsch did much better—together with Jozsa he showed
that a certain property of functions could be determined with certainty exponentially
faster by quantum programs than by classical ones, if the function is given as a black
box as input to the program. The property (for a function that returns 0 or 1) is
whether the function is variable (it has value 0 for some inputs, and 1 for some inputs),
or biased (it has one value for more inputs than the other value) if we are given that
it is not both. If, on the contrary, it is both—say if its value is 1 on two-thirds of the
inputs—the quantum algorithm may return either answer.

Unfortunately, it is hard to think of a realistic scenario where such an ability might
be useful. For example, if the given function is a simple boolean formula applied to its
input bits, we may be interested in knowing whether the function is variable (which
corresponds to the famous SAT or “satisfiability” problem), but if it is, who cares
whether it is biased! Unfortunately, if the function is highly biased, as is generally the
case for hard SAT problems, then the algorithm will almost always answer “biased”
instead of “variable,” giving us no help with the satisfiability question. A classical
algorithm could do just as well on SAT by trying input assignments at random. The
Deutsch-Jozsa algorithm is really only helpful if we know that the input function is
either constant or unbiased, and we cannot tolerate any non-zero probability of failure
in determining which one it is. This seems like an unnatural problem.

But in any case, following the Deutsch-Jozsa paper, analysis of the power of quan-
tum computers developed rapidly with papers [23, 22, 21] that defined various quan-
tum complexity classes and compared them with various classical complexity classes
in relativized oracle settings similar to Deutsch and Jozsa’s. Quantum operations
were also found to have uses in implementing various cryptographic operations; see
the end of [23] for a summary. Quantum analogues to the popular classical complexity
classes such as BPP (bounded-error probabilistic polynomial-time) and ZPP (zero-
error probabilistic polynomial-time) were defined, and various of the quantum classes
were shown to be larger than the various classical classes—but only in relativized
oracle settings, such as we used in §3.4.2.

However, none of the oracle problems addressed seemed particularly evocative of
real problems until Simon’s [149] paper, which showed that the following problem
was in ZQP (zero-error quantum polynomial-time): We are given a function f , and
told that either f is 1-to-1, or else it is 2-to-1 and there is some bit-mask s such
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that f(x) = f(s ⊕ x) (where ⊕ is bitwise exclusive-or) for all input bit-patterns x.
The problem is to determine whether the former or the latter is true, and if the
latter, to find s. This seems a better than the earlier problems because it actually
returns a significant amount of information about its input in the form of finding
the XOR-mask s (if it exists). Anyway, Simon showed that quantum computers
could solve this problem with certainty using a polynomial number of queries of the
input function. Classical algorithms require exponentially many tries to achieve a
reasonable probability of success.

The extraordinary thing about Simon’s construction was its use of a particular
unitary transformation equivalent to a special-case of the discrete Fourier transfor-
mation that had been introduced earlier by Bernstein and Vazirani [21]. Originally
this Fourier transform was used to solve a certain simple oracle problem using O(1)
queries on a quantum computer as opposed to the Θ(n) queries that were classically
required. The Fourier transform is linear and invertible; it turns out that it is unitary
as well, and a discrete Fourier transform on functions of n-bit inputs can be performed
on a quantum computer in time polynomial in n using a recursive procedure related
to the classical fast-Fourier-transform (FFT) algorithm [91].

Simon’s ingenious use of the quantum Fourier-transform algorithm to reduce an
exponentially-hard problem to polynomial time was the original inspiration for Shor’s
application of a more general version of the transform to a difficult and plausibly
important problem: factoring large integers. (The problem is important, at least
to certain government agencies, because efficient factoring is the key to cracking
RSA ([38] §33.7, p. 831), the popular public-key cryptography algorithm.) We now
summarize Shor’s algorithm.

4.3 Outline of Shor’s Algorithm

Shor’s algorithm depends on an old reduction from number theory, which translates
the problem of the factorization of N to the problem of finding the order of a num-
ber x ( (mod N)). To understand the “order” concept, recall that if x is relatively
prime to N , then multiplication by x ( (mod N)) is one-to-one. Therefore, the se-
ries x0, x1, x2, . . . ( (mod N)) eventually gets back to 1 and cycles around again, i.e.,
∃r > 0 : x0 ≡ xr (mod N). The order of x ( (mod N)) is defined to be the least such
r. The connection with factoring is that if r is even, then either (xr/2 − 1) mod N or
(xr/2 + 1) mod N has a common factor with N , which can then be easily found using
Euclid’s algorithm for finding the greatest common divisor (gcd) ([38], §33.2, p. 808.)

Therefore, if a polynomial-time algorithm for finding the order of a number mod
N is available, then it can be used to factor N as follows:

1. Pick a random x < N .
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2. Compute f = gcd(x,N); if f 6= 1, return f . (It’s a factor.)

3. Find the least r such that xr ≡ 1 (mod N).

4. If either gcd(xr/2 − 1, N) or gcd(xr/2 + 1, N) is not 1, return it, it’s a factor.

5. Otherwise, go to step 1 and repeat.

The number of repitions of the above loop required to find a factor with probability
≥ 0.5 can be shown to be only polynomial in the length of N , therefore if all the steps
1-4 are polynomial, then the algorithm as a whole takes only polynomial time.

The bottleneck in the algorithm is of course the computation of r, which Shor
implements via a clever application of the Fourier transform to quantum parallelism.
The quantum computer is made to compute xr for all r < N2 simultaneously. As
discussed earlier, the series of xr ( (mod N)) is cyclically repeating if x is relatively
prime to N ; the period of repitition is the order of x. This cycle of repeating values
is stored simultaneously in N2 distinct states corresponding to the N2 different input
values of r; each state is present with the same amplitude. Then, the quantum Fourier
transform is applied to the superposition of result states. Instead of representing an
equal superposition of all the r and xr mod N , the function from states to amplitudes
now encodes a superposition of frequency spectra for finding the different values of
xr mod N . These spectra will have amplitude peaks at points correspondsing to
multiples of the basic repitition period of xr. If we then measure the state, it will
(with high probability) lie very near one of the peaks, and the value of the state
measured will let us guess the repitition period (which is the answer we are looking
for) with high probability.

Let us examine how this is done in more detail, with reference to the example
illustrated in figs. 4.1 and 4.2. In this example, the number to factor is N = 3× 11 =
33. Let q be the smallest integral power of 2 greater than N2, and let ` = lg q. In
the real algorithm q would be 2048, but we will take q = 256 instead for ease of
visualization. We will have two quantum registers (a, b), where a is an `-bit register
ranging from 0 to q − 1, and b ranges from 0 to N − 1.

In figs. 4.1 and 4.2 we illustrate the superposition state of the joint space of these
two registers, following each stage of Shor’s algorithm. In these figures, the position
along the horizontal axis represents the state of register a, and the position along
the vertical axis represents the state of register b. At every point on the resulting
two-dimensional surface representing the combined state space, we place a blob of ink
whose darkness corresponds to the absolute amplitude of that state. (Additionally,
when displayed on a color output device, the hue of the ink in these figures indicates
the phase of the amplitude.) White areas correspond to states having zero or nearly
zero amplitude.
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Figure 4.1: Example of Shor’s algorithm with N = 33, q = 256, x = 5. Left:
superposition over all values of a, with b = 0. Right: superposition after computing
b = xa mod N . Across a there is periodic cycling of b through the 10 values 1, 5, 25,
26, 31, 23, 16, 14, 4, 20.

We start with an initial quantum state of |0, 0〉, that is, a = 0, b = 0. First
we prepare an equal superposition of all values of a while leaving b = 0. The left
side of fig. 4.1 shows the amplitude spread out over all the values of a, in the row
corresponding to b = 0. This is the superposition

q−1∑
a=0

|a, 0〉/√q.

Next, x is chosen at random (in our case, to be 5), and we perform a classical
reversible computation to transform the value of b from 0 to xa mod N . The right
side of fig. 4.1 shows how the blob of amplitude associated with each value of a is
moved vertically to the state also having the correct value of b. With increasing
a, we see that b cycles periodically among various values, with a period that is (by
definition) the order of x mod N , which in this case is 10.

Finally, leaving b, alone we perform a Fourier transform over the value of register
a. This is defined by

ψ′(a′, b) =

q−1∑
a=0

exp(2πiaa′/q)ψ(a, b)/
√

q

Figure 4.2 illustrates how the amplitude in each row associated with each value of
b is moved horizontally to cluster in peaks, whose number corresponds to the period
of the original amplitude distribution. Since the period is the same for each value
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of b, the peaks in each row line up, although they have a different phase in different
rows. (The color version of this document shows the amplitudes in color, with the
hue denoting the phase.)

After this, register a may be sampled, and several samples will be sufficient to tell
us its period, 10 in our case. Now the rest is easy: Half of 10 is 5, and x5 mod N is
23 in our case. Twenty-three minus 1 is 22, which has a common factor (11) with our
N , and twenty-three plus 1 is 24, which also has a common factor (3) with our N .

The details of exactly how the quantum Fourier transform works are beyond the
scope of this short survey. For more detailed expositions of Shor’s algorithm, see
Ekert and Jozsa’s description in [54, 53], and Shor’s original papers [146, 147].

4.4 Important open problems

Here are some of what I believe to be the most important, and also the most difficult
open questions in quantum computing:

4.4.1 Can quantum computers solve NP-complete problems in poly-
nomial time?

This is perhaps the most interesting question about quantum computing. If the
answer to this question were positive, then quantum computing could revolutionize
computing, as we know it. There are a wide range of practical problems in constraint-
satisfaction, combinatorial search, and other areas that have been shown to be in NP,
but for which no efficient classical algorithms are known.

The ability to solve NP-complete problems efficiently would also revolutionize
all of mathematics, because it would enable us to quickly determine, for any given
mathematical statement, whether or not there is a fairly simple proof (or disproof) of
the statement, and if there is, to find it. Automatically checking a (suitably formal)
proof for correctness can be done in polynomial time in the proof length; therefore,
finding a proof of a given length can be done in nondeterministic polynomial time in
the target length. Therefore a method for solving NP problems in polynomial time
could find proofs in time polynomial in the proof length.

Currently, it seems unlikely that quantum computers could solve NP-complete
problems, due to the fact that the only known quantum algorithms that dominate clas-
sical algorithms either involve unrealistic oracle-dependent promise problems [21, 149],
or introduce only polynomial speedups [77, 78], or only simulate quantum mechanics
[25], or depend on the ability to reduce the problem to one involving periodicities for
which the quantum Fourier transform is useful [147, 26]; one would not expect such
periodicities a priori to be characteristic of all problems in NP.
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Figure 4.2: Superposition after performing quantum Fourier transform over register
a in Shor’s algorithm, when factoring N = 33 with the choice of x = 5. The value
of a is now peaked at 10 points spaced 25.6 units apart. The number of peaks is the
period (order) of the function 5a mod N , shown in the right half of fig. 4.1. After
the transform, sampling a permits determining the period, and halving it, we find 55

mod 33 = 23, which is 1 away from numbers that have common factors with 33, and
the problem is solved.
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However, it is conceivable that someone may yet discover a clever quantum al-
gorithm for general simulation of nondeterministic Turing machines. One possible
approach might be to reduce some NP-hard problem to the factoring or discrete log-
arithm problem; however, complexity theorists have attempted such reductions for
many years without success.

A more sophisticated approach might involve finding some other unitary trans-
formation other than the Fourier transform that could allow states associated with
parallel paths in a quantum simulation of a nondeterministic machine to construc-
tively interfere in ways that might yield useful information about the structure of the
search space, and help to pin down the solutions. Hogg [85] has investigated quantum
algorithms that enhance the probability density found along solution paths in NP
search problems, but not enough to allow measurements of the machine state for such
problems to yield solutions in expected polynomial time.

On the other side of the question, Bennett et al. [20] have provided suggestive
evidence against the NP ⊆ BQP conjecture, by showing that when R is a random
oracle, NPR ⊃ BQPR with probability 1. However, it is worth noting that since
BQP ⊇ P, an actual proof that NP ⊃ BQP would imply that NP ⊃ P, a conjec-
ture whose proof has long eluded complexity theorists. Thus, it seems unlikely that
the possibility of quantum computers subsuming nondeterministic computers will be
conclusively ruled out anytime soon.

4.4.2 Are quantum computers strictly more powerful than classi-
cal computers (with a bounded probability of error)? I.e.,
BQP ⊃ BPP?

This question at first appears the same as the previous one, but there are two im-
portant differences. First, it may be the case that P = NP, in which case both
quantum and classical computers could solve all problems in NP efficiently, and so
the quantum computers might not be any more powerful than the classical ones.

Secondly, if the answer to the question is negative, i.e. if BQP ⊆ BPP, then
this has important implications for physics, because it might mean that existing
classical computers could therefore simulate arbitrary quantum systems with only
a polynomial slowdown, which is not currently known to be possible [59]; current
classical simulations of quantum systems all suffer from an exponential slowdown.

A faster method for simulating quantum physics would revolutionize much of
theoretical physics, because it would allow many more predictions to be derived from
quantum theories, predictions which could then be compared with experiment to
refine the theories; and it would also reduce the current dependence on approximation
methods in many important areas of applied physics, such as modeling molecular
interactions, e.g. for drug design.
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Unfortunately for these tantazlizing prospects, the existence of Shor’s factoring
algorithm, together with the long-standing failure of many generations of brilliant
mathematicians to find a classical equivalent, seems to leave little hope for a quantum-
classical equivalence. Even if quantum computers are not as powerful as nondeter-
ministic Turing machines, they may be strictly more powerful than deterministic
ones.

4.4.3 Can errors caused by imprecision and decoherence be controlled
sufficiently to allow arbitrarily complex quantum computations
to take place with an arbitrarily small probability of failure?

A number of papers have expressed pessimism regarding the question of error accu-
mulation in quantum computers, e.g., [96, 95, 173, 174, 33, 132]. These papers show
that in the absence of error correction, the probability of error increases exponentially
with both the time and space complexity of the computation, and the expected error-
free running time for various experimental setups has been estimated to be roughly
on the order of the time to perform a single computational step, seemingly ruling out
the possibility of doing interesting quantum computations.

However, Coppersmith [36] has shown that simple imprecision does not cripple
the quantum factoring algorithm, and several more recent papers [28, 32, 155] have
addressed the more difficult issue of correcting errors due to decoherence of the quan-
tum states. They work by encoding a bit value redundantly in a superposition of
many bit values in such a way that up to n independent interactions of bits with
the environment can take place without communicating any information about the
value of the encoded bit to the environment. If fewer than n bits interact with the
environment, than the system can exactly recover the originally-encoded superposi-
tion and then regenerate its redundant representation. The only problem is that this
reconstruction process will in general be subject to errors as well. More sophisticated
techniques might take that into account. In summary, although these papers appear
to be on the right track to a solution, a more complete theory of quantum error
correction is still needed, and remains to be worked out.

Cesar Miquel’s 1996 preprint [127] reports results of some simulation experiments
on error-correcting versions of Shor’s algorithm in the presence of errors.

4.4.4 How do we build it, physically?

Although the question of how to implement quantum computations physically is of
course a question of utmost importance for the future of the field, to a large extent the
details of the physical implementation are orthogonal to most of the theoretical issues
dealt with in the literature we have reviewed. There is another huge literature, mainly
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under the rubric of experimental physics (rather than quantum theory or computer
science), which deals with constructing physical realizations of systems of controlled
interactions between quantum states. For example, researchers in quantum optics
study how to manipulate information encoded in the polarization staes of photons;
“cavity QED” workers study the interactions between photons and electron spins on
individual atoms [56, 168]; and other experimentalists work with vibrational states
in assemblages of interacting atoms [35].

An intriguing recent development in implementation techniques has been the in-
vestigation of NMR “ensemble quantum computing,” in which the nuclear spins of
atoms in molecules in solution are made to interact using nuclear magnetic resonance
techniques [39, 76, 40]. The NMR experiments have had the most success of any tech-
niques to date; quantum logic operations involving 2 and 3 bits have been successfully
demonstrated.

Even more recently, Mooij et al. [128] have described how to implement quan-
tum computation on a chip surface in microlithgraphed superconducting Josephson-
junction circuits. In this scheme, quantum bits are encoded in the direction of a
quantized current flow in a superconducting loop. The system is projected to have
very long decoherence times, making it fairly amenable to quantum error correction
algorithms, and moreover, quantum circuits of arbitrary size and complexity can be
readily patterned. At the moment, this approach seems the most likely candidate for
implementing a practical quantum computer in the near future.

Some older proposals for implementation technologies for quantum computing,
from various communities, include Teich et al. ’88 [158], Lloyd ’93 & ’94 [112, 113],
DiVincenzo ’95 a [49], Sleator & Weinfurter ’95 [150], Barenco et al. ’95 b [10], and
Chuang & Yamamoto ’95 [34].

The main lesson to be learned from this long list of proposals is that the details
of the physical implementation of quantum computers are “just” an engineering con-
cern, rather than a theoretical issue of fundamental importance. Researchers since
Feynman [60] have noted that there seems to be nothing fundamental in quantum
physics that precludes using it for computation, and indeed, the multiplicity of ideas
listed above seems to bear that out. Although certainly the development path of
many particular techniques will be beset with problems, it seems likely that even-
tually our technologies for manipulating quantum particles will mature to the point
where some form of complex controlled assemblages of quantum states will be built
fairly readily—that is, if it is useful to do so. The question of whether it would be
useful can only be answered by the theoretical studies such as those we surveyed in
this chapter; no matter how a quantum computer is finally built, the theorems and
algorithms produced by those studies will still apply.
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4.5 Summary of quantum computation

Although it appears that the basic computational steps of quantum computers may
soon be implementable, and that a large quantum computer may be able to factor
numbers faster than a classical computer, many practical problems such as error-
correction remain to be solved before we can scale up to large enough computers to
be useful. Another possible show-stopper is that factoring and a handful of other
problems relating to cryptography [26] may turn out be the only real-world problems
amenable to fast quantum solutions, which may not provide enough motivation to
support the development of quantum computers. Although cracking RSA is a tanta-
lizing prospect, it would not necessarily change the world radically—RSA might just
be replaced by another code that is less amenable to quantum solution, especially
perhaps one using quantum crypography. However, there is hope that applications
such as the use of quantum computers to efficiently simulate models of real quantum
physical systems [25] might revolutionize physics as we know it.

In chapter 2 and in this chapter, we have seen how some basic physical principles
affect the limits of what is possible with computers, sometimes in surprising ways. In
the next chapter, we will discuss the benefits to be gained from developing “ultimate”
models of computation that accurately reflect these limits, and we will propose some
candidates for an ultimate model. The ultimate model may or may not turn out be
able to use large-scale quantum coherence in the way that we have discussed in this
chapter, but in chapter 6 we will see that, at the very least, the ultimate model must
be reversible.
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Chapter 5

Ultimate physical models of
computation

In this chapter we elaborate in some depth our motivating long-term goal (first men-
tioned in §1.2) of describing “ultimate” physically-based models of computation. We
contrast this concept with the models that have traditionally been studied in com-
puter science. We outline several plausible candidates for what the ultimate model
ought to look like, based on the fundamental physical observations from chapters 2
and 4.

Traditional complexity theory. As we saw in chapter 3, the subfield of computer
science known as “the theory of computational complexity” traditionally deals with
how the time and space required for a computer to solve problems in a given class
depends on the size of the problem. Unfortunately, different models of computation,
such as Turing machines, RAM machines, and various parallel models, are found to
differ by polynomial factors in the speeds at which they can solve particular classes
of problems. The algorithms that seem fastest in one model may not turn out to
be fastest in another. One reason for this is that issues of the physical movement
and routing of information are often considered part of the architecture, rather than
part of the algorithm. Thus, as computing technology continues to develop, we occa-
sionally find ourselves in a situation where the old models have become inapplicable,
and previous work on finding the run-times of problems or on developing efficient
algorithms must often be redone.

Ultimate models of computation. In our work, we attempt to leap ahead, and
get away from the model-relativism of traditional complexity theory, by proposing a
new theory based on “ultimate” models of computation, in which we forecast a “best
possible” computing technology that takes full advantage of the computational power
of the known laws of physics, while also recognizing the limitations imposed by these

107
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laws, including the three-dimensionality of space, the finiteness of the speed of light,
and the second law of thermodynamics. In this sort of model, the way information
and entropy are routed become an explicit part of the algorithm.

A tight Church’s thesis. For our ultimate models, we conjecture what we call a
“Tight Church’s Thesis,” which claims that any model of computation that predicts a
smaller order of growth for the time to solve any class of problem than is predicted for
our model is not actually physically realistic, in the sense that its growth predictions
will break down in any real implementation as the problem size is made larger. It
is conjectured that the only fundamental physical effect limiting the accuracy of our
model will be gravity; i.e., our model’s predictions will break down only when the size
of the computer described by our model becomes so large that even if it were built in
space, it would collapse under its own self-gravity. Thus, even if not truly “ultimate,”
our class of model is, at least, expected to remain accurate for all computers that are
built for a very long time. As we already stated in §2.3, in this thesis we will not
attempt to explore the high-gravity regime.

5.1 What is a model of computation?

A model of computation is simply an abstract formal framework within which we can
describe a computation process.

Role of infinities. Many models invoke infinities, such as the infinitely-long tape
in a Turing machine, or an infinite cellular automaton array. However, in the more
realistic models, any such infinities will be mere mathematical conveniences, and do
not cause the model to be infinitely more computationally powerful than anything we
might achieve in the actual universe, which may be finite.

Finiteness of the universe. Speaking more precisely, the best guess of modern
cosmology is that the total volume and quantity of mass-energy in the part of the
universe that is causally connected to us is finite. Therefore, with reference to the
fundamental limits discussed in section 2.2, the maximum entropy or informational
complexity of the universe (or in computer science terms, its maximum storage ca-
pacity) is finite as well. However, the universe is expanding, and according to some of
the latest studies may very well continue to expand forever, in which case its entropy
may indeed, over time, increase without bound. But at any particular time, every-
thing is finite: propagation speeds, processing rates, information capacities, etc., as
we reviewed throughout chapter 2. In realistic models of computation, such quantities
should be finite as well.

Turing machines are realistic. The Turing machine is a good example of a re-
alistic model, because the only infinity in the model, namely the infinite tape, is a



5.1. WHAT IS A MODEL OF COMPUTATION? 109

mathematical convenience that is inessential to the model. It can be replaced by a
tape that is finite at any moment, but that can grow unboundedly large, as needed,
given unbounded amounts of time. Similarly, the finite controller for the tape-head
is allowed to be unboundedly large, but is fixed for any particular machine.

The above property of Turing machines, which we might call unbounded space,
might even conceivably be realistic, in the very long term, if the universe is ever-
growing and its maximum entropy increases without bound. In the near term, there
will certainly be many much tighter real-world constraints on storage capacities. But
whether unbounded space is realistic or not, it is a useful property because it frees our
model from having to worry about any specific space bound, which would be highly
situation-dependent anyway, and focus instead on other issues.

Note also that unbounded space does not imply infinite complexity in the initial
configuration; indeed such complexity would make the model nonphysical.

Families of fixed-space machines. As we pointed out, Turing machine models
usually provide unbounded space through either an infinite blank tape, or a tape
that may be indefinitely extended as needed during the course of a computation.
Another way to permit unbounded space within finite models is to specify a particular
fixed, finite amount of space as part of the initial condition for any instance of the
model, but define “the model” to encompass an infinite family of instances having
arbitrarily large fixed amounts of space. This conception corresponds nicely to what
we do when we build a particular computer; its information capacity is finite, and
the machine cannot of its own accord increase its capacity; nevertheless for any given
finite computation, a machine can be built that has sufficient capacity to perform it.

In this work we will often describe models of computation in this way, in terms
of a family of machines, each instance of which has fixed capacity, but where for
any desired capacity, some machine in the family has that capacity. Moreover, the
instances must all be Turing-computable; we are not allowed to hide the values of an
uncomputable function in the family of instances, or at least, such models would not
be considered realistic.

It is important to realize that models of computation that consist of computable
families of fixed-capacity machines are equivalent in power to Turing machines with
extensible tapes, on any problem class that has computable space bounds, even though
all particular machine instances in our model family are finite-state machines. This is
because we are allowed to pick larger machine instances as needed, as problem sizes
become larger.

If no bound can be placed on the space requirements for a given problem class,
we can handle this by extending our model with a protocol whereby a particular
fixed-capacity machine is simply rebuilt with a larger capacity if it runs out of space
during a particular problem instance.
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Of course, if we include the human builders in the concept of the system, or
if we create machines that construct more of themselves automatically out of raw
materials, expanding along with the universe, then even a particular instance of a
computing system could, in reality, have unbounded capacity just like a theoretical
Turing machine with extensible tape.

We have broadly outlined what we consider to be a legal candidate for a realistic
model of computation, in terms of what quantities may or may not be infinite. Now
we survey more closely the range of existing models.

5.2 Existing models of computation

Computer science has historically used many different abstract models of what consti-
tutes a computer. One of the earliest computing models explored by mathematicians
was the concept of a recursive function (cf. the text [141]). Around the same time,
Turing proposed his tape machine model. Shortly thereafter, von Neumann explored
the power of cellular automata (cf. [182]). Over the decades, many other models of
computation have popped up, from register machines to pointer machines and RAM
machines to parallel PRAMs, hypercubes, butterfly networks, meshes, etc. The mod-
els mentioned so far seem at first glance to be reasonable models of real computers.
Typically the models assume the availability of some unbounded resource (such as
the infinite blank tape in the Turing machine, or the infinite grid in a cellular au-
tomaton), but as we discussed above, generally the models’ complexity predictions do
not actually require constructing impossible machines having an infinity of resources,
but rather just a reasonable ability to construct more of the resource when needed.

All of the models mentioned above have the property that they have been shown to
be equivalent, in the sense of obeying the “Quantitative Church’s Thesis” (or Strong
Church’s Thesis) [176, 175], which we mentioned in chapter 4 (p. 91), which claims
that all “reasonable” models of computation are equivalent in power to the Turing
machine, within a polynomial factor. That is, the running time to solve a problem
class on any of these models is at worst a polynomial function of the running time
needed to solve the problem class on any of the others.

Additionally, models have been proposed that seem patently unreasonable, such
as nondeterministic Turing machines ([133] §2.7, p. 45), alternating machines (which
quickly solve problems in the cumulative polynomial hierarchy, [133] §17.2, p. 425),
machines that can query infinitely complex or uncomputable “oracles” ([133] §14.3,
p. 339), infinite-precision analog models that can perform infinite amounts of com-
putation in finite time [151], and so forth. Some of these models, such as nondeter-
ministic Turing machines, have not actually been proven to be impossible to realize
in polynomial time on a normal Turing machine, but most researchers would still



5.2. EXISTING MODELS OF COMPUTATION 111

consider them unreasonable models, and would be very surprised if they were to turn
out to be equivalent to Turing machines within a polynomial factor. Therefore we
will not deal with such models henceforth in this work.

The strong Church’s thesis is useful because it permits researchers studying the
computational complexity of problems and algorithms to derive their results in which-
ever model they prefer, with the assurance that any real computer will be able to
utilize their favored algorithm with at worst a polynomial factor slowdown.

Such polynomial factor slowdowns are perfectly ignorable when one is just study-
ing the theoretical relationships between broad complexity classes (such as P and
EXPTIME), but in the real world, differences by polynomial factors do matter, and
when picking an algorithm to solve a real-world problem, it is important to consider
how much time the algorithm will take on a real computer, not just on some abstract
model that may be polynomially slower—or faster—than the real computer for the
given problem. If we do resort to using an abstract model, then one might argue
that it should at least be one that accurately models the true asymptotic difficulty of
solving problems in a computer architecture we can actually build.

What’s more, as our skill in computer technology increases, architectures change,
and so the appropriate abstract models change as well.

For example, for some very early computers having magnetic tape storage and
extremely little memory, a simple Turing machine may once have been an appropriate
model. But very quickly, the memory of computers increased to the point where
the finite state machine in a TM tape head was no longer a reasonable model of
how the state of the CPU’s memory was updated—a lookup table for all possible
state transitions would be far too large. Real computers calculated their next state
based only on the contents of a few randomly-accessed memory locations pointed to
by a small set of registers. This architecture inspired the register machine, pointer
machine, and RAM machine models of computation. The state memory previously
modeled as “finite” was now large enough to represent most inputs, and so now
memory (or disk) was considered the new kind of practically-unlimited storage, and
the sequential-access tape was dropped from the model.

The next major architectural development was the creation of parallel machines.
The Turing and RAM machines suffered from the drawback that they could only
operate on small amounts of data at a time, one piece after the other, rather than
being able to simultaneously perform many identical (or perhaps different) operations
on the data stored at many different places in storage. New architectures had many
CPUs that operated in parallel. Thus, to analyze appropriate algorithms for these
machines, parallel models of computation were born. These appeared in great variety:
PRAMs, log-depth boolean circuits, hypercube networks, butterfly networks, meshes;
each appropriate for some particular sort of parallel architecture.

Next I will argue that a number of properties of many of the models supposedly
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representing today’s computer architectures are actually physically unrealistic and
misleading, in the sense that a computer built according to the given architecture or
abstract model would, in actuality, be physically unable to be scaled up arbitrarily
while still achieving the same performance that would have been predicted from the
abstract model. At various points, the models will break down, because they fail to
take into account one or several of the fundamental realities of physics.

As we have said before, the ultimate goal of this work is to develop a model
of computation that does not ignore any fundamental physical principles, and yet
utilizes the full computational power afforded by physics (within a constant factor).
The advantage of having such a model is that when we analyze an algorithm for it,
we will be assured that the analysis will still hold true no matter how much we scale
up the size of the problem or the computer. Also, since the model is designed to take
full advantage of known physics, we will know that whenever we prove that a given
problem requires a certain minimum order of growth in the time to solve it, no future
advances in computer technology—barring some newly discovered fundamental laws
of physics—can ever nullify the validity of that result.

There is of course always the possibility that our civilization’s technological ad-
vancement will plateau for economic or other reasons, before we reach the level where
all of the physical effects that we address come into play, in which case the models
developed here might never actually be appropriate for application to real computers.
However, it is our optimistic assumption that this will not be the case.

5.3 Problems with the existing models

This section lists ways in which existing computational models fail to recognize fun-
damental scaling limits imposed by physics.

Unlimited amounts of unit-access-time RAM. Models of computation such as
the RAM machine typically assume that there is some unlimited amount of storage
space, and moreover that any individual piece of it is accessible within constant time.
This is physically unrealistic, because presumably, in any particular technology, there
will always be a limit on the number of bits that can be encoded per unit of spatial
volume, and the speed of light sets a lower bound on the access time to bits located
in the more distant volume elements.

Super-cubic connectivity. Some types of graph-based models of computation
prevent you from accessing arbitrarily many storage locations in constant time, by
only allowing you to step from one storage node to the next in a graph. But if the
graph is a binary tree, say, then exponentially many nodes may still be reached in
a given time. This is also unrealistic, because only O(d3) storage locations may be
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physically located within a distance d in three-dimensional space, so that even if
the information travels at the speed of light, only O(t3) different locations can be
accessible within a given time t.

Similarly, many parallel computing architectures such as hypercubes have more
than cubic connectivity between their processing nodes, so that as one scales up the
number of processors, the wires between them take up more and more space and get
longer and longer, until most of the computer consists of wires between processors,
and delays scale up in ways not accounted for by the model. If the model accounts
for the delays it won’t be unrealistic, but still, it cannot be presumed to be making
best possible use of the space available. Three-dimensional mesh architectures and
cellular automata do not suffer from this difficulty.

Free irreversible operations. Next, nearly all of the existing models allow pro-
cessing elements to perform irreversible operations (i.e., transitions into states that
have more than one predecessor) without considering the impact of the necessary
resulting energy dissipation that is implied by thermodynamics. As we saw in ch. 2,
microscopic dynamics is reversible; therefore the information that is thrown away
when performing an irreversible operation must be somehow exported from the sys-
tem.

As we will demonstrate in more detail in ch. 6, this exporting of information will
necessarily constrain the scaling of irreversible computations, since as the radius of
the computer increases by a factor of n, the number of processors increases by O(n3)
whereas the surface area only increases by O(n2), so that the rate of production of
unwanted information will eventually overwhelm our ability to remove it.

A realistic computing model should instead be reversible, so that the means of
disposal of unwanted information must be explicitly accounted for in the algorithm.

We should note that some irreversible models such as Turing machines or 2-D
cellular automata have sub-cubic connectivity, and are therefore physically realistic
because the unused dimension(s) can be used to deliver free energy and dispose of
waste heat. However, models that don’t use 3 dimensions can’t be assumed to be
taking full advantage of physics.

Free reversible operations. Even reversible models of computation sometimes
assume that reversible operations require zero energy expenditure. This is true, but
only in the limit of taking infinite time to perform the operation. As we will see later,
it seems that any particular computing technology will require dissipating energy
per operation that scales proportionally to speed, to make up for frictional/resistive
losses during the operation. However it is not clear that there is any fundamental
limit to how low the friction-related scaling factor may be. (An alternative approach
that allows exactly zero energy per operation is to run quadratically more slowly,
by depending on a random-walk through the computer’s state space to perform the
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computation. [17])
The fact that even reversible operations require some energy to progress forwards

with a fixed lower-bound on the time per step means that even a reversible computer
cannot be scaled arbitrarily without slowing its clock rate, because eventually there
will not be enough surface area to feed in enough energy (and pump out enough
heat) to keep the whole volume running at the desired speed despite the frictional or
resistive losses. Chapter 6 will address this issue in detail.

Note however, that with reversible operations, the energy per operation even at
high frequencies might eventually be made much lower than kBT ln 2, the minimum
energy for irreversible bit-erase operations, so correspondingly, the machine can be
made much larger than if it were irreversible before slowing its clock rate, by some
constant factor that increases as technological improvements decrease the magnitude
of frictional losses compared to the fundamental irreducible energy cost of destroying
information.

Error-free operation. Additionally, most traditional models of computation as-
sume that computational operation is error-free, or that the error rate can be made
as small as desired with no impact on the speed of a system. A better model would be
to have a fixed probability of error per primitive operation, with the magnitude of the
probability depending on the particular technology being used. Error-correction tech-
niques in robust architectures can be used to convert a small but fixed probability of
error per operation into an arbitrarily small probability of error for the whole compu-
tation. However, we will not deal with error models and error correction techniques
extensively in our research. We presume that given good engineering, the combina-
tion of a low base rate of errors with efficient error-correction techniques would be
effective enough that there would not be a large impact on our overall asymptotic
scaling results.

Non-quantum operation. Traditional computational models take the classical-
physics viewpoint that the computer is in a definite classical state at any given time.
However, as we saw in ch. 4, recent research in quantum computing seems to indi-
cate that computers that use quantum superpositions of states and take advantage
of interference effects between them may be asymptotically faster than classical com-
puters on some problems. Thus, non-quantum computational models may fail to take
advantage of the full computational power offered by physics.

However, most people find quantum computers and algorithms much more difficult
to reason about than classical ones, and furthermore, quantum computers have not yet
been conclusively proven to be more powerful than classical computers. Therefore in
this work we will focus on non-quantum computational models, rather than quantum
ones. Either the two models are really equivalent in power, in which case the classical
model should be used because of its simplicity, or else the quantum model is more



5.4. SOME CANDIDATES FOR AN ULTIMATE MODEL 115

powerful and should instead be considered the “ultimate” model of computation. But,
quantum features can be added to our models without changing most of our overall
conclusions.

Digitality. Most models of computation also are digital, and do not take advan-
tage of the seemingly continuous range of values that some physical quantities may
take. We will not either, other than allowing continuous amplitudes in our quan-
tum computers, because it is not clear either that physics really is continuous (rather
than discrete at some very fine scale), or that its continuousness, even if real, confers
any additional computational power. Some research has shown that systems of point
bodies obeying Newtonian mechanics can perform infinite amounts of computation
in finite time if their initial positions and velocities are set with infinite precision
[151]. However, our universe is not Newtonian, and anyway infinite precision in ini-
tial configurations is not a reasonable assumption. For some discussions of the power
of analog computation models, see [177, 151].

Unlimited computer size. Finally, many parallel computing models presume that
a parallel machine may have an arbitrarily large number of processing elements. How-
ever, this may not be realistic, since the total mass and maximum entropy of the
accessible universe may be bounded. Also, given a fixed processor density, gravita-
tional effects will come into play with a large enough number of processors. There are
certainly many other technological and economic limits to computer size that apply
at even smaller scales. Nevertheless, it is convenient for modeling purposes to ignore
all these facts, since the precise maximum number of processors that can be attained
does not qualitatively affect the form that the best algorithms will take at scales that
are well below the maximum.

5.4 Some candidates for an ultimate model

We now outline what we believe are some plausible candidates for ultimate physically-
based models of computation. Our basic model is a reversible three-dimensional mesh
of processing elements. We present three variations of the basic model, which vary in
their power. The reason we must do this is that the latter two variations, which are
more powerful, depend on the future development of hypothetical technologies that,
although perhaps plausible in principle, may not be physically achievable in practice
at a useful scale. However, if these technologies do turn out to be feasible, then one
of them is actually the ultimate model, and our basic model is not. However, all
three models at least share the basic property of reversibility which is the focus of
this thesis.

Since we are unable to say with certainty which of these models is the right one,
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we have not yet attained the ultimate model of computation. However, we feel that
with these models we have narrowed the scope of possible models, and have taken a
significant step in the right direction.

5.4.1 The reversible 3-D mesh (R3M) model

Our basic, most feasible proposed model is something we will call the reversible 3-D
mesh, or R3M. As presently conceived, the R3M model describes a family of fixed-
capacity machines. Each machine consists of a uniform three-dimensional array of
processing elements, each of which has the capability of fully logically reversible and
arbitrarily thermodynamically reversible operation. (Irreversible operations can also
be permitted, but these should be entirely optional, and under program control.)
Each processor is connected locally to (say) its 6 nearest neighbors. The follow-
ing parameters of the model are considered to be fixed by a given implementation
technology, and are not permitted to vary among the instances in a given family of
machines:

• Hardware functionality of each processing element (PE).
• Finite storage capacity of each PE.
• Finite information rate (bandwidth) of each connection between neighboring

PEs.
• Finite maximum frequency (minimum cycle time) of each PE.
• Non-zero minimum spacing between neighboring PEs.
• Finite speed at which signals travel between neighboring PEs.

The following parameters are permitted to vary among different instances of a
given family, but are fixed for any given instance.

• Number of processing elements in each dimension across the PE grid.
• Actual spacing between neighboring PEs.
• Actual clock frequency at which the PEs are operated.

In addition to the information-processing architecture itself, the R3M model also
explicitly accounts for the generation and transport of entropy within the computer,
using the following parameters which are fixed for all machines using a given technol-
ogy:

• Non-zero “entropy coefficient” of each PE. (See ch. 6.)
• Finite maximum entropy flux density within PE grid.
• Finite velocity of entropy transport.
• Entropy generated in case of (optional) information erasure.
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Entropy is generated by each PE at a rate that is proportional to the square of
its operating frequency, with the constant of proportionality given by the entropy
coefficient. This entropy travels at a constant velocity from where it is generated,
along some preferred dimension through the grid. (This represents a flow of coolant.)
The entropy flux is not permitted to exceed the given maximum. At the edge of the
grid, the entropy is considered to be emitted into space, and we don’t worry about it
further.

Processing elements at the edge of the mesh are permitted to irreversibly convert
information to entropy, as frequently as desired, and emit it outwards as well. For
processors internal to the mesh, any entropy generation due to information erasure
must be explicitly accounted for as contributing to the entropy flow through the
machine. Internal processors must refrain from performing more information erasure
than can be accommodated given the technology’s entropy flux capacity.

If an internal processor wants to discard information to the outside world, it can
either send the information to the edge in digital form, and have it dissipated there,
or dissipate it internally, and send it out using the coolant flow. The two approaches
are asymptotically completely equivalent. The determination of which one is better
depends entirely on the constant factors involved in the particular technology.

In chapter 6 we will discuss why the R3M is a realistic model, and show that it
scales better physically than any irreversible model of computation. Thus it is a a
good candidate for the ultimate model, unless there is some way to do better. Let us
briefly mention two possible ways we might do better.

5.4.2 The ballistic 3-D mesh (B3M) model

This is just like the R3M except that the entropy coefficient is allowed to be exactly
zero. In this model, reversible computation is completely dissipationless and the clock
frequency of the PEs can be the same for all instances of a given family of machines,
independent of the mesh size. As we will see in 6, a B3M is asymptotically strictly
more powerful than any R3M model under various cost measures. Unfortunately it is
probably not physically possible to achieve exactly zero dissipation at a fixed speed
in any real system. However, it might be possible to approach zero dissipation so
closely that dissipation doesn’t become a concern at any realistic scale.

5.4.3 The quantum 3-D mesh (Q3M) model

This is just like the R3M, except that the machine can be in a global quantum su-
perposition of states, and the operation of each PE consists of a local unitary trans-
formation on this superposition. A Q3M can simulate other quantum computation
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models in polynomial time, and thus can factor in polynomial time. It thus may be
exponentially faster than the R3M or B3M on some problems.

Feasibility. The use of quantum error correction codes [28, 32, 155] may conceivably
permit a Q3M to operate dissipatively while still maintaining a coherent superposi-
tion, so a Q3M may be possible even if a B3M is not. However, we are still very far
from any practical realization, so in any case the Q3M is a very tentative proposal.

5.5 A “tight” Church’s thesis

We are now in a position to state an asymptotically tight version of Church’s thesis,
and conjecture that it holds for one of our proposed models.

Conjecture 5.1. (Tight Church’s Thesis.) It is conjectured that for at least one of
the three models of computation described above (R3M, B3M, Q3M), the following
two properties hold:

(a) Implementability. For some suitable choice of constant bounds on all the
O(1) parameters in the model, it is possible to actually implement the models in such
a way that, given access to sufficient quantities of matter and organized energy (work,
not heat), and sufficient construction time, a civilization could build computers that
actually realize all the order of growth predictions (for run-time and space) of the
model (at least, below the high-gravity regime).

(b) Optimality. For any other model of computation, if the model meets the
above implementability criterion, then it implies an order of growth for all problems
that is asymptotically at least as large or larger than the order of growth predicted
by the model.

The upshot of the above conjecture is to claim that at least one of the types of
reversible models that we are considering is physically realizable (at least the R3M is,
and maybe the B3M and Q3M are also), and also that at least one of the realizable
models is at least as powerful as any other realizable model of computation, on all
problems. That is, any physically realizable computing device could be simulated
in our ultimate computer with at most a constant factor slowdown and a constant
factor increase in space usage. (Moreover, we conjecture reasonable, non-astronomical
constants.)

We cannot rigorously prove our conjecture, in part because the laws of physics
are not yet completely understood, but in chapter 6 we at least present a number of
rigorous analyses that provide strong support in favor of it. Therefore we go ahead
and introduce our conjecture to the research community, partly to see if anyone can
find an argument to shoot it down.
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5.6 Ultimate computational complexity

In any case, given the apparent correctness of our conjecture, theorists can now
proceed to derive classical and quantum bounds on the ultimate computational com-
plexity of various classes of problems.

Some of this work can proceed by merely embedding algorithms for earlier mod-
els into our framework. Any multi-tape Turing machine (with a constant number of
tapes) and any reversible cellular automaton in up to three dimensions, and any irre-
versible cellular automaton in up to 2 dimensions, can be simulated with no increase
in asymptotic space or run time by our R3M model, so bounds on order growth of
problems derived for these machines will immediately apply to our model.

However, translating algorithms for many other models into our framework is more
difficult. This is because of the unphysical assumptions made by those other models,
often in their interprocessor communication networks: for example, the unit access
time to an unbounded shared memory in a PRAM. Simulating these nonphysical
models in our models requires an increase in asymptotic run time, but so would
any physical implementation of those models. This is exactly why we wish to get
away from those other models; performance results derived with them are misleading
because they are not physically realizable.

Note this is also true of quantum computing models that assume that quantum
gate operations can be applied to any selection of qubits out of an arbitrarily large
number of qubits in the computer, in constant time. Instead, arbitrarily-chosen qubits
will generally be distributed in space, and must be moved to be close together before
they can interact. So, simulating those earlier quantum computing models in our
Q3M model will introduce some slowdowns.

Note, however, that for all the “reasonable” models of computation that have
previously been proposed, the slowdowns incurred by simulating them in R3M or
Q3M are at worst polynomial. So although some of the earlier reasonable models
may exaggerate the achievable speed of some algorithms, the exaggerations are not
too bad. Still, we would like to make sure that the orders of growth of problems are
expressed with the right polynomial.

To find good algorithms for solving problems in our R3M and Q3M models, it
will often be a good strategy to start with an algorithm for some traditional model,
simulate it straightforwardly in our model (possibly with increased run time if the
original model was unrealistic) and then figure out how to perhaps modify the result-
ing algorithm to optimize its performance in our model. However, it may turn out
that the best algorithm for a given problem in R3M or Q3M may operate in a totally
different fashion from the best algorithm for that problem in a traditional model. In
some cases, the best algorithm in our model may be slower than the best algorithm
in a traditional model. But it should be remembered that the best algorithm in our
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model is really the best algorithm in an absolute sense, because the other models are
not physically realistic, and the runtime growth functions derived for them are gener-
ally not physically achievable beyond a certain scale. Our model, on the other hand,
is not only physically realistic, but it takes full advantage of what physics offers. (At
least, this is our conjecture.)

5.7 Summary of discussion of ultimate models

Most existing models of computation are quantitatively either too weak, in the sense
that asymptotically faster computers are physically possible, or too strong, in the
sense that any physical implementation would perform asymptotically more slowly
on some problems than the model predicts.

In this chapter, we proposed three models of computation that attempt to be
just right in the sense that they take full advantage of the computational power that
physics offers, but do not exceed it. We propose a “Tight Church’s Thesis” that
conjectures that at least one of our three models achieves this goal, at least for all
sizes of machines that might be achieved in the foreseeable future.

If the Tight Church’s Thesis is correct, then bounds on the computational com-
plexity of problem classes that are derived in our models represent bounds on the
true difficulty of solving those problems in our universe. Lower bounds we derive
will always still apply, no matter how computer technology is improved. And upper
bounds we derive will always still apply no matter how large our inputs become.

Our models include both quantum and classical models. The quantum model is
thought to be more powerful, in which case it, rather than one of the classical models,
is the actual just right model of computation that we are looking for. However, the
quantum model is difficult to implement and to reason about, and it has not yet
been conclusively proven to be more powerful, so one of the classical models may
still be preferred. In any case, we conjecture that one of these three models correctly
represents the computational capabilities of our universe (within a constant factor),
and we suggest that all three models are appropriate targets for further complexity-
theoretic study.

In the next chapter, we show why we believe the ultimate model must at least be
capable of strict reversible (if not also ballistic and quantum-coherent) operation, by
demonstrating that reversible 3-D meshes are more powerful asymptotically than any
physical implementation of any irreversible model of computation.



Chapter 6

Reversibility and
physical scaling laws

In this chapter we analyze how the use of reversibility can improve how well various
measures of computational cost-efficiency will scale as we increase the size of our
machines, or the size of the problems we are trying to solve. Our analysis estab-
lishes that only reversible computers are capable of realizing the maximum level of
computational scalability that is afforded by the laws of physics.

Moreover, even with today’s relatively primitive level of technology, substantially
reversible computing can already be the most cost-effective solution in contexts where
energy dissipation is a dominant concern, such as in portable devices, or large super-
computing systems. Also, we expect that as device technology improves, reversible
operation will become more and more favored.

In chapter 3 we discussed how existing reversible models of computation compare
with irreversible models when using a variety of non-physical measures of cost, such
as are used in traditional computational complexity theory. Using those measures,
we saw that reversibility did not improve efficiency, and in some models could be
proven to actually degrade efficiency (§3.4), when carried to the extreme of total
reversibility. But the problem with taking those results at face value is that, as we
saw in the previous chapter, traditional computation models and cost measures are
not realistic; they do not reflect real costs and the physical constraints on computation
that we discussed in chapter 2.

In section 3.2.2, p. 54, we introduced some new cost measures which we proposed
were more physically appropriate than are the quantities that are traditionally mea-
sured in computational complexity theory. In sec. 6.2 (p. 124) we will perform an
analysis of physically realistic models of computation using various such physical cost
measures, and show that using those models and measures, reversibility can be seen
to increase overall efficiency.
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Let us now introduce the general classes of models which we will analyze.

6.1 Types of architectures studied

For convenience, in this chapter we will use the term architecture to denote the con-
cept of a model of a family of physically-implementable machines, such as those we
proposed in ch. 5. Section 6.2 of this chapter analyzes the properties of several very
general classes of architectures, which we will define below: fully irreversible archi-
tectures (FIA), time-proportionally reversible architectures (TPRA), and ballistically
reversible architectures (BRA). All three of these classes will have a number of fea-
tures in common.

6.1.1 Shared properties

The machine classes we study will all be imagined to be implemented in some fixed
underlying technology, which we take to mean that several quantities are fixed across
all three classes of machines:

1. There is a fixed minimum physical size (mass and volume) for storing a bit of
computational state.

2. There is a fixed maximum physical entropy density allowable within the ma-
chines in question, including in their cooling systems.

The above two items can be justified on the basis of the limits presented in §2.2,
along with the argument that mass densities, energies, and temperatures will
not be able to be increased indefinitely in any computer technology realizable
in the foreseeable future.

3. There is a fixed maximum rate at which bit-operations can be performed per
unit of mass and per unit of volume in the machine.

This limit follows from the fundamental Margolus-Levitin bound we mentioned
in §2.4; much tighter bounds than this will certainly hold for all technologies
through the foreseeable future.

Now let us distinguish the three classes of architectures that we will study.

6.1.2 Fully irreversible architecture

A fully irreversible architecture FIA is one in which there is a fixed constant lower
bound, independent of the machine size or of any adjustable parameters of the ar-
chitecture, on the average number of bits of computational information that are lost
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(converted to entropy) per primitive computational operation that is performed. Note
that this does not count the mere conversion of bits that may already be entropy from
a controlled digital form to an uncontrolled physical form. We are concerned here
only with the amount of new entropy that is generated per operation due to the
architecture.

An architecture is fully irreversible if, for example, it routinely uses ordinary
irreversible logic gates, which must produce entropy every time they erase a bit,
according to Landauer’s principle (§2.5).

6.1.3 Time-proportionately reversible architecture

A time-proportionately reversible architecture TPRA is one that provides the option
to reduce the average entropy S generated per primitive operation to an arbitrarily
small amount that is asymptotically proportional to the inverse of the amount of
time top over which individual operations are performed; that is, S ∼ 1/top. In such
architectures, the “degree of irreversibility” (entropy generated per operation) is in-
verse to this time, so the “degree of reversibility” can be considered proportionate to
time. Thus we use the adjective “time-proportionately reversible,” to describe these
machines, the motivation being that this is much more precise than alternative adjec-
tives such as “adiabatic,” “asymptotically reversible,” and “quasistatic” which have
often been used in the past when referring to technologies that have this particular
property. (See §7.3 for further discussion of this terminology issue.)

As we will see in chapters 7 and 8, a large number of existing and proposed logic-
device technologies are capable of implementing time-proportionate reversibility; so
the TPRA model is certainly realistic for purposes of an asymptotic scaling analysis.
However, the constant of proportionality (which we call the “entropy coefficient”)
varies greatly across different technologies, so the range of validity of the asymptotic
analysis depends significantly on the technology in question.

6.1.4 Ballistic reversible architecture

This next class of “architectures” may or may not actually be realistic, but it will be
a useful point of comparison, which will help us interpret the results of our analysis
of the TPRA. The ballistically reversible architecture BRA is a model based on an
imagined technology where the entropy generated per constant-time operation can be
made exactly zero, or at least so close to zero that the difference does not matter for
any achievable scale of machines.

A BRA is the conceptual limit of a TPRA in which the entropy coefficient becomes
arbitrarily small. It is appropriate to consider this limit because we do not yet know of



124 CHAPTER 6. REVERSIBILITY AND PHYSICAL SCALING LAWS

Entropy generated
Symbol Name of architecture class per operation

FIA Fully irreversible architecture Θ(1)
TPRA Time-proportionally reversible architecture Θ(1/top)
BRA Ballistically reversible architecture 0

Table 6.1: The three classes of physical machine models that are compared in this
chapter. The defining difference between them is in how the average entropy generated
per computational operation scales in relation to the length of time top over which
the operation is performed.

any fundamental physical restrictions on how low the entropy coefficient can actually
be made to be.

Note that in both the TPRA and the BRA we specify that fully logically reversible
operation is permitted, but not required. In these models, we also provide the option
to perform logically irreversible operations which generate constant entropy. (More-
over, the type of operation to use should be selectable at run time.) This allows
these models to use the external universe as a garbage-information dump, just like
the FIA does; this option ensures that our reversible machines will be at least as
powerful as the FIA, since it will be subsumed as a special case, one in which the
time-proportionate reversibility feature is effectively unused.

Table 6.1 summarizes the three classes of architectures we will compare in this
chapter.

A general feature of these analyses will be attention to some of the subtle ways in
which several kinds of physical constraints, such as limits on entropy density and
propagation speed, interact with each other to determine the form of the most cost-
efficient possible machines.

The structure of the rest of this chapter will be, roughly, to proceed from the
simpler, less compelling physical cost measures and analyses to more sophisticated
and realistic ones.

6.2 Analyses under various physical costs

In this section we determine, for various cost measures $, the reversible advantage
Ar under the given cost measure. We define Ar as the asymptotically fastest-growing
value of the cost-efficiency ratio %$rev/%$irr, as a function of cost, for any class of
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computational tasks. Equation (3.1), p. 54 defined cost-efficiency as

%$ =
$min

$
.

Therefore, letting $i and $r be the costs on an irreversible and reversible machine,
respectively,

Ar = %$rev/%$irr

= ($min/$r)/($min/$i)

= $i/$r,

that is, the reversible advantage is equal to the ratio of the cost on an irreversible
machine to the cost on a reversible machine. (And similarly for the ballistic advantage
Ab.)

We will often normalize Ar by expressing it as a function of $r, the cost on the
reversible machine. So, if we write Ar ∼ f($r), this means there are classes of com-
putations such that, for instances that cost $r to perform on a TPRA (reversible)
machine, the cost to perform them on an FIA (irreversible) machine in general is
Θ(f($r)) times larger. If f ∼ 1 this indicates no reversible advantage; any f Â 1 in-
dicates an asymptotically unbounded reversible advantage, as the cost level increases.

It is important to keep in mind that the true reversible advantage is determined
by the best possible efficiency of each of the two classes of machines on the problem in
question. To show a reversible advantage greater than Θ(1) (no asymptotic advan-
tage), we have to show that no FIA machine can perform a given computation with
less than a given asymptotic cost that is achievable on a TPRA.

Moreover, throughout this section we will be concerned only with sustainable
costs; that is, an assessment of a computation’s cost will only be considered to be
fair if a long series of N À 1 repetitions of computations like it could be performed
on the given machine class with no more than N times the cost. This will allow us
to marginalize factors such as the time required for set-up of the initial state and
read-out of the result. It is assumed that this is fair to do, because there are many
useful computations that are of a form that requires numerous sequential iterations
of a procedure.

Some of the analyses and results in this section were first reported in our earlier
publications [70, 71].

6.2.1 Entropy cost

Perhaps the simplest physical measure of cost, which also gets us away from the bias
towards the abstract time and space cost-measures featured in traditional complexity
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theory, is the idea of the cost of a computation being proportional to just the amount
of new entropy that it generates.

This measure makes sense for several reasons:

1. Entropy takes up space, and when too much of it accumulates within a fixed-
size system, it causes the system to become disordered in uncontrollable ways.
For example, a computer might melt if it produces too much entropy without
removing it.

2. As we saw in §2.5.3, energy is required to support the existence of entropy in
any system at non-zero temperature. Therefore it costs us free energy whenever
entropy is generated. As we mentioned in §2.5.4, the coolest accessible place to
dump large amounts of entropy is the cosmic microwave background at ≈ 3 K,
so each bit’s worth of sustained entropy generation costs us at least ≈ 3×10−23 J
(≈ 0.2 meV) of energy which cannot be recovered. (Except maybe by waiting
for the universe to cool further, which will take a while!)

3. Even in the distant-future limit, if there is a finite upper bound to the maximum
entropy of the universe, then negentropy (Smax−Scurrent) is a truly non-renewable
resource; once we use it up, no further entropy-producing operations will be
possible. (There’s a cost measure for you!) So the efficiency of our use of
entropy is crucial if we wish to maximize the total amount of computational
work that we accomplish throughout all time.

Scaling comparison. With entropy alone as the cost measure, $ = S, the compar-
ison is of course straightforward. The irreversible FIA machine by definition produces
constant entropy per operation, so the cost of any computation scales as the number
of primitive operations, $ ∼ Nops.

The ordinary reversible machine TPRA, given unbounded space, can be run in
fully logically reversible fashion using Bennett’s 1973 algorithm (with the same order
Nops as the FIA), and still produce no computational entropy other than, at most, the
size nin of the input problem, and that only if the input is no longer needed after the
computation. The entropy generation due to friction can be made arbitrarily smaller
than nin, by extending the computation over a sufficiently long period of time. Thus
the total entropic cost is at most equal to the input size, $ - nin.

Similarly for the ballistic BRA, except that we do not have to run the machine
indefinitely slowly to achieve that low of a cost.

Thus, unsurprisingly, when entropy is the cost measure, reversible machines com-
pletely dominate irreversible ones in their cost-efficiency. Since for arbitrary problem
classes, Nops may scale arbitrarily quickly with nin, the reversible advantage factor
may be an arbitrarily fast-growing function of the input size.
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Of course, using entropy as the sole cost measure is not particularly compelling, be-
cause it ignores the opportunity cost of using up some amount of physical space for
the amount of time required by the computation. This is particularly apparent for
the case of the TPRA which may consume a large amount of space (for example, pro-
portional to Nops) for a large amount of time (Ω(N2

ops/nin) to get the physical entropy
generation below O(nin)). When minimizing entropy only, total spacetime resources
for a computation will likely be polynomially larger for the reversible computation.
Thus it behooves us to consider those costs as well.

Before we study true spacetime costs, let us first consider another measure of cost
that is easier to analyze, but still takes into account measures of both run-time and
machine size.

6.2.2 Area-time product

For purposes of this section, we will characterize machine size as the surface area A of
the least-area surface that encloses all of the computer’s active information-processing
components. Note that if the “computer” happens to consist of many independent
components that are spread far apart from each other over a large surface, then
under our definition, the least-area surface enclosing the system may actually consist
of many separate small surfaces, one around each component.

In any case, one reason to think of area as a component of a cost measure is that
it measures quantities such as desktop footprint, floor space, and land (planetary
surface), which have everyday significance as resources. Moreover, present computer
manufacturing technology, based on building up structures on the surfaces of silicon
wafers, is geared towards building dense circuitry in only two dimensions, so area is
a frequent cost measure in that arena as well.

More fundamentally, due to the limits on entropy density we assumed in §6.1, we
will see in a moment that minimum surface area determines the maximum sustained
rate at which entropy can be produced within the surface. If a system actually does
produce entropy at this rate, it thereby subtracts correspondingly from the maximum
rate at which entropy can be produced by the remainder of any larger system within
which it is enclosed. So, area makes sense as a component of computational cost.

Multiplying the area by time converts it to a measure of the rent that the area
would yield over the course of the computation if it were rented out for other purposes
(such as for alternative computations). This makes sense in intuitive economic terms,
and it also corresponds to a bound on the total amount of entropy that the given
system could have produced over the given amount of time.
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6.2.2.1 Rate of computation as a function of area

For computing the area-time product, let us first ask, how does the maximum rate of
computation scale as a function of area?

For now, we will characterize the raw processing rate Rop in terms of the number
of primitive computational operations (such as logic gate operations) performed per
unit of real time. We also assume, for now, that the computation being performed
is an inherently logically reversible one that does not require asymptotically more
computational steps or memory on a reversible processor; this will allow us to treat
time-proportionally reversible operations as equivalent to irreversible operations for
our purposes. An example of such a computation would be a simulation of a logically
reversible system; we will see other examples in ch. 9.

Irreversible machine. The FIA machine by definition produces Θ(1) entropy per
operation, and we assume as always that entropy densities are limited. As per our
arguments in §2.3, the rate of entropy removal per unit area is therefore also limited.
Since the total volume within the given area is limited (it’s at most V ≤ 1

6
π−1/2A3/2),

it follows that for a long computation, the highest rate of entropy generation that is
sustainable is just equal to the maximum rate at which the entropy may leave through
the surface. This rate is bounded by the fixed maximum entropy flux FS times the
minimal enclosing area A. Thus Rop - A.

Reversible machine. Let the TPRA contain logic devices at constant average
density, so that the total number of logic devices Ndev is proportional to the TPRA’s
volume V , and let the TPRA also be roughly spherical (a cube would suffice) so that
V ∼ A3/2. Then, the number of devices Ndev ∼ A3/2. If each device operation takes
time top, and all operations are reversible, the entropy per operation is Θ(1/top) and
so the total rate of entropy generation is RS ∼ Ndev/t

2
op ∼ A3/2/t2op. SinceRS must be

no greater than the rate O(A) of entropy removal, we have that top % A1/4. Letting
top ∼ A1/4, we have Rop = Ndev/top ∼ A5/4.

Thus, within area A, the TPRA can run Θ( 4
√

A) times faster than the FIA, on
computations that involve only logically reversible operations. For an approximate
sphere/cube of diameter d ∼ √

A, the speed advantage of the reversible machines
scales as Θ(

√
d). Many such cubes can be arranged beside each other in a plane

without changing the asymptotic area available to each one, forming a flat slab of
material of thickness (depth) d, which can perform at a per-area rate of Θ(

√
d). (See

figure 6.1.) An irreversible machine, in contrast, would be capable of only a constant
rate per unit area.

Ballistic machine. In this case there is no entropy production, so the maximum
rate of operation scales with volume, Rop ∼ A3/2. This is a factor of

√
A times

faster than the irreversible machine and 4
√

A times faster than the time-proportional
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Figure 6.1: Speed limit for reversible machines of minimum-surface area Θ(A) and
thickness d - A1/2. The maximum rate of computation scales as Θ(A

√
d).
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reversible machine. For a sphere or slab of thickness d the ballistic machine is Θ(d)
times faster than the irreversible machine, and Θ(

√
d) times faster than the TPRA.

So the TPRA is, in a sense, “halfway” between irreversible and ballistic machines
in terms of rate per unit area; its benefit factor above the irreversible machine is the
square root of that for the ballistic machine.

6.2.2.2 Minimum area-time product

Now that we know how speed scales with area, let us see how to choose the shape of a
machine so as minimize the area-time product AT for a given computation requiring
Nops operations, under our three classes of architectures.

Let us assume we are dealing with a restricted class of computational tasks in
which no communication is required between processors during the course of the
computation: the task can be expressed as Θ(Nops) separate computational tasks
that can be performed entirely independently of each other. This is approximated by,
for example, a brute-force search problem in which a very large number of independent
possibilities need to be checked for a solution, and checking each one takes roughly
constant time, independent of the number checked. (Remember, we can amortize
away the set-up and read-out times, because we are concerned with determining a
sustainable rate for many iterated repetitions of the given computation.)

Irreversible. If all the area can be used effectively, Rop ∼ A, so the time T for
Nops operations is Θ(1/A), and so AT ∼ A(1/A) = 1. Thus the choice of the area of
the machine does not affect the asymptotic area-time product. To see what the area-
time product is as a function of Nops, consider spreading the processors arbitrarily
far apart over a 2-dimensional plane. The minimum-area surface will then consist
of a collection of small surfaces, one enclosing each processor, thus the total surface
area will be proportional to the number of processors (A ∼ Nproc), and if we give
each processor a constant-size, constant-time piece of the total problem, the number
of processors Nproc scales as Nops, and the whole computation takes constant time,
and AT ∼ Nops.

Reversible. Let the Nops operations again be performed in parallel on Nproc ∼ Nops

processors, but this time in a compact structure with area A ∼ N
2/3
proc. In §6.2.2.1

we already derived that the maximum rate of computation for this TPRA struc-
ture is Θ(A5/4), so the minimum time T for Nops operations is Θ(Nops/A

5/4), or

Θ(Nops/N
5/6
ops ) ∼ N

1/6
ops . Thus AT ∼ N

5/6
ops in this configuration. Can we do better

by spreading the processors out? No, because when we decrease the thickness by a
factor of x, the area increases by a factor of Θ(x), but the time only scales down by
Θ(
√

x), so the area-time product increases by Θ(
√

x). So the optimal configuration
is the one we chose, where the diameter is asymptotically minimal.
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Ballistic. In the ballistic machine we perform the Nops operations in parallel on
Nproc ∼ Nops processing elements in constant time, and because they produce no

entropy we can cram them inside the minimal surface area A ∼ N
2/3
proc without worrying

about entropy removal, and so the area-time product for the whole computation is
Θ(N

2/3
ops ).

Thus for these inherently reversible, completely parallelizable computations, com-
posed of Θ(Nops) independent constant-time sub-computations, the TPRA reversible
model provides an area-time cost-efficiency advantage of 6

√
Nops, again the square

root of the benefit of 3
√

Nops that would be provided by a perfectly reversible ballistic
computer.

In terms of the cost on the reversible machine, the reversible advantage grows as
$

1/5
r for this type of problem. This is the highest scaling possible for this cost measure,

because for both FIA and TPRA models, the optimal solution for this problem could
be achieved using the same structure: a compact, maximally-parallelized structure.
This is already the structure that favors reversible operation the most, since structures
that are smaller or more spread out will be less limited by entropy removal; and
computations that are less parallelizable will require smaller machines for a given
Nops to minimize the area-time product.

Thus, we need not consider other types of computational tasks; we have estab-
lished that the best reversible advantage Ar for the area-time cost measure is exactly
Θ($

1/5
r ). This area-time advantage does not grow as quickly as the reversible en-

tropy advantage of §6.2.1 did, but it still becomes unboundedly large as we compare
machines at larger and larger cost levels.

6.2.3 Time cost

We have seen how, given a measure of cost consisting of area times time, reversibility
yields a scaling advantage. But what if we don’t agree that there should be a surface
area factor in the cost? Can reversibility provide any benefits for optimizing run-time,
by itself?

For the sort of problem considered in the previous section, in which no communi-
cation is required between parts of the computation (during the computation itself),
it is clear that reversibility provides no asymptotic speed benefit. To minimize the
run-time, the processors performing the independent pieces of the computation can
simply be spread far enough apart so that the minimal enclosing area becomes pro-
portional to the number of processors, and then entropy removal no longer constrains
the asymptotic minimum time, even in the fully irreversible case. The run-time in
all models is then Θ(1), the time for each individual processor to complete its piece
of the computation. (Again, we amortize away set-up time by assuming that many
sequential iterations of this computation are required.)
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Therefore, in order to show a reversible advantage for time-efficiency, we must
consider a different class of sustainable computations, namely one that requires fre-
quent communication between processing elements. This will imply that processing
elements cannot be spread arbitrarily far apart without adversely affecting the time
for the computation (due to the lightspeed limit). The requirement for a relatively
compact structure will then lead to a tradeoff between entropy generation and speed
which, as we will show, will favor the reversible machines.

Fortunately, many real computations of interest are indeed of the sort that requires
frequent communication. Our canonical example will be the simulation of physical
systems; in particular, reversible 3-dimensional lattice simulations (cf. [119, 164, 117];
[117] contains many more references). In such computations, each update of a com-
putational cell depends on the results of the updates of its nearest neighbors from the
previous time step.

6.2.3.1 Time for 3-D local array simulations

Irreversible time. There is a simple proof of a lower bound on the average time per
step for performing 3-D local array computations on an FIA. Consider the problem
of simulating a locally-connected ND ×ND ×ND array of cells for a number of steps
Nst À ND. Consider a segment of this computation consisting of a series of Θ(ND)
consecutive steps. An element’s value at the end of this segment will in general
depend on the values (at the start of the segment) of all the elements less than
Θ(ND) positions away from it, that is, Θ(N3

D) different elements, and on the results
of Θ(ND) updates of those elements, for a total of Θ(N4

D) operations involved in
determining the final value.

If the series of steps is performed within a time T , then all those Θ(N4
D) op-

erations must occur within a sphere of radius R = cT ∼ T of the final result, in
order to possibly affect the final result, given that information propagates no faster
than light. This sphere is contained within a surface of area A ∼ T 2. By the ar-
guments in §6.2.2.1, the maximum rate Ri of fully irreversible computation that can
be sustained within this region is then bounded by O(A) ∼ T 2. (We care about the
sustainable rate because the block of ND steps in question is performed in series with
Nst/ND À 1 other similar segments operating over the same cells.)

Running at the rate Ri - T 2 for time T means that only Nops - T 3 total
operations affecting the result can be performed within that time. For this Nops to

be equal to the needed Θ(N4
D), T must then be Ω(N

4/3
D ). If it takes Ω(N

4/3
D ) time to

perform Θ(ND) steps, then the average time per step is top % N
1/3
D .

If we assume that some means is available for ballistic constant-speed communi-
cation between neighboring processors over arbitrary distances, then this bound can
actually be achieved, using, for example, an array of ND × ND × ND processing el-
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ements spaced a distance of Θ(N
1/3
D ) apart from their neighbors, each updating its

cell once every top ∼ N
1/3
D time units, and spending the Θ(N

1/3
D ) time before its next

update exchanging results with its neighbors. See figure 6.2.
Each processor produces S = Θ(1) entropy per step, so a single column of ND

processors produces entropy at the rate S/top ∼ N
2/3
D . Fortunately, the cross-sectional

area of the column is Θ(N
1/3
D )×Θ(N

1/3
D ) ∼ N

2/3
D and so the flow of entropy can move

along the column with no more than constant flux. And if it can be moved ballistically,
no additional entropy is generated by this flow.

Ballistic inter-processor communication and ballistic entropy transport seem to
be reasonable assumptions because they are very closely approximated by, for exam-
ple, propagation of photons or information-carrying matter through vacuum, and by
propagation of electrons through superconductors.

Ballistic computation, in contrast, may well be more difficult because the need for
frequent interactions between information-carrying components may sap energy or
introduce exponentially-increasing error; these issues would need to be addressed to
build a substantially ballistic computational system. But for purposes of communica-
tion only, no interactions need occur during flight, and so those particular problems
do not arise.

In any case, it seems a reasonable approximation to conclude that a time per
step of Θ(N

1/3
D ) for simulation of diameter-ND 3-d arrays can actually be achieved on

fully irreversible machines. Can we beat this when running in a time-proportionate
reversible fashion?

Reversible time. The answer is yes. Consider a TPRA implementation using a
similar ND × ND × ND array. This time, spread the processors only ` = Θ(N

1/4
D )

distance apart from their neighbors, and let them take top ∼ ` time for each update
computation. (See fig. 6.3.) Then the entropy generated per update is S ∼ 1/top ∼
N
−1/4
D , and the rate of entropy generation per processor is RS = S/top ∼ 1/t2op ∼

(N
−1/4
D )2 = N

−1/2
D . Thus the rate of entropy generation for a column of ND processors

is Θ(ND · N
−1/2
D ) ∼ N

1/2
D . The cross-sectional area of the column is Θ(N

1/4
D ) ×

Θ(N
1/4
D ) ∼ N

1/2
D , so this rate of entropy generation is sustainable, and the time per

step of Θ(N
1/4
D ) is not prevented by entropy removal.

We can show that this asymptotic time of N
1/4
D is minimal for a TPRA, just as

N
1/3
D was minimal in the irreversible case. Suppose the average time per step in a

sustained TPRA implementation is top. The average entropy generated per op is then
S % 1/top. Performing the Θ(N4

D) operations that affect a cell during an ND-step
computation then generates Ω(N4

D/top) entropy, and since the ND steps take exactly
time T = topND, the average rate of entropy generation is Ω(N3

D/t2op). Suppose

top ≺ N
1/4
D : then the rate RS of entropy generation would be Ω(N3

D/o(N
1/4
D )2) Â
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Figure 6.2: A machine configuration that achieves the asymptotically optimal FIA
performance of Θ(N

1/3
D ) time per step on 3-D local cell-array simulations. The top and

bottom layers of a locally-connected ND×ND×ND mesh of processors are shown, and
a single column of processors through the machine is emphasized in black. Spacing
the processors Θ(N

1/3
D ) apart gives enough room for the entropy produced by the

column to be removed with no more than the maximum achievable flux FS = Θ(1),
while still allowing neighbors to communicate with each other within Θ(1) steps.
Closer spacing would increase the time for entropy removal; sparser spacing would
increase the communication time.
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Figure 6.3: A TPRA configuration that is asymptotically strictly faster than the
fastest FIA (fig. 6.2) for 3-D simulations of reversible locally-connected cell arrays.
The speedup is possible because the lower TPRA entropy per operation, Θ(1/top),
permits the processors to be packed closer together, and run at a correspondingly
faster rate, without the fixed maximum entropy flux FS being exceeded. An inter-
neighbor spacing and time per step of Θ(N

1/4
D ) is optimal among TPRA structures.

In contrast, an idealized, perfectly ballistic machine, generating no entropy, could
achieve Θ(1) time per step.
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N3
D · N−1/2

D ∼ N
5/2
D , that is, RS Â N

5/2
D . But if top ≺ N

1/4
D , then the total time

topND ≺ N
5/4
D , and so the operations must be performed within a sphere of radius

R ≺ N
5/4
D , which has area A ∼ R2 ≺ N

5/2
D . Supporting a sustained rate of entropy

generation of RS Â N
5/2
D within an area A ≺ N

5/2
D would require an average entropy

flux FS = RS/A Â 1, which violates our basic technological assumption of a fixed

upper bound on entropy flux. Therefore an average time per step top ≺ N
1/4
D on this

problem is actually not possible for a TPRA.
Therefore, for this class of computations, relevant to simulation of physical sys-

tems, a time-proportional reversible machine is faster than a fully irreversible machine
by a factor of exactly Θ(N

1/3
D )/Θ(N

1/4
D ) ∼ N

1/12
D . In terms of $r ∼ T , the reversible

advantage is Ar ∼ $
1/3
r .

Ballistic time. This situation is trivial. The ballistic machine produces no entropy
to remove, so N3

D processing elements can just be packed together with minimal
separation no matter what the value of ND, and so the communication time and the
time per step can be made constant, independent of ND.

6.2.3.2 Time cost with non-local communication

In section 6.2.3.1 we saw that on 3-D array simulations with local communication,
reversible machines were faster than irreversible machines by a factor of Θ(N

1/12
D )

where ND was the number of elements across the array in each dimension. Are there
other kinds of problems where the reversible advantage is greater as a function of
ND? What problems have the highest asymptotic reversible advantage as a function
of ND?

One idea to try to improve the reversible advantage is to pose a problem that
requires non-local communication between cells, to try to force the machines to be
more compact, giving the reversible machine more of an advantage. For an array
of cells of diameter Θ(ND), obviously the farthest we can require a signal to travel
before being processed is Θ(ND) inter-cell distances. However, if we make this logical
communication distance be as large as Θ(ND), then reversibility will confer no speed
advantage, because the communication time Θ(ND) will be sufficient for all entropy
to be removed even from the irreversible machine in the most compact configuration!
So the required communication distance must actually be o(ND) if we are to achieve
any reversible advantage.

An analysis (not detailed here) indicates that the optimal scaling relation dc

between logical communication distance (distance in terms of cells) and array size to

achieve maximal reversible advantage is dc ∼ N
1/2
D . For this problem, the optimal

configuration for the irreversible machine turns out to be with distance Θ(N
1/6
D )

between processors, which gives a minimum time per step of Θ(N
2/3
D ); the optimal
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TPRA and BRA are both packed at fixed density and run with a time per step of
Θ(N

1/2
D ), that is, Θ(N

1/6
D ) times faster than the irreversible machine. In terms of

$r ∼ T , the reversible advantage is Ar ∼ $
1/3
r . This appears to be the maximum

speedup possible using time-proportionate reversibility. Still, using the advanced
technologies mentioned in chapter 8, we expect that even this rather slow scaling is
sufficient to yield significant speedups for reversible machines over irreversible ones
at reasonable scales. (However, more detailed analysis is needed.)

Now, as we already discussed in 3.2.2.2, we generally cannot assume that time
complexity alone is a good measure of cost. Let us now see what happens to our
scaling arguments when we factor in other components of cost as well.

6.2.4 Spacetime cost

The results derived above for the minimum time for array situations might at first
appear to be inapplicable to the problem of minimizing the spacetime product, since
many of our solutions involved spreading neighboring processors apart with ever-
increasing distances between them; the total volume of the computer must thus be
enormous!

However, this is actually not the case: all the machines discussed above can be
easily converted to configurations in which the total volume of the machine scales no
faster than the volume just to store the data being manipulated.

The way this is done is by simply folding up each column of processors (normally
aligned parallel to the entropy flow) to fill up the entire `× ` area available between
the neighboring columns, thus reducing the thickness of the machine in the direction
of entropy flow, to the point where the machine has some fixed density independent
of scaling. (See fig. 6.4.)

This transformation changes nothing in our earlier analyses; nothing prevents op-
eration exactly the same as before. We have one additional construction requirement,
however; namely that throughout each period that is reserved for signal propagation,
each processing element must vacate the paths across the plane (perpendicular to en-
tropy flow) along which interprocessor signals propagate, so as not to the impede the
ballistic propagation of signals to and from the processors in neighboring columns.

Therefore, our solutions from the previous section, so reconfigured, optimize vol-
ume as well as time, and thus also optimize their product. So for a given problem
size, reversibility provides the same asymptotic benefits for spacetime cost (namely,

Ar ∼ N
1/6
D ) as it does for time cost alone. Expressed in terms of the number of pro-

cessors or volume Nproc ∼ V ∼ N3
D, we have Ar ∼ N

1/18
proc . Expressed in terms of the

spacetime cost $r = VT ∼ N3
D ·N1/2

D ∼ N
7/2
D on the reversible machine, the advantage

is Ar ∼ N
1/6
D ∼ ($

2/7
r )1/6 = $

1/21
r .
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Figure 6.4: How to “fold up” a column of processors to convert a space-inefficient
mesh into another structure with the same asymptotic speed but minimum volume.
Initially a column of ND (here, 18) processors extends straight up through the machine
(full height not shown) from its lowest plane. We take this column, and fold it up at
maximum density within the `× ` area between it and its neighboring columns. The
entropy flux through that area does not increase, nor does the distance between any
two logically neighboring processors. (Indeed it decreases for neighbors in the same
column.) But the thickness d of the machine is decreased by a factor of Θ(`3), from
Θ(ND`) to Θ(ND/`2); and the volume decreases by the same factor.
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6.2.5 Mass-time product

For the array-simulation problem, the mass of our solutions scaled no faster than the
mass necessary just to represent the raw information in the array, so our solutions
optimized the mass-time product as well. Thus reversibility gives at least the same
advantage for mass-time product efficiency as well.

Together with our observations above about spacetime cost, reversibility also min-
imizes the combined cost measure (M + V)T .

6.2.6 (Area + mass) × time

This case, too, is identical, because for the machines discussed above, A + M ∼ M
in all machine configurations discussed. The minimum area scaled no faster than
the mass, and so for sufficiently large problems made at most a mass-proportionate
contribution to the total cost.

6.2.7 Entropy + mass-time

For problems where no communication is required between processors, the mass-time
product is proportional to the number of operations, and the entropy production
never grows faster than this anyway, so the cost in all models reduces to Θ(Nops).

For problems such as the array simulations where communication is required,
again the total cost is dominated by the mass-time cost in all cases, so reversibility
again improves efficiency by the same factor of Θ(N

1/18
proc ) in the

√
ND communication

case.
Similarly, we get the same asymptotic results for the comprehensive cost measure

$c = S + (A + M + V)T from p. 58. (We drop the integral here because we are
considering problems where the resource usage does not change significantly over
time.)

6.3 Generalizing the results

The scaling results of the previous section were derived under the assumption that
the computational task being performed was one that inherently required only re-
versible operations, so that time-proportionally reversible operations could be con-
sidered equivalent in power to logically irreversible operations.

We also depended on the computation being parallelizable, and in the more so-
phisticated cost measures, we depended on a requirement for frequent communication
between relatively nearby processors, and on the absence of a requirement for frequent
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communication between arbitrarily distant processors. An example of such a compu-
tation is the simulation of a spatially and temporally discretized reversible physical
system.

Given all these assumptions, just how general are the reversible scaling advan-
tages? Do they cover very many practical applications in large problem classes, other
than just physical simulations?

The complete answer to this question is uncertain, but one observation is that
Bennett’s 1989 algorithm [19, 103] can be utilized to remove the requirement for
the reversibility of the underlying task, while still permitting almost the same poly-
nomial speedups and cost-efficiency benefits. (However, the assumptions regarding
parallelizability and communication requirements remain.)

6.3.1 Speedups for irreversible computations on reversible
machines

Bennett’s technique [19] allows one to transform a logically irreversible algorithm
that requires S memory cells (“space”) and T primitive operations (“time”) into a
reversible algorithm that leaves behind no garbage information (other than input and
output) and takes T′ ∼ T(T/S)ε operations, and S′ ∼ S log(T/S) memory, for any
ε > 0. (See Levine & Sherman 1990 [103] for the derivation.)

A finite irreversible processing element running for Nst steps performs T ∼ Nst

operations, using S ∼ 1 space. Therefore, using Bennett’s algorithm, such a run can
be simulated reversibly with T′ ∼ N1+ε

st , S′ ∼ log Nst, accumulating no garbage except
for the input, that is, the state of the simulated processor prior to the run.

If we then irreversibly erase this Θ(1)-size input, we generate Θ(1) entropy, and
we can proceed to simulate arbitrarily many consecutive blocks of Nst steps in this
way, with an average entropy generation per reversible operation of Sop ∼ 1/N1+ε

st ,
and a memory requirement of only S′ ∼ log Nst, which is constant in the number of
blocks of Nst steps that are simulated.

If we wish this algorithm to be time-proportionately reversible, the average entropy
generated per operation must be O(1/top). So we must have N1+ε

st % top, or Nst %
t
1/(1+ε)
op . With the smallest choice, Nst ∼ t

1/(1+ε)
op , the memory requirement of this

algorithm then scales as S ∼ log t
1/(1+ε)
op ∼ log top, given constant ε.

By running this algorithm simultaneously on a 3-D array of reversible processors of
memory Θ(log top) each, we can sustainably simulate an entire 3-D array of fixed-size
irreversible processors in TPRA fashion. Furthermore, we saw in §6.2.3.1 that a 3-D
TPRA can run with top ∼ N

1/4
D , so a memory per processor of S ∼ log N

1/4
D ∼ log ND

will suffice. Given that the computer must fit within the finite observable universe,
log ND is bounded by a reasonably small constant, so we may approximate S as
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Θ(1) for all practical purposes. (Although this is cheating from a pure theoretical
perspective.)

With top ∼ N
1/4
D , we have that Nst ∼ N

1/[4(1+ε)]
D , and the Bennett simulation of

this many steps takes Nops ∼ N1+ε
st ∼ [t

1/(1+ε)
op ]1+ε = top ∼ N

1/4
D reversible operations,

for an average real time, per irreversible step simulated, of

T = topNops/Nst

∼ N
1/4
D N

1/4
D /N

1/[4(1+ε)]
D

= N
1
2
− 1

4(1+ε)

D

= N
1
4(

1+2ε
1+ε )

D

= N
1
4
(1+ε′)

D (6.1)

where ε′ = ε/(1 + ε). The exponent of ND in eq. (6.1) can be made as close to 1/4 as
desired, by taking ε close to 0.

In contrast, as we saw earlier, the 3-D irreversible array being simulated must
itself take at least Ω(N

1/3
D ) time per step. So a reversible machine can simulate even

an irreversible 3-D array faster than that array can run by itself! This improved
asymptotic speed also leads to improved asymptotic cost-efficiency by the various
other measures we have covered. Moreover, the reversible advantages can become
arbitrarily asymptotically close to those we calculated in the previous section for the
case of simulating 3-D reversible systems.

However, as pointed out by Levine and Sherman [103], one must be careful when
using Bennett’s algorithm not to take ε too close to zero, because the constant factor
in the memory requirement increases exponentially in 1/ε, specifically as ε21/ε. But
to beat the irreversible 3-D array’s asymptotic performance, we only require ε < 1/2,
so the constant factor increase in memory size due to the choice of ε only needs to be
more than 2.

The upshot of all this is that, apparently, for any class of computations that are
sufficiently parallelizable and require the right amount of communication, a TPRA
reversible machine family, such as the R3M, can perform that class of computations
strictly faster, asymptotically, than any FIA machine family. The class of computa-
tions in question does not have to be “inherently” reversible in order for this to be
true.

6.4 Summary of scaling results

We conclude this chapter with a summary of our discoveries about the asymptotic
scaling advantages that can be gained by the use of time-proportionate reversibility.
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Cost in each model Advantage factors
Cost FIA TPRA BRA Reversible Ballistic
measure Task type ($i) ($r) ($b) Ar = $i/$r Ab = $i/$b

$ = S any Nops nin nin Nops/nin Nops/nin

$ = T no comm. 1 1 1 1 1

local comm. N
1/3
D N

1/4
D 1 N

1/12
D , $

1/3
r N

1/3
D√

ND comm. N
2/3
D N

1/2
D N

1/2
D N

1/6
D , $

1/3
r N

1/6
D , $

1/3
b

$ = AT no comm. Nops N
5/6
ops N

2/3
ops N

1/6
ops , $

1/5
r N

1/3
ops , $

1/2
b

$ = VT , no comm. N3
D N3

D N3
D 1 1

MT , local comm. N
3+1/3
D N

3+1/4
D N3

D N
1/12
D , $

1/39
r N

1/3
D , $

1/9
b

. . . , $c

√
ND comm. N

3+2/3
D N

3+1/2
D N

3+1/2
D N

1/6
D , $

1/21
r N

1/6
D , $

1/21
b

Table 6.2: Summary of asymptotic scaling results for reversible versus irreversible
machines. The first column indicates the type of cost measure being used; S being
entropy, A surface area, T real time, V physical volume, M total gravitating mass, $c

the comprehensive cost measure from p. 58. The second column indicates restrictions
on the type of computational task for which the results hold, in particular on the
communication involved. The quantity ND refers to the number of elements along
each dimension of a 3-D array of finite-state cells.

Under the most comprehensive cost measures, such as $c, the reversible advantage
Ar can scale with factors as high as the 21st root of the reversible cost (18th root
of physical machine size), but no more than that. With fully ballistic machines,
the comprehensive advantage (in the local communication case) would scale better,

Θ($
1/9
b ).

See table 6.2.
The best asymptotic cost-efficiency advantage for reversible machines is of course

gained in the case where total entropy generation is the sole measure of cost. The ratio
between irreversible and reversible entropy costs in this case may be an arbitrarily
fast-growing function of problem size or reversible entropy cost. But this cost measure
is not very satisfying because it ignores the time taken and the opportunity cost due
to the temporary use of other resources (A, V , M).

In contrast, considering time costs alone gives a rate of growth for the reversible-to-
irreversible speed ratio that, for suitable problem classes, is limited to at most the cube
root of the reversible time cost. Thus, a computation on a TPRA machine (such as
the R3M of 5.4.1, p. 116) that takes time T will in some cases require as much as Ω(T ·
T 1/3) time in the fastest possible fully irreversible (FIA) implementation. In other
words, in terms of speed, the class of architectures that permits time-proportional
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reversible operation strictly dominates the class of architectures that does not.
Of course, in general, time alone is not the only factor in the cost of computation,

so we also studied the case where various measures of machine size that influence
“rental cost” were included as well. With surface area as the size measure, the best
reversible advantage Ar grows as the 5th root of cost, or the 4th root of area, or the
square root of diameter. When mass and/or volume are included as components of
the machine size, the best reversible advantage scales as the 21st root of total cost, or
18th root of the machine’s mass or volume. This advantage occurs in computations
in which communication distances are proportional to the square root of the logical
diameter of the machine.

Such scaling may not appear to be very significant, but we estimate that the
constant factors work out so that even given the relatively poor performance of the
reversible logic devices available today (which we will discuss in the next chapter),
at the extremely high end of machines buildable with current technology, reversible
operation is apparently required for optimal efficiency.

Such a machine would be rather large and very expensive (we estimate tens of
billions of dollars), but as the underlying device technology improves, machines that
gain a cost-efficiency advantage through reversibility will become buildable at lower
and lower cost levels. In chapter 8 we will show that if certain proposals for future
reversible logic devices work as predicted, any computer larger than about a micron
in diameter will require reversibility in order to achieve optimal efficiency.
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Part II

Engineering reversible
computational systems
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Chapter 7

Adiabatic circuits

Part I of this thesis explored the general motivation for and properties of reversible
machines, without reference to any particular implementation technology. In Part II,
beginning with this chapter, we address a variety of engineering and implementation
issues in reversible computing, showing ways to actually design, build, and program
reversible computers.

Virtually all computers today are built using semiconductor VLSI (very-large
scale integration) technology, in which, typically, metal-oxide-semiconductor field-
effect transistors (MOSFETs) are wired together to form CMOS (complementary
MOS) logic gates.

Unfortunately, the way these CMOS logic gates are currently designed, they are
operationally irreversible, and thus have fixed lower bounds on their energy dissipation
and entropy generation, which we will analyze in some detail in §7.1. These bounds
have consequences for the maximum cost-efficiency of computation using irreversible
CMOS (hereafter abbreviated “iCMOS”) under various cost measures.

The irreversibility of traditional logic elements has led researchers to ask whether
transistor electronics could instead be configured in such a way as to form reversible
logic elements. The answer is yes, there is a class of reversible logic circuit styles called
“adiabatic” circuits (a somewhat misleading name, as we will explain in §7.3), whose
history we will review. We will then describe in detail SCRL (split-level charge recov-
ery logic), a particular variant of adiabatic circuit technology that was developed a
few years ago by members of our research group [192, 193, 191, 194]. SCRL has several
properties that make it particularly suitable for achieving the asymptotic efficiency
benefits that we discussed in ch. 6. It is capable of full reversibility. It can be built
cheaply and easily using today’s commercially available VLSI fabrication processes.
And SCRL’s energy dissipation roughly matches the TPRA (time-proportionately
reversible) model of chapter 6.

Next, we describe our SCRL-based design of FlatTop, a simple adiabatic circuit
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that we recently fabricated [72]. This circuit can be viewed as the first ever universal
reversible processor core, capable, in principle, of fulfilling the scaling laws derived
in the previous chapter, and thereby computing asymptotically faster than any irre-
versible technology in machines at a sufficiently large scale. (However, in practice,
the FlatTop chip is really just a proof of concept.)

Unfortunately, with some additional analysis (not contained in this thesis) we have
found that the constant factors of present-day VLSI (very large-scale integration)
semiconductor technology imply that the cost level at which reversible computing
will actually dominate in speed is, in the present technology generation, economically
infeasible (roughly speaking, in the range of billions of dollars). In the following
chapter, we will review a variety of possible future device technologies for which, in
contrast, reversibility wins out for all but the tiniest of machines. Then, chapter 9
will review reversible programming issues.

7.1 Maximizing the efficiency of iCMOS

Before we describe SCRL, in this section we will establish a baseline for comparison
by roughly estimating the optimum performance of present and future irreversible
CMOS, under a variety of cost-efficiency measures.

The central motivation for adiabatic circuits is the avoidance of the ∼ CV 2 energy
dissipation that (as we will see) is necessarily incurred by ordinary irreversible logic
circuits whenever they switch a signal from one logic level to another. In this section
we briefly review traditional irreversible CMOS logic, and the reasons for its energy
dissipation, and analyze in some detail the present and future minimum energy dissi-
pation of such circuits, based on the semiconductor industry’s technology projections
for the next decade. This analysis can serve as a baseline for comparison when we
wish to look at the capabilities of adiabatic circuits.

7.1.1 Basic iCMOS review

A detailed description of irreversible CMOS technology can be found in any standard,
reasonably recent VLSI textbook, for example [84, 187, 139]. Here, we only briefly
review the basics.

CMOS logic gates may appear in the simple static form, or in various dynamic
variations. In this context, “static” and “dynamic” refer to whether the output of
the logic gate is always tied to a fixed voltage source, or is sometimes allowed to float
freely. The underlying energy issues in the two circuit styles are basically similar,
so to ease our analysis, we will focus on the simplest static logic style. The use of
alternative styles of irreversible CMOS logic can improve energy efficiency beyond
that of ordinary static CMOS by, at most, only a small constant factor.
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(a)
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(b)
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Vin
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Figure 7.1: (a) An ordinary CMOS inverter, consisting of an n-FET (bottom) and a
p-FET (top). Given an input logic value A, the inverter computes its inverse Ā. With
more complex networks of p-FETs and n-FET in the pull-up and pull-down networks,
arbitrary inverting logic functions of multiple inputs can be similarly implemented.

(b) Dynamic behavior. The n-FET conducts significantly when Vin is above the
threshold voltage VTn, and the p-FET conducts when Vin is below the level Vdd + VTp

(where VTp is negative). When the input voltage Vin goes to the high level Vdd,
representing a logic 1, the output voltage Vout goes to the low level of 0 V, representing
a 0, and vice-versa. The delay td is affected by the load capacitance CL, the supply
and threshold voltages, and the gain factors (also called device transconductance
parameters) kn and kp of the n-FET and p-FET devices. If the inverter is driven by
a similar inverter and if kp ≈ kn, then the rise and fall times tr and tf of input and
output will be about equal.

Figure 7.1 shows a static CMOS inverter, consisting of two MOSFETs, one n-type
and one p-type. (The n and p refer to whether the primary charge carriers in the
device are negatively charged electrons or positively charged “holes.”) The p-FET
connects the output to a high voltage when the input is low, and the n-FET connects
the output to a low voltage when the input is high.

The inverter structure can be generalized to compute any inverting boolean func-
tion of many inputs (a one-bit function that is monotonically non-increasing in the
values of the input bits), by replacing the p-FET and n-FET with appropriate net-
works of many p-FET and n-FET devices, respectively.

Now, suppose we wish to minimize the total entropy generation of a computation.
To see how to do this, let consider how energy dissipation in a CMOS circuit scales
with various parameters.
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−
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V

C

Q = CV

Figure 7.2: Energy dissipation in conventional switching. Whenever a node is
switched by connecting it to a constant-voltage V power supply, such as occurs in
the ordinary CMOS gate of fig. 7.1, the transfer of the charge Q = CV from the
constant-voltage source to the node capacitance C results in an energy dissipation of
1
2
CV 2, where V is the voltage swing and C is the capacitance being switched.

7.1.1.1 iCMOS energy dissipation

We have seen that standard CMOS circuits charge and discharge loads by connecting
them to constant-voltage power supplies. Because of this, whenever the voltage of a
node is switched from one level to another, through a voltage change V , the energy
dissipated is at least 1

2
CV 2, where C is the total capacitance being switched.

To understand this, refer to fig. 7.2. An amount Q = CV of charge is delivered
to the node from voltage V , so the energy supplied is at least Esupp = QV = CV 2.
The energy stored on the node is

Estor =

∫
dE =

∫
v(q) dq =

∫
q

C
dq =

1

C

∫ Q

0

q dq

=
1

C

1

2
q2

∣∣∣∣
Q

q=0

=
1

2C
Q2 =

1

2C
(CV )2

=
1

2
CV 2.

(For additional textual explanation, see [143], §27-4, p. 521.) The remaining energy
Esupp−Estor = CV 2− 1

2
CV 2 = 1

2
CV 2 can not be accommodated in the circuit model;

no matter the precise mechanism by which it has left the system, this energy is now
considered unmodeled, statistical, thermalized; so as a matter of definition we call it
“dissipated.” Essentially it becomes heat.

This energy dissipation and the accompanying entropy increase occurs under any
means of setting a voltage by delivering charge directly from a constant-voltage source.
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There is no way it can be avoided by, for example, simply adjusting the resistance
or inductance of the switch: note that the above analysis depends in no way on such
parameters. We call this 1

2
CV 2 dissipation the switching energy Esw.

Of course, if the circuit is a small part of a larger system, then the dissipation to
heat of a certain amount of energy by the circuit need not imply that this energy will
never again be available for work: for example, given a cool thermal reservoir, the
computer can, as a side effect, power a heat engine which can recover a portion of
the dissipated energy as work. But in the absence of any specific mechanism tailored
to capture the supplied energy in a more direct way, the energy E = 1

2
CV 2 must at

still at least be temporarily dissipated (thermalized), which results in an immediate,
irreversible entropy generation of at least S = CV 2/2T , where T is the temperature
of the circuit.

Moreover, if the switch that we are using is a static CMOS logic gate, there may
be additional dissipation in the gate if the n-FET and p-FET are simultaneously
conducting significantly during some portion of the input transition, resulting in a
current from power to ground through both transistors. Generally this will occur if
Vdd & VTn + |VTp|.

This short-circuit dissipation is somewhat more complex to model than switching
energy, because it depends on the dynamic behavior of the CMOS devices and the
input signal. But we can make some useful approximations when the input is driven
by a similar gate: if Vdd À VTn + |VTp|, then a rough dynamic analysis shows that
the short-circuit dissipation Ess will be around CV 2

dd, comparable to the switching
energy. However, if Vdd . VTn + |VTp|, then the short-circuit dissipation will be small
compared to the switching energy.

Finally, for sufficiently slowly-switching CMOS circuits, another source of dissipa-
tion may become important, namely leakage energy due to sub-threshold conduction
of MOS devices even when turned off. Due to thermal effects, the transistor off-
current cannot be made less than the on-current by more than a factor of roughly
f = eVdd/φT , where φT = kBT/qe is the thermal voltage of electrons in a device at
temperature T . Therefore when device idle times are more than a factor of f times
larger than switching times, the leakage energy Eleak due to the off-current may be
the dominant contributor to the total energy dissipation per operation.

7.1.2 iCMOS entropy generation.

All of the total energy Etot = Esw + Ess + Eleak dissipated per operation, due to these
various causes, becomes heat, generating an amount of new entropy S = Etot/T ,
where T is the operating temperature of the devices. This entropy generation can be
made smaller by raising the operating temperature, but only up to a point, because
higher temperatures eventually lead to large leakage currents, and higher operating
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voltages (because we must obey Vdd & φT or else transistors will not be significantly
more conductive when on than when off), and will eventually preclude correct func-
tionality altogether, by melting the device, if not by some other effect that cripples
the device’s functionality far below its melting temperature.

The relationships between all these factors are complex, but if we just assume
that there is some maximum temperature Tmax for a working CMOS device, and if
as an initial rough estimate we place Tmax at around 150 degrees Celsius (423 K)
(we do not know of any semiconductor chips that operate hotter than this), then
this gives us a rough lower bound on entropy generation of S ≥ 1

2
CV 2/(423K) =

1.18×10−3CV 2/K = (86 nat/aJ)CV 2, which is an unavoidable lower bound as long
as C and V are assumed fixed.

We can still lower bound the entropy generation even if V is allowed to vary. Since
we know that V & φT = kBT/qe for correct functionality, we can define a new lower
bound in terms of temperature and load capacitance:

S ≥ 1

2
CV 2/T

& C(kBT/qe)
2

2T

=
Ck2

BT

2q2
e

.

Or, if we define a quantity CT ≡ qe/φT , which we will call the thermal capacitance,
we have

S & 1

2
· C

CT

nat. (7.1)

For example, at a temperature of 300 K (room temperature), the thermal capac-
itance is CT ≈ 6.2×10−3 fF, so our entropy bound becomes

S & (80.7 nat/fF) C.

Since φT ∝ T , CT ∝ 1/T and so the minimum S in (7.1) scales as T , showing that
actually, when voltage is adjustable, low temperatures are best for minimizing entropy
generation, at least until the point where the minimum Vdd is no longer limited only
by the thermal voltage.

The form of eq. (7.1) might seem to suggest that ordinary static CMOS circuits
could theoretically generate less than a bit of entropy per switching operation, at any
given temperature, if the node capacitance is just made sufficiently small compared
to the thermal capacitance. However, we will now see that the capacitance and
voltage cannot together be made low enough to generate less than 1 bit of entropy per
switching event, while still permitting reliable operation of these irreversible circuits.
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What is the interpretation of the thermal capacitance CT ? First, from our above
definition, it is the node capacitance for which at least 1/2 nat of entropy is generated
by dissipative switching through a voltage swing of φT . But it is also the node
capacitance at which the addition of one electron raises the node voltage by φT . Since
individual electrons experience an average excitation equal to the thermal energy
ET = kBT , the voltage on a node with capacitance only CT will routinely be different
than the expected level by amounts comparable to the thermal voltage. Therefore
such a node cannot reliably store a logic value encoded by a voltage difference of only
φT . For that, a significantly greater capacitance is required.

Additionally, switching a node by tying it to a constant-voltage source at voltage
V is a logically irreversible operation, since after the transition is completed, the in-
formation about the previous logical state of the node has been lost. (There is simply
no mechanism in these simple circuits for retaining this information in a controlled
form, just as there is no mechanism, for the 1

2
CV 2 of supplied energy that doesn’t end

up on the capacitor, of retaining that energy in a controlled form, i.e., not heat.) So,
if the node was equally likely to be in either of two states before the operation, one
of them at voltage V and the other at voltage 0, and after the operation it is reliably
in a single state (corresponding to voltage V ) then the average entropy generation is
at least 1 bit = ln 2 nat. Thus the average energy dissipation must be kBT ln 2 to
provide for this entropy (see §2.5.3, p. 46).

Since no energy is dissipated in the half of the cases when the node is unchanged,
the energy dissipation in the other half of the cases must be twice this, 2kBT ln 2, in
order for the average dissipation to be kBT ln 2. In order for the switching energy
1
2
CV 2 to be greater than this, we must have

1

2
CV 2 ≥ 2(ln 2)kBT = 2(ln 2)ET

C ≥ 4(ln 2)
ET

V 2

so if V ≈ φT ,

C & 4(ln 2)
ET

φ2
T

= 4(ln 2) CT .

For example, at T = 300 K, and V ≈ φT , we have C & 0.017 fF.
In other words, the minimum average entropy generation per irreversible switching

event must be

S ≥ 2 bits

if reliable erasure of a random bit is to be possible.
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More generally, consider nodes in any constant-voltage switching technology in
which short-circuit energy and leakage energy are negligible, so that the 1

2
CV 2 switch-

ing energy is the only dissipation. Suppose a node is to hold a logic 1 in exactly one
randomly-selected case out of N cases (instances distributed in space or in time),
and is 0 in the rest of the cases, and we wish that, with high probability, the logic
value should become 0 after the switching operation in every case, given that the
node becomes tied to a constant voltage source whose level represents 0. The entropy
generated is

S ≥ ln N nats, (7.2)

but energy is only dissipated in the single case where the bit is 1. In order for the
environment to hold the increased entropy, the energy dissipated during switching
in this case must be E ≥ ST ≥ kBT ln N . In other words, node capacitance C and
swing voltage V must be such that

1

2
CV 2 ≥ ET ln N (7.3)

in order for a node to switch correctly in every one of N instances (with high proba-
bility). Another way to write this formula is

1

2

(
C

CT

)(
V

φT

)2

≥ ln N,

which shows explicitly the relationship between node capacitance, thermal capaci-
tance, node voltage, and thermal voltage. If we take V ≈ φT , we get a lower bound
on node capacitance of

C & 2(ln N) CT .

So, for example, to achieve a nice N value of 1027, corresponding to a computer with
109 circuit nodes not making a single thermal error in 1 Gs (∼32 years) of operation
at a clock speed of 1 GHz, we must have a capacitance per circuit node of C & 0.77 fF,
if the operating voltage is almost as low as the room-temperature thermal voltage.
Present-day gate capacitances of minimum-sized transistors are already near these
levels. If some circuit nodes actually have smaller capacitances than this, supply
voltages cannot actually approach the thermal voltage without sacrificing reliability
to some extent.

It is interesting that we are able to derive the above relationship between reli-
ability and node capacitance solely on the basis of the entropy generation and the
switching energy. This can be compared with the traditional approach of developing
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a sophisticated thermal noise model, which finds that voltage samples follow a normal
distribution, with a mean squared error (on a capacitance-C node) of ∆V 2 = kBT/C
([129], §1.12, p. 31), and therefore to sample N instances to an accuracy of kBT with
high reliability, C must scale up with ln N roughly as we have described, or else there
will be a significant chance that a thermal fluctuation will, in one of the N instances,
place the voltage sample enough standard deviations out on the tail of the distribu-
tion to cause a sampling error, and thus qualitatively incorrect functionality of the
logic.

7.1.2.1 Voltage bounds.

To express the above voltage bound quantitatively, we can rewrite eq. (7.3) as a
lower bound on the swing voltage V in terms of the node capacitance and thermal
constants:

V ≥
√

2ET ln N

C

or equivalently

V ≥ φT

√
2 ln N

CT

C
.

Thus, as capacitances decrease towards and below the thermal capacitance CT ,
minimum node swing voltages must increase to larger and larger multiples of the
thermal voltage, proportional to the square root of the capacitance decrease, in order
to maintain a given level of reliability. This is an important lower bound on operating
voltage which must be taken into account when considering the minimum energy
dissipation of irreversible switching circuits.

Of course, continually increasing voltages in order to shrink circuits is unrealistic
since high electric fields will cause gate oxide breakdown. So in the long term, as
nodes shrink in all dimensions proportionally to some characteristic feature size `,
and node capacitances and voltages decrease proportionally, the above analysis really
demands that we must eventually start scaling switching energy down as CV 2 ∼ `3

(which is intuitive for another reason, namely that otherwise, assuming switching fre-
quency does not decrease, the power dissipation density in the channel would increase
indefinitely, which would eventually cause damage such as melting and loss of struc-
ture) and the only way to reduce the switching energy in an irreversible circuit while
still maintaining thermal reliability is, by the above analysis, to scale the temperature
down with `3 as well. So as trends in irreversible circuits continue, active cooling to
cryogenic temperatures will eventually become a necessity in order to maintain good
reliability.
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Another lower bound on operating voltage for CMOS circuits comes from the
fact that the device thresholds VTn and VTp cannot be set with complete precision,
due to the statistical nature of existing dopant implantation processes. If Vdd is not
significantly larger than the variability σVT of the VT values, then some devices may
fail to switch on and off as desired, and functionality may be compromised.

Our lower bounds on operating voltage may be summed up as follows:

V & φT (to switch FETs strongly on and off)

V ≥ φT

√
2 ln N

CT

C
(for reliability despite thermal noise)

V À σVT (to avoid defects due to threshold variation).

Actually operating at the minimum voltage that is permitted by the above re-
quirements may or may not maximize cost-efficiency, depending on the particular
measure of cost that we are trying to minimize. Let us now see how to choose the
operating voltage of irreversible static CMOS circuits so as to maximize efficiency
under a variety of cost measures.

To sum up our discussion of entropy generation in irreversible CMOS, we saw that
one should arrange that 1

2
CV 2 for each switching event is as small as possible, while

remaining above ET ln N (see eq. 7.3). Lowering the operating temperature helps
decrease entropy production if it allows V to decrease. If 1

2
CV 2 = 2ET ln N , then

entropy generation must be at least ln N nats per switching event. This is αN ln N
nats for an error-free computation composed of N primitive operations, if a fraction
α of the operations cause switching.

Of course, other technological considerations may prevent 1
2
CV 2 from coming any-

where close to room-temperature ET . The minimum load capacitance is determined
by factors such as the minimum transistor gate area, and V is independently bounded
below by the variability σVT of device threshold voltages due to the statistical na-
ture of ion implantation in the channel region. An interesting property of any given
CMOS fabrication process is the ration between the minimal 1

2
CV 2 and ET=300K in

properly-functioning logic circuits in that process. In §7.1.3 we estimate this quantity
for several present and projected future generations of CMOS technology.

7.1.3 The SIA semiconductor roadmap

Table 7.1 shows some parameters for future generations of CMOS VLSI technology as
forecasted by the Semiconductor Industry Association, in [145]. We will be referring
to these numbers for our calculations throughout the rest of this section.

Given these numbers, we can take a stab at an actual numeric computation of the
minimum entropy generation per switching event. See table 7.2. Let us explain these
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Year of first product shipment
1997 1999 2001 2003 2006 2009 2012

Overall characteristics:
Trans. density,a 3.7 6.2 10 18 39 84 180

106 trans/cm2

Chip size,b mm2 300 340 385 430 520 620 750
Clock freq.c, GHz 0.75 1.25 1.5 2.1 3.5 6 10
Supply voltaged, V 2.5–1.8 1.8–1.5 1.5–1.2 1.5–1.2 1.2–.9 .9–.6 .6–.5
Max. powere, W 70 90 110 130 160 170 175
Technology requirements:
µP drawn channel 200 140 120 100 70 50 35

lengthf, nm
DRAM 1

2
-pitchf, nm 250 180 150 130 100 70 50

Tox equivalentg, nm 4–5 3–4 2–3 2–3 1.5–2 < 1.5 < 1
CV/I delayg, ps 16–17 12–13 10–12 9–10 7 4–5 3–4
VT 3σ varia.g, ±mV 60 50 45 40 40 40 40
Src./drn. junction 50–100 36–72 30–60 26–52 20–40 15–30 10–20

depth,g nm

Table 7.1: Selected numbers from the 1997 edition of the Semiconductor Industry
Association’s national semiconductor roadmap [145]. These numbers are used for the
calculations in tables 7.2 and 7.4.

aLogic transistor density in a packed, high-volume, cost-performance microprocessor, including
on-chip SRAM. From [145], p. 14.

bSize for a µprocessor, year 1, before subsequent shrinks; [145] p. 15.
cOn-chip local clock frequency for high-performance chips, [145], p. 16.
dMinimum logic power supply voltage Vdd, [145], p. 17.
eMaximum power consumption for a high-performance processor with heat sink, [145] p. 17.
fMinimum feature sizes, [145], pp. 14, 85.
gThe last four lines in the table are all from [145], p. 46.
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Year of first product shipment
1997 1999 2001 2003 2006 2009 2012

Capacitance calculations:

Gate oxide thickness T̃ox, nm 4.5 3.5 2.5 2.5 1.75 1.5 1
Gate areal capac. Cox, fF/µm2 7.81 10.0 14.1 14.1 20.1 23.4 35.1
Min. gate cap. Cgmin, aF 312 197 202 141 98.4 58.6 43.0

Est. min. load cap. C̃Lmin, fF 5.00 3.15 3.24 2.25 1.57 .937 .689
Voltage calculations:
Transistors/die, 106 11.1 21.1 38.5 77.4 203 521 1350
N trans./defect (90% yield), 109 .111 .211 .385 .774 2.03 5.21 13.5
Defect probability p, 10−9 9.01 4.74 2.60 1.29 .493 .192 .0741
Number n of σVT’s 5.75 5.86 5.96 6.07 6.23 6.37 6.52

Est. min. Vdd: Ṽmin, mV 230 195 179 162 166 170 174
Energy and entropy:
Switching en. Esw = 1

2
CV 2, aJ 132 59.9 51.9 29.5 21.6 13.5 10.4

Est. min. ent. S̃min, knat 23.9 10.8 9.40 5.35 3.92 2.45 1.89
Inefficiency factor 385 174 151 86.0 63.0 39.4 30.4
Min. perm. energy loss, aJ .903 .409 .354 .202 .148 .092 .071

Table 7.2: Calculations of minimum capacitance, supply voltage, energy dissipation,
and entropy generation for irreversible CMOS, based on the SIA roadmap data from
table 7.1. The minimum entropy generation per switching operation that is required
given a 90% die yield ranges from 24 kilonats to 1.9 knats, which is greater than that
required for a thermal reliability of less than 1 error in 1027 switching operations, by
factors ranging from 385 in current technology, to 30 in projected technology for the
year 2012.

calculations.
First, we perform some calculations to work towards finding out the load capac-

itance of typical small but non-trivial logic nodes (e.g., NAND gates with output
fanning out to 4 similar NAND gates) in each technology generation. This is im-
portant because we observed earlier that the lower bound on entropy generation is
affected by load capacitance.

Estimated gate oxide thickness. We derive an estimate T̃ox for the gate oxide
thickness in each technology generation by taking the average of the high and low
values given by SIA, or the high value if no low value is given.

Gate capacitance per unit area. The dielectric constant of SiO2 (see table 7.3) is
≈ 351 fF/cm. If we divide this by T̃ox, we get per-area gate capacitances Cox ranging
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Symbol Approximate value Meaning

ε0 8.85 aF/µm Dielectric constant of vacuum
εSi 11.7ε0 ≈ 105 aF/µm Dielectric constant of silicon
εox 3.97ε0 ≈ 35.1 aF/µm Dielectric constant of SiO2

Table 7.3: Some important dielectric constants for semiconductor electronics calcu-
lations. Taken from the frontispieces of [84, 139].

from 7.81 fF/µm2 up to 35.1 fF/µm2 as the technology improves.

Minimum gate capacitance. The gate-to-channel capacitance Cgmin of a mini-
mum-sized transistor can be calculated from Cox, SIA’s minimum gate length, and a
minimum width which is assumed to be equal to the minimum length; we find values
ranging from 312 aF in 1997 to only 43 aF in 2012.

Estimated load capacitance. In a minimum-size static CMOS NAND gate ad-
justed so that the effective gain factor k of pull-up and pull-down networks are equal
to the minimal transistor gain factor in the worst case, n-FET and p-FETs will both
be sized to about double the minimum width—the n-FETs because two of them are
in series, the p-FETs because hole mobility is only about half of electron mobility.
An input impinging on the NAND feeds to one transistor of each type, so the load
placed on the input by the NAND is about 4 times the minimum gate capacitance,
plus fringing capacitances which we will ignore. If the output of each NAND gate
fans out to about 4 other NAND gates, then the total load capacitance on the NAND
output is only about 16 times the minimum gate capacitance. There is also a con-
tribution from wiring and from the source-drain regions of the gate generating the
signal, but if wire lengths are kept short, this can be absorbed into the factor of 4
without decreasing fan-out very much. So based on this, we just multiply Cgmin by
16 to find an estimated load capacitance C̃L ranging from about 5 femto-Farads in
1997, to 0.69 fF in 2012.

Transistors per die. From SIA’s figures for transistor density and chip size, we
can calculate the total number of transistors per chip. It ranges from 11 million up
to 1.35 billion.

Transistors per defect. Suppose we require that the loss in die yield due to ran-
dom threshold variations should be less than 10%. That is, less than one die in 10
should contain any transistor having a large enough error in its threshold value to
cause the transistor not to be in the correct (on vs. off) state when required. Multi-
plying by the transistors per die gives us the number N of transistors that need be
produced on average before one is produced that has such a defect. That is, in a
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set of N transistors, the expected number of defects should be 1. We might call this
N the process reliability number . Values range from 1

10
billion to 13.5 billion, as the

number of transistors per chip increases in the SIA projections.

Defect probability. The sum of expectation values over a set of independent events
is additive. So if the expected number of defects in N transistors is 1, and the sta-
tistical results of ion implantation in different transistors is independent (a plausible
assumption), the expected number of defects in 1 transistor must be 1/N . Thus the
probability p that a given transistor will have a defect must be 1/N . The required
defect probabilities thus range from 9×10−9 to 74×10−12 as the transistor count
increases.

Number of σVTs required. Roughly speaking, an n-FET in static CMOS will
cause incorrect functionality either if it does not turn on when VGS is Vdd, or if it
does not turn off when VGS is zero. Therefore variation in thresholds should leave the
threshold within the range 0 V to Vdd. To minimize Vdd for a given level of threshold
variability while remaining within reliability constraints, the nominal VTn should be
exactly halfway between 0 V and Vdd, so that the transistor only fails if variation
places the actual VTn far out on one of the tails of the threshold distribution. In this
situation, if the total probability of VTn being out on the tail in both directions is p,
then the probability for either side (too high or too low) is p/2, since these events are
mutually exclusive. (Similarly for p-FETs.)

Given a probability of being out on one tail of at most p/2, we can compute a
lower bound on how many σVTs are required before we are far enough out from the
mean VT so that the total probability of being that far out is no more than p/2. In a
normal distribution, the total probability R(n) of being at least n σs away from the
mean in a particular direction is bounded above as

R(n) ≤ 1

n
· 1√

2π
e−n2/2. (7.4)

And in fact, in the limit of n → ∞, the probability out on the tail approaches this
value exactly (cf. Feller 1950 [58], ch. VII, p. 175, eq. (1.8).)

Therefore, to have R(n) ≤ p/2, we only require that n be greater than or equal
to the value given by solving

2/p =
√

2π · nen2/2

for n, which for given p we can easily do numerically by computer using Newton’s
method. For our p’s we find values of n ranging from 5.75 to 6.52 σVTs; this relatively
narrow range is afforded by the roughly exponential decay of the tail of the normal
distribution.
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Minimum Vdd. Now we are finally in a position to actually calculate the minimum
value of Vdd for each technology generation. With Vdd = 2|VT|, we must have Vdd ≥
2nσVT in order for the total probability of an error-inducing threshold defect (either
too high or too low) to be less than p. Given SIA’s values for 3σVT, this yields minimal
Vdd voltages ranging between 230 mV and 162 mV.

These values are all several times greater than the thermal voltages of 26–34 mV
found at normal operating temperature, so transistors that are turned off will conduct
several times less current than ones that are turned on (in the worst case, we estimate,
by at least a factor of 3), meaning that correct functionality is maintained, and leakage
does not contribute very much to energy dissipation in circuits that switch frequently.
However, if much lower levels of threshold variability than those given in the SIA
roadmap were to be attained, low-temperature operation would be required in order
for transistors to be able to turn off sufficiently at the implied lower voltage levels;
this would tend to increase entropy generation, and thus reduce the advantages of
the lower energy dissipation.

Minimum energy/switching event. Given the minimum capacitance of a useful
logic node and a minimum swing voltage, we are now in a position to calculate the
minimum switching energy Esw = 1

2
CV 2 for such a node.

Minimum entropy/switching event. The minimum attainable entropy is lower-
bounded by the minimum energy divided by the maximum temperature. Raising the
temperature has a variety of complicated effects on CMOS device behavior, so this
bound will not be exact. But if we assume that operating temperatures can’t be much
higher than, say, 127◦C (400 K) while preserving correct functionality, we can get a
rough lower bound on entropy generation.

Inefficiency factor. Suppose we wish the probability of a thermally-induced error
to be 10−27 (this would correspond to, for example, a billion logic nodes switching
at 1 gigahertz with only 1 error expected per gigasecond (31 years) of operation).
Then the number of nats of entropy generation per switching event only needs to be
ln 1027 ≈ 62.2 in an ideal switching circuit. So our CMOS circuits are generating
more entropy than the ideal switching circuits by factors ranging from 385 down to
30. So, thermal reliability does not become the limiting factor on voltages for the
foreseeable future of irreversible CMOS, although if the technology could continue
to be improved for several more generations beyond the 2012 technology, this might
change.

This concludes our discussion of the minimum entropy generation per operation at-
tainable in irreversible CMOS circuits. In summary, entropy generation per switching
event is expected to be greater than 1.8 kilonats through at least the year 2012. Insofar
as each logic gate operation involves about one switching event, this also corresponds



162 CHAPTER 7. ADIABATIC CIRCUITS

roughly to the entropy generation per primitive operation.
Even if unforeseen technological breakthroughs were to undercut this limit, an

entropy generation of at least tens of nats per operation is required in order for
correct voltage-switching to occur with high reliability in any irreversible switching
technology, due to the argument that led to eq. (7.2), p. 154.

7.1.4 Minimizing permanent energy dissipation in iCMOS

Note that the energy dissipated by a CMOS circuit internally is not all lost . If a circuit
is maintained at a temperature TH that is as high as allowed by reliability constraints,
in order to minimize entropy production, then most of the energy dissipated internally
can be recovered, by using the computer as the heat source for a Carnot-cycle heat
engine (cf. [143], §19-6, p. 371–376) with a relatively low-temperature reservoir at
temperature TL ¿ TH. If the heat is emitted from the computer into the heat engine
at temperature TH (i.e. no temperature degradation during transport), then a fraction
(TH − TL)/TH of this heat can be converted to work by the heat engine.

In other words, the total energy that is really lost when S entropy is gener-
ated is only STL. If the ∼2.73 K cosmic microwave background can be used as the
low-temperature reservoir, then theoretically only ∼4×10−23 J of energy need be
permanently lost for each bit of entropy generated in the computer, even though a
hundred times more energy than this is temporarily “dissipated” whenever circuit
nodes switch. This shows that energy dissipated in a circuit does not correspond to a
permanent loss of work. It is only the entropy generation of the computer that truly
determines the ultimate energy cost.

Thus, true energy loss is really minimized by minimizing entropy generation. If a
2.73 K reservoir is available, the minimum energy loss for CMOS ranges from about
0.9 aJ down to .07 aJ, as shown in the last line of table 7.2.

Actually, in practice there will always be some temperature degradation during
the transport of heat from the transistors to the heat engine input, due to the non-
infinite “heat capacities” of materials. However, if this temperature degradation is
small compared to TH − TL, then the above results will be approximately correct.

Also, in practice, the 3 K microwave background may not actually be readily
available as a thermal reservoir. In this case, the ultimate reservoir would be the
atmosphere instead, and TL would be on the order of 300K, and the minimum energies
would be ∼ 100 times higher.

7.1.5 Maximizing per-area processing rate for iCMOS

Consider a cost measure like in §6.2.2, consisting of the rental cost of the land area
or floor space required for a computation, or in other words the surface area of the
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computer times the time taken by the computation. Suppose we wish to minimize
that cost measure.

To do this, we would like to know how to maximize the rate of computation that
can be achieved per unit of surface area. This rate is limited if there is an upper
bound on the rate of entropy removal through the machine, and a lower bound on
the entropy generated per operation.

To maximize the computation rate per unit of outer surface area in irreversible
CMOS, one should just maximize the ratio between the maximum entropy flux FS

in the cooling system and the entropy generation per operation, then pack in enough
layers of circuits below each unit of surface area so that entropy is being generated
at a rate per unit area corresponding to FS.

One key parameter to be chosen is the circuit operating temperature T . A lower
operating temperature means more entropy generation for a given energy dissipation,
but also more entropy flux for a given heat flux; these factors cancel out, meaning
the relevant quantity is the ratio between the maximum heat flux and the minimum
energy dissipation.

However, lower temperature probably means a lower heat flux, since at least some
components of heat flow will increase with increased temperature differences between
inside and outside. So within the bounds set by the reliability requirements at a given
operating voltage, the machine should be operated as hot as possible. This is also
consistent with minimizing the total entropy production, given the fixed lower bound
on energy dissipation in CMOS, and also with minimizing the total permanent energy
loss.

From SIA’s figures for chip size and power, we can compute what heat flux they
are assuming. If we take this as our maximum heat flux, we can combine this with
our calculated figures for the minimum energy dissipation from table 7.2 to find the
maximum rate of operation per unit area. See table 7.4.

What is the minimum thickness, in layers and in meters, for an irreversible CMOS
machine that achieves this maximum speed per unit area? To determine this, we need
to know both the minimum area per logic gate, minimum circuit layer thickness, and
the maximum speed of operation of individual logic gates when operating at the
minimum voltage.

The minimum area per logic gate is easy to calculate from the SIA figures, and
an advanced wafer-thinning or SOI (silicon-on-insulator) process might be expected
to achieve a thickness per circuit layer as low as ∼10 µm or less.

However, accurately determining the maximum speed of operation per gate re-
quires a more detailed analysis. We would like to know an effective resistance R for
our logic gates, when driven at our minimized power supply voltage, such that in
a characteristic time tc ≈ RCL the output node is charged most of the way to the
desired voltage level.
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Year of first product shipment
1997 1999 2001 2003 2006 2009 2012

Rate calculations
Heat flux FE, W/cm2 23.3 26.5 28.6 30.2 30.8 27.4 23.3
Max rate RpA, ops/ns-µm2 .882 2.20 2.76 5.13 7.09 10.1 11.2
Min AT /op, ns µm2 1.13 .454 .362 .195 .141 .0986 .0891

Table 7.4: Calculations of heat flux, rate of operation per outer surface area, and
minimum outer-area rental cost per operation for (layered) irreversible CMOS, based
on the SIA roadmap data from table 7.1. We find that irreversible CMOS can at
best perform only ∼1–10 operations per nanosecond per square micron of outer area,
given the heat flux implied by SIA’s figures. In other words, the area-time cost per
operation in ns µm2 units ranges from ∼1 to ∼0.1.

Unfortunately, determining such an R is rather complex. First, the instantaneous
resistance of each MOSFET is not constant during node charging; it varies as the
drain voltage changes. In multi-input logic gates, some transistors will in general
have varying source voltages as well. Moreover, the effective resistance of the active
logic network (pull-up or pull-down) will generally be data-dependent. For example,
the pull-up network of a NAND gate, which consists of two transistors in parallel,
conducts best if both inputs are low, rather than just one being low. Finally, the
instantaneous resistance depends on the supply voltage in a complex way that depends
on threshold voltage and source voltage, and that in small devices is affected by a
variety of difficult-to-model short-channel effects, such as channel-length modulation,
velocity saturation, mobility degradation, and drain-induced barrier lowering (cf. [165]
and §2.3 of [139]).

We carried through a rough computation by hand (with help from the Emacs

calc tool) based on a model described in (Rabaey 1996, [139], §2.3, p. 54, eqs. (2.57)–
(2.59)), and originally proposed by Toh et al. (1988, [165]), which incorporates thresh-
old voltage, mobility degradation, and velocity saturation effects. At this point we
are still not completely confident in the accuracy of that calculation, so we will not
detail it here. But one tentative result is that when operating at the minimum sup-
ply voltages we derived earlier, we end up with a maximum operation frequency that
is only slightly higher than those projected by SIA (it is within a factor of 2), al-
though in our analysis, the maximum operation frequency increases less rapidly than
in SIA’s, as technology improves. The reason for the remaining discrepancy between
our calculations and SIA’s is unclear, and will probably remain so until we obtain a
fuller description of SIA’s assumptions and analysis methods.

Another tentative result of this analysis is that for maximizing total computation
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rate per unit area, our choice of lower supply voltage results in an overall speedup
factor (compared to SIA’s projections) that ranges from 127 down to 2.5 as technology
improves; part of the reason why the improvement decreases seems to be that SIA’s
choice of supply voltage converges from 10 times ours down to only 3 times ours, as
the generations progress.

Unfortunately, the low-voltage approach is not significantly more cost-effective (in
terms of rate per unit of silicon surface) than SIA’s. This is not surprising, since in
these calculation we were not trying to maximize overall cost-effectiveness, but rather
only performance per unit of outer area; we were ignoring the material cost of stacking
up more layers of surface over that area. The number of circuit layers we need for
optimal per-area performance ranges from 80 (in 1997) down to 4 (in 2012), and the
cost of these extra layers roughly negates the benefit of the increased performance.

7.1.6 Maximizing iCMOS cost-efficiency

When maximizing cost-efficiency in terms of circuit mass or wafer area, rather than
outermost-surface area, the analysis becomes more complex. For one thing, it depends
on the nature of the computation to be performed.

If the computation consists of many small independent computations, requiring
only local communication in 2-D, for example, then the circuitry can be spread out in
a single layer, and the task is to maximize the rate per unit of silicon area. In this case,
we are not entropy-limited, so we cannot assume, as we did in the previous section,
that the optimal operating voltage is just the minimum voltage that is consistent
with reliability constraints. Lower signal voltages in general increase the effective
resistance of transistors, and lead to longer charging times t ∼ RC. But the voltage
cannot be too large either, or it will cause oxide breakdown and other undesirable
effects, and it could possibly cause overheating even if the circuit is just a single
layer. An accurate analysis would need to take these concerns into account, as well
as all of the complex short-channel effects that arise when scaling to smaller device
sizes. Optimizing voltage in the face of all these concerns cannot be done via solving
a simple analytical equation; instead one must write a program to search for the
optimum point numerically.

Alternatively, if the computation requires frequent communication, such as for
example between neighboring cells in a 3-D mesh being simulated, then the analysis
is made complex for other reasons, namely because we cannot spread everything out
in a single layer without incurring communication delays, as we discussed in ch. 6,
§6.2.3.1. If a near-ballistic means for communication is available—such as an optical
or transmission-line system of interconnects between processors—then when entropy
generation becomes the dominant concern, the optimal structure is the one from that
earlier section, in which we lower the clock speed and spread the processing elements
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out in proportion to the cube root of the logical diameter of the communication
network.

But in this case as well, carrying out the relevant calculations for future genera-
tions of semiconductor technology would be complex and error-prone, due especially
to uncertainties in the technical specifications of the communication network.

In both cases (2-D and 3-D computations), we will deem a detailed numeric cal-
culation of cost-efficiency to be beyond the scope of this thesis, and we will relegate it
to the domain of future work. Still, such a calculation will be important eventually,
if we wish to be able to compute the exact scale above which reversibility becomes
advantageous, in each succeeding technology generation. In the current technology
generation, a very rough hand-calculation suggests that even in the most optimistic
scenario for reversible computing (namely, ballistic communication between nodes at
logical distance

√
ND, see §6.2.3.2, p. 136), reversibility doesn’t improve cost-efficiency

until we reach a cost level on the order of $25 billion. Later we will argue that over
time, the case for reversibility ought to improve, for as long as the RC of CMOS
technology keeps improving; however, we will also argue that at some point, mak-
ing further RC improvements will require moving to a radically different technology,
such as the superconducting Josephson-junction technology of Likharev [108]. In any
case, making more accurate projections of the advantages of reversibility in foresee-
able generations of CMOS technology would be very desirable in order to gauge the
near-term applicability of this research.

This concludes our analysis of the best possible performance of normal irreversible
CMOS circuits under various efficiency measures for the foreseeable future. This can
serve as a baseline for comparison when looking at reversible circuits.

Now, let us see how reversible circuit techniques came about.

7.2 Historical development of adiabatic circuits

We now review the historical development of reversible logic circuit techniques.

Correcting an attribution. Toffoli (1980, [161]) suggested that the idea of dis-
sipationless computing using reversible circuits originated with John von Neumann,
but I have been unable to confirm this claim. To quote Toffoli’s paper:

The idea that universal computing capabilities could be obtained from
reversible, dissipationless (and, of course, nonlinear) physical circuits ap-
parently first occurred to von Neumann, as reported in a posthumous
paper (Wigington 1961 [188]).

However, based on a careful reading of Wigington’s paper, I believe that Toffoli’s
characterization of it is incorrect.
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Wigington’s paper [188] is an explanation of a patent [181] submitted by von
Neumann in 1954 and posthumously granted to him in 1957. The paper describes a
computing scheme in which logic values are represented by the relative phase of AC
signals, rather than by the DC voltage level used in conventional systems. Wigington
also cites similar work (on “Parametron” circuits) that apparently occurred around
the same time in Japan.

The logic circuits that Wigington discusses do indeed include some elements
(namely, nonlinear reactances) that can be assumed to have arbitrarily low dissi-
pation (and whose operation is therefore physically reversible), but the described
circuits also include attenuators that are placed in the signal paths explicitly in or-
der to dissipate the energy of signals whose phase information is no longer needed,
in exact analogy to the practice in traditional DC logic circuits of dumping a node’s
static energy through a dissipative switch whenever its logic value is no longer needed.
Without these attenuators, von Neumann’s circuits would not reliably implement the
computing scheme described. In fact, the need for dissipation is guaranteed by the
logic system used. The fundamental logical operation in von Neumann’s AC circuits
is to take three binary input signals, and from them generate a boolean output signal
whose logic value is the majority value of the inputs. The input signals are consumed
in the process, in the attenuators. Since the resulting operation is a many-to-one
transformation of the logical state of the circuit, it destroys logical information, and
thus cannot be implemented in a physically reversible way, by Landauer’s argument
(§2.5.1, p. 41). No matter how we try to modify von Neumann’s circuit, we will fail
to achieve dissipationless, reversible operation, so long as the logical state transfor-
mation operation that is performed is a many-to-one operation such as Wigington
describes.

Therefore, Toffoli’s characterization of the von Neumann/Wigington paper seems
mistaken. Von Neumann had certainly had a great many original ideas during his
lifetime, and it is conceivable that he thought about the idea of reversible, dissipa-
tionless computing, but if so, the Wigington paper certainly provides no evidence to
support that attribution.

Earliest adiabatic circuits. To our knowledge, the first description of a logic cir-
cuit technique that seriously attempts to avoid the ∼ CV 2 dissipation associated
with conventional logic is that of Watkins 1967 [186]. Watkins describes a technique
whereby capacitive loads in a circuit are charged gradually through the control tran-
sistors from a power supply whose voltage fluctuates cyclically according to prescribed
waveforms. When the transistors in Watkins’ circuit are first turned on, there is no
voltage across them and thus no dissipation through them. While the load is being
charged up through the transistor, there is a small voltage across it, and thus some
dissipation, but this dissipation can be made as low as desired by just lengthening
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the time taken in the charging cycle. Watkins analyzes the energy dissipation in his
circuit, and predicts that the energy per cycle asymptotically approaches zero as the
cycle time is increased.

Unfortunately, Watkins’ energy analysis appears not to have been quite correct,
due to his use of semiconductor diodes to discharge the nodes in his circuit. Such
diodes have an intrinsic voltage drop φT across them (cf.[94] §2 and [139] §2.2.1, p. 20)
which does not decrease as the circuit is run more slowly. Therefore, Watkins’ circuits
still incur a minimum dissipation of ∼ CV φT per operation, no matter how slowly
they are run. Therefore, they do not qualify as truly time-proportionately reversible
(see §6.1.3, p. 123) logic devices that could improve asymptotic cost-efficiency as per
the arguments in chapter 6. In any case, for whatever reason, Watkins’ proposal
appears to have faded into obscurity.1

Inductor-based approaches. After Watkins, we next see the idea of dissipation-
less electronic logic crop up independently in a 1978 proposal by Fredkin and Toffoli
[73]. In their idea, energy is shuttled around between inductors and capacitors, but is
not dissipated substantially, in a circuit that implements a purely reversible primitive
operation, namely a 3-input 3-output Fredkin gate. The assertion is that in such a
circuit, energy dissipation can be made arbitrarily small if only the quality factor Q
of the LC elements can be made arbitrarily large. Unfortunately, the Fredkin-Toffoli
approach was not immediately practical, because it appeared to require large numbers
of inductors, roughly one for each logic element, whereas VLSI fabrication technology
does not well support high-quality integrated inductances.

However, in 1985 the ball was again picked up by Charles Seitz and colleagues
[144] at Caltech, who (apparently independently) describe a logic technique similar to
Fredkin and Toffoli’s, but in which the inductances are instead shared between many
logic circuits, and are brought off-chip, and can therefore be implemented using a
technology that is more optimized for providing high-Q resonance than is VLSI. The
relatively complex switching circuitry that controls the logical operation of the circuit
remains integrated on-chip. This was a key step on the road to making resonant
circuits practical. However, Seitz et al. only worked out the technique in detail for
relatively simple circuits; they leave open the question of whether a general logic
family could be worked out to implement any combinational or sequential logic with
arbitrarily little dissipation. Their proposed solution is, in their own words, not
“foolproof” and requires careful tuning of the circuit parameters to ensure correct
and dissipationless operation.

1According to Science Citation Index , Watkins’ article [186] was only cited a total of four times
through 1976, and these citations appear to all be from general review articles, rather than applica-
tions of Watkins’ research. After 1976, Watkins was not cited at all until Bill Athas and colleagues
rediscovered his work in 1997 [4].
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Improvement of adiabatic techniques. In 1992 and 1993, a sequence of several
important developments proceeded to solve the remaining difficulties with adiabatic
switching. First, Koller and Athas [92] devised a simple and general adiabatic logic
family, but encountered difficulties because their circuits were not fully logically re-
versible; Koller and Athas noted that whenever their circuits finally needed to forget
some information, they were unable to avoid ∼ CV 2 dissipation, because ultimately,
the only way to clear the logical state of a circuit node whose state is unknown is to
tie that node to a reference reservoir at a known voltage level, thereby dissipating the
energy of the node (if different from the target level). Being unaware of Fredkin and
Toffoli’s earlier work showing that sequential circuits need never discard information,
Koller and Athas did not know any way around this problem, and went so far as
to conjecture (incorrectly) that any sequential logic circuits (i.e., circuits containing
feedback loops) would require dissipation.

In the meantime, some fully reversible circuit techniques were discovered inde-
pendently by nanotechnology enthusiasts Hall [79, 80] and Merkle [122, 123, 125].
However, Merkle did not discuss how to implement sequential circuits, and Hall’s
technique was essentially non-sequential, and thus algorithmically inefficient. It re-
quired saving all intermediate results in hardware, using as many clock rails as there
were stages in the computation, then reversing the whole process to recover energy
before beginning the next sequential stage. In between stages, an irreversible write
of the results of the previous stage was required.

Fully adiabatic CMOS techniques. The first adiabatic circuit technique to put
together all the key elements needed for fully universal adiabatic computing was the
CRL (“Charge Recovery Logic”) technique of Younis and Knight, developed in our
research group in 1993 [192]. Like the original Fredkin-Toffoli technique, CRL could
implement arbitrary sequential logic. Like Seitz’s technique, CRL took advantage of
an off-chip resonant element. Like the Koller-Athas technique, it did not require fine
tuning of the circuit elements. Putting together these three elements, the Younis-
Knight technique provided the first practically implementable circuit style capable of
reliable, asymptotically reversible operation.

The initial version of CRL was somewhat baroque, but it was later refined to
another version (called SCRL, for “split-level CRL”) that was relatively clean and
simple [193, 191, 89]. SCRL was used as the basis for all of the reversible circuit
design work that we will describe later in this chapter. In section 7.5, we review
SCRL in detail.

Recent adiabatic circuits research. Following 1993, there has been a small ex-
plosion of literature on and relating to adiabatic circuits of various types. The litera-
ture has become too large to review in detail here, but for bibliographical complete-
ness, we include a sampling of some relevant citations: [5, 44, 93, 83, 154, 153, 94,
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157, 171, 6, 4].

Patents on adiabatic circuits Additionally, a search for recent patents relating to
adiabatic and reversible computing turned up the following patents from 1995 through
1997: [30, 48, 61, 62, 63, 89, 125, 131, 142, 190, 159]. Most of these patents were
assigned to large organizations such as IBM, MIT, AT&T, Motorola, and Xerox.

7.3 A comment on terminology

We’d like to pause briefly here for a comment on the term “adiabatic circuits” itself.
Originally in thermodynamics, the word adiabatic is an adjective literally meaning
“without flow of heat” into or out of the system (cf. [143], §18-5, p. 352). So, for
example, one way to adiabatically compress a gas would be to compress it inside an
well-insulated chamber so that the heat produced cannot escape. Such a compression
can be thermodynamically reversible: the gas can be allowed to adiabatically re-
expand, pushing back against the piston that compressed it while cooling, and the
work that was originally applied to compress the gas can be recovered.

As a result of its frequent usage in such contexts, the term “adiabatic” in applied
physics has gradually evolved to the point where it is frequently used to refer not to
the lack of heat flow precisely, but rather to the overall thermodynamic reversibility
(or near-reversibility) of a process. Any process that is thermodynamically reversible
(at least in the low-speed limit) has come to acquire the moniker “adiabatic.”

Note that this new usage is completely orthogonal to the literal meaning of adia-
batic, “no heat flow.” A process can involve no heat flow into or out of the system,
yet be thermodynamically irreversible: for example, when a partition is removed to
allow two different gases originally separated in different chambers to mix together.
Conversely, a process can involve heat flow, yet be reversible: for example, if the
heat is contained within an insulated box which is physically moved via a reversible
mechanism out of the region of space identified as “the system.”

A more accurate term for thermodynamically reversible processes might be isen-
tropic (literally, “with the same entropy”), since thermodynamically reversible pro-
cesses are, by definition, those processes that generate no new entropy. However,
even this term is not precisely applicable to the circuits referred to as “adiabatic
circuits,” because the circuits are not perfectly isentropic except in the limit of zero
clock frequency and low temperature (to stem the flow of leakage currents). The
phrase “asymptotically isentropic” would therefore be a bit more accurate.

However, some of the circuits that have been referred to as “adiabatic” are not
even asymptotically isentropic, due to the use of diodes with a built-in voltage drop.

Essentially, the term “adiabatic circuit” is so ill-conceived, and so polluted with
inaccurate and inconsistent usage that we wish that it could be dropped altogether. To
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avoid confusion, we would like to advocate the adoption of the following alternative,
more accurate lexicon:

• energy recovery circuits (ER circuits) — These are circuits that are designed to
recover a substantial portion (but not necessarily all) of the energy invested in
logic signals (e.g. CV 2 static energy). This could include diode approaches.

• asymptotically isentropic circuits (AI circuits) — These are ER circuits that, in
some appropriate limit (such as low speed and/or low temperature) can generate
asymptotically zero entropy per operation. Example: SCRL.

• time-proportionally reversible circuits (TPR circuits) — AI circuits in which
entropy generation per operation is approximately inversely proportional to the
length of time over which operations are performed. Example: SCRL when
operated in a regime where leakage currents are small.

• ballistic circuits — Hypothetical TPR circuits in which the entropy coefficient
is so low that the entropy generation per operation is zero for all practical pur-
poses, even when the circuit is running at its maximum rate. Superconducting
technologies would probably be required for this.

However, abolishing an established bit of terminology is, in general, a difficult
thing; it confuses people who are accustomed to the old terminology, and complicates
keyword searches for material on a given topic. Therefore, despite our academic
objections, we bend to popular usage and continue to use the term “adiabatic” when
we are referring generally to circuits of any of the above types. When we wish to be
more precise than this, we will use one of our more precise terms.

7.4 Basic principles of adiabatic circuits

The core insight behind all adiabatic circuits is that the ∼ CV 2 minimum dissipation
in ordinary switching circuits is due primarily to the fact that such circuits charge a
node by connecting it to a constant voltage power supply (cf. the discussion in §7.1.1.1,
p. 150).

Constant current sources. One alternative means that one might think of for
charging up a capacitive load is to instead use a constant current power supply,
operating at some appropriate current over some desired length of time. See figure 7.3.
One may assume that the charging pathway has some effective resistance R.

We can analyze the dissipation in this case as follows. Let C be the load capaci-
tance, V the voltage swing, R the resistance in the charging pathway, and t the time
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Q = CV

R
I = Q/t

Figure 7.3: Charging a node to voltage V via a constant current over a time t.
Compare with fig. 7.2. In this case, the dissipation is not 1

2
CV 2, but rather CV 2 RC

t
,

which becomes arbitrarily small as the charging time t is increased.

we wish to take to charge the node. Then the charge delivered is Q = CV , the current
should be I = Q/t, and the energy dissipated in the circuit is

Ediss =

∫
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∫
i2R dτ = I2Rt =
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Rt

=
Q2

t
R =

(CV )2
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.

Note that this dissipation scales down proportionally as the charging time in-
creases. Therefore this particular charging process is an example of what we call a
time-proportionately reversible process.

Voltage ramps. Can this constant-current procedure be used when charging nodes
in a CMOS logic circuit? Well, it can at least be closely approximated, by using
a turned-on transistor in place of the resistor, and using a power supply with a
linear voltage ramp in place of the constant current source. (See figure 7.4.) An
exact analysis of the energy dissipation in this circuit is more complex, but it can
be shown to approach that of the constant-current circuit very closely when t À
RC. At the opposite extreme, when t ¿ RC, the dissipation approaches that of an
ordinary constant-supply-voltage switching circuit as in §7.1.1.1. See fig. 7.5, and see
Younis [191] for a more detailed discussion.

The same basic technique can also be used to discharge a logic node, with the
supply voltage ramping the other way, from the logic level V back down to 0.

Note however that these low-dissipation characteristics are only maintained as
long as we charge and discharge all nodes only using this technique. If, on the other
hand we ever turn on a transistor when there is a voltage difference across it, there
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Figure 7.4: Compare with figure 7.3. Instead of an ideal current source, we have
power supply that provides a voltage signal φ that ramps up from 0 to V over a
time t. Instead of an ideal resistor, we have a turned-on CMOS transistor, with gate
voltage biased at some value VG > V + VT that allows the transistor to conduct well
over the entire voltage range from 0 to V , with an approximate effective resistance of
R. For t À RC, Ediss ≈ CV 2 RC

t
; for t ¿ RC, Ediss ≈ 1

2
CV 2.
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Figure 7.5: Voltage curves for slow and fast adiabatic charging using a voltage ramp.
If the supply signal φ ramps up much faster than the characteristic RC time of
the circuit, then the load voltage VL will lag behind the ramp and approach the
supply level in a characteristic exponential-decay curve. When φ reaches its peak,
the voltage difference across the transistor is still almost the full swing V , leading to
the dissipation being almost 1

2
CV 2.

On the other hand, if φ ramps up very slowly, VL will track it, with only a small
lag VDS that is determined by the rise time, the transistor’s characteristic transcon-
ductance k, and the drive voltage Vdr = VG − VT.
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will be a 1
2
CV 2 dissipation, as in any switching circuit. So in a fully adiabatic logic

circuit, we need the rule that a transistor can only be turned on if is no voltage
difference across it. In truly asymptotically isentropic circuits, this constraint leads
to the consequence that logical information cannot be thrown away—since essentially,
in these circuits, the only operation that throws away information is to dissipatively
connect a node to another one at a different voltage level.

One might object that in this technique we are merely moving the dissipation from
inside the circuit to the power supply which must generate this swinging logic signal.
But, as we will see later, there are a number of ways to generate the necessary signal
using a resonant element, in which circuit energy oscillates back and forth between
the on-chip capacitance and an off-chip inductance. If the resonant frequency is low
and the off-chip elements have a high quality index, the off-chip elements need not
dissipate significant energy either.

The above discussion outlines the basic principles of adiabatic circuits, but does not
get into the details of how build complex logic circuits using those principles. There
are now a number of different adiabatic logic techniques available for doing this. In
the next section we review our technique of choice: SCRL.

7.5 The SCRL technique

As we said earlier, SCRL was the first adiabatic circuit technique to simultaneously
be capable of (1) asymptotically approaching true zero energy per operation, (2)
being integrated on a large scale using standard CMOS process technology, and (3)
operating in pipelined, sequential fashion. In this section, we review in detail the
operation of SCRL, and show some new graphical depictions that we find helpful for
understanding its structure and operation.

7.5.1 Basic SCRL components

We start by reviewing the basic elements of which SCRL circuits are composed.
Note: The following description breaks down SCRL circuits into functional el-

ements in a slightly different way than in the original work of Younis and Knight
[193, 191]. We find our alternative decomposition a bit simpler to explain.

In our version, SCRL circuits are separated into two types of components: (1)
clock-driven generalized inverters, and (2) bidirectional latches.
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7.5.1.1 SCRL clocked generalized inverters

A clocked SCRL inverter is illustrated in figure 7.6. It is very simple, composed
merely of two MOSFET transistors, one n-type and one p-type. In fact, it has exactly
the same internal structure as an inverter in ordinary static CMOS (see fig. 7.1 in
§7.1.1), but it is wired and used slightly differently. Rather than being connected to
constant-voltage supply rails, the FETs are connected to a swinging, clocked power
supply. The n-FET is connected to a clock-supply signal φ that swings between 0
and Vdd/2—that is, half of the full signal voltage—with a particular waveform. The
p-FET is connected to a clock φ that swings between Vdd/2 and Vdd. We assume
VTn ≈ VTp, and the voltage swing Vdd itself is chosen to be more than twice VT, so
that the transistors will conduct bi-directionally through the entire swing range of
the clocks to which they are respectively connected.

The operation of the device is as follows. Initially, all circuit nodes are at the
“neutral” level Vdd/2, representing “no information.” Being enhancement-mode de-
vices, both transistors are nonconducting at this time. Then, the input voltage Vin

swings to a level 0 or Vdd, representing binary 0 or 1, as in conventional logic. At this
point, one of the two transistors becomes conducting (n-FET on input 1, p-FET on
input 0), but no current flows because φ = Vout = φ.

Next, the rails φ and φ swing simultaneously, in a roughly linear ramp taking
some non-infinitesimal rise time tr, to their respective extremes. (They are said to
“split,”, thus the S in SCRL.) The output level Vout will track the rail to which it
is connected. At this point the output is considered valid, and its value can, for
example, be sampled by a latch (which we will get to in a moment) for later use. In
the meantime, Vin must remain (roughly) constant at its 0 or 1 logic level—this is
crucial for preventing dissipation.

At some point after the subsequent stages have finished using the Vout signal, the
supply rails are brought back together to Vdd/2. Again, Vout tracks the rail to which
it has remained connected this whole time. Then, the input Vin is free to return to
the neutral level, turning off both transistors again.

Of course, as in ordinary static CMOS, this SCRL inverter structure can be gen-
eralized to compute any n-input inverting logic function, such as NAND or NOR,
by simply replacing the p-FET and n-FET with complementary networks of p-FETs
and n-FETs, respectively. (See figure 7.7.) The operation of such gates is essentially
the same as that of the simple inverter. All internal nodes are initially at Vdd/2, and
when the rails are split, all nodes that are connected to one or the other rail track
it, at least up to a threshold drop away from the extreme point. (No node can be
connected to both rails if the networks are properly complementary.) In general, all
n inputs must be held constant during the entire time that the rails are non-neutral.
Then, when the rails re-merge, all nodes that were pulled away from the neutral level
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Figure 7.6: An SCRL inverter. It has the same structure as an ordinary static CMOS
inverter (fig. 7.1a), except that the supply rails are tied to swinging clock signals rather
than to constant-voltage supplies, and there are various additional assumptions and
constraints on circuit operation. In between cycles, all nodes are at Vdd/2. The input
Vin is assumed to swing to either 0 or Vdd (representing a logic 0 or 1 as usual) during
some period, and for a shorter period enclosed within this, the clock rails φ and
its logical inverse φ swing at a constant rate from Vdd/2 to Vdd and 0, respectively,
remain in this state for a time, and then return smoothly to the neutral level Vdd/2.
(See the timing diagram in the bottom half of the figure.) During this time, the
output is valid and can be sampled by a latch (fig. 7.8) to be used in further stages
of processing. Note that the input must not change while there is a voltage across
either transistor: this is the key property that avoids CV 2 dissipation. On the right
is an icon convenient for representing this element.
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Figure 7.7: Generalized SCRL inverter. As in ordinary static CMOS, the SCRL
inverter can be generalized to compute any inverting logic function f (e.g., NAND,
NOR) of n inputs by simply replacing the single p-FET with an arbitrary pull-up
network of p-FETs, and the n-FET with the complementary network of n-FETs. As in
ordinary CMOS, it is best not to make the logic gates have too many inputs, due to the
impact on conductance if there are many transistors in series in the pullup/pulldown
network. Lower conductance decreases speed in static CMOS, and in SCRL, it also
increases the entropy coefficient and the minimum energy dissipation. To imitate the
conductance of an inverter, the transistors in a multi-input gate can be made wider,
but this of course consumes more wafer surface area.

are gradually pulled back.
A warning: Associated with internal nodes in the pullup/pulldown networks of a

generalized SCRL inverter, there may be a component of dissipation that does not
scale down with frequency. Fortunately, as we will see in §7.6.4, this problem is easy
to fix.

7.5.1.2 SCRL bidirectional latches

Given only generalized SCRL inverters, and no other components, one could poten-
tially proceed to create combinational logic of any desired depth, by using a different
pair of clock signals for each level of logic, and having the clocks for earlier stages
split before the clocks for the later stages do, and re-merge after the clocks for the
later stages do. This would be similar to the “retractile cascade” approach of Hall
[79, 80]. But the problems with this simple approach are that (1) it would need as
many pairs of clock rails as there are stages in the logic, and (2) the earlier stages
must remain idle while the later stages are computing, and therefore there can be no
pipelining, and no sequential circuits with feedback.

To solve these problems, SCRL introduces an additional component in between
logic stages, something we call a “bidirectional latch” (fig. 7.8). Through a “forward”
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Figure 7.8: SCRL bidirectional latch. This special circuit element, composed of 2
CMOS pass gates with appropriately clocked controls, is essential for being able to
pipeline SCRL logic stages and to make arbitrary sequential (as opposed to combina-
tional) circuits of any depth using only a constant number of clock phases. An icon
for the element is shown on the upper right.

Initially, nodes inF, inR, and out are all neutral. The “forward” F pass gate turns
on, and the “reverse” R pass gate turns off. Input signal inF goes valid with a logic
value A, driving the output line through gate F. Before the input signal goes neutral,
gate F closes, so that the output signal will continue to remain valid after the input
goes neutral. Meanwhile, a later stage of the computation is reconstructing the value
A, and presents it again on input inR. After this happens, gate R opens, tying the
output node to inR which is at the same level, so there is no dissipation. Then inR

goes neutral gradually, drawing out back to the neutral level. The latch is now ready
to process another input on inF.

Depending on the relative timing and the presence/absence of overlap of the inF

and inR signals, the latch may operate in either a dynamic mode (bottom left), or in
a static mode (bottom right).
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pass gate “F,” the latch is adiabatically drawn from its initial neutral level to the
logic level inF produced by the preceding logic stage. The pass gate shuts off, and
then the latch holds its value, allowing the preceding stage to reset and prepare
to accept a new input, while in the meantime the succeeding logic stage uses the
value held on the latch as its own input for further computations. But after the
succeeding logic stage finishes, there is a small problem: How do we clear the latch
to accept a new input from the preceding stage? We cannot just dump the latch to
a constant voltage because that would be irreversible and dissipative. Instead, the
latch must be discharged adiabatically by a controlling component that knows what
level to discharge it from. The preceding logic stage no longer knows what value the
latch is holding, because it has already gone on to reset itself and process new data
(allowing this was the whole point of the latch). However, the key insight is that the
succeeding logic stage now contains information that depends on the latched value.
If that succeeding logic stage has computed some invertible function of its inputs,
then the value in the latch can be reconstructed based on the information that the
succeeding stage has calculated, and using this knowledge, the latch can be reversibly
cleared.

To provide this adiabatic “unwriting” functionality, the latch provides a second
write port, in the form of a second “reverse” pass gate “R”. Logic in the succeeding
stage presents a reconstructed copy of the latched value on input inR, then the reverse
pass gate opens, and is drawn back to the neutral level through pass gate R. Also, the
latch provides a second “read port” in the form of a wire of the output node leading
back to the preceding stage, which uses this input to reconstruct and clear the values
stored in the preceding level of latches.

Two different alternative timing disciplines for these latches are shown in the
bottom half of fig. 7.8. Note that the pass gates are turned off and on adiabatically
by gradually-swinging ramps, and that they are never turned on when there is a
voltage across them.

7.5.2 SCRL pipelines

Putting it all together, figure 7.9 shows the structure of a complete SCRL pipeline.
The arrows in this figure represent many parallel wires, each function block represents
a parallel set of logic gates all using the same clock, and each bidirectional-latch icon
represents a parallel set of bidirectional latches, all on the same clock. The direction
of the arrows shows the direction of information flow. As you can see, each set of
“forward” logic gates that computes a logic function is paired with a corresponding
set of gates, pointing the other way, which is used to uncompute the latched values
from the previous logic stage. Each forward or reverse stage, and each latch, operates
on a different set of clock signals. However, after some small number of stages, the
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earlier clock signals may be used again. This allows arbitrary sequential circuits with
feedback loops (such as CPUs) to be constructed.

Normally, each logic stage can only compute an inverting function, and so there
is a potential difficulty that if one initially has a value but not its complement, one
cannot, in a single later stage, have access both to the value and its complement.
This difficulty can be fixed by having a 2-level retractile cascade within each stage
of logic, as illustrated in the bottom part of fig. 7.9. An alternative way to fix the
problem would be to maintain a dual-rail signaling discipline, with complements of
every logic value always available, but this would in general require more area.

7.5.3 Timing disciplines

There are a variety of alternative timing disciplines in SCRL. These vary in terms
of the number of clock phases, and whether they are dynamic or fully static. The
simplest fully-static discipline is 3-phase; the timing diagram for this is illustrated in
fig. 7.10. If one wishes to permit dynamic operation (floating nodes), 2 phases will
suffice.

We used 3-phase SCRL in our designs, because when running at very slow clock
speeds, dynamic circuits would have been vulnerable to incorrect functionality, be-
cause (at normal temperatures) the charge stored capacitively on a dynamic node may
leak out over long periods. With fully static circuits, we could be more confident that
functionality would remain correct even when running at the very slow speeds that
minimize energy dissipation, speeds at which the switching currents become nearly
as small as the leakage currents.

For more detailed descriptions of the various timing disciplines see Younis 1994
[191].

7.6 SCRL circuit analyses

In this section, we carry through a variety of CMOS circuit analyses in order to better
understand interesting aspects of SCRL’s scaling behavior. First, §7.6.1 presents a
simplified model of SCRL that we will use in our analyses. Then in §7.6.2, we derive
an expression for the switching energy dissipation in SCRL in any given technology,
in terms of raw characteristics of the technology, such as the threshold voltages and
transconductance parameters of its transistors. In §7.6.3, we extend this by taking
leakage currents into account, and derive analytical expressions showing how to ad-
just speed and threshold voltage to minimize total dissipation in SCRL at a given
temperature. Those analyses are based on a fairly simple model of CMOS transistors,
which becomes somewhat inaccurate in very small devices.
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Figure 7.9: SCRL pipeline. A pipeline of arbitrary sequential logic in SCRL can be
constructed by chaining together generalized inverters and bidirectional latching in
the following way. A parallel set of generalized inverters is grouped together into
a multi-input, multi-output function f1 which must be invertible, and this block is
paired with a corresponding block that computes the inverse function f−1. The two
blocks are powered by two clock phases φ1F and φ1R that are offset relative to each
other. Then comes a bidirectional latch P1 and another pair of functional blocks.

The basic operational cycle is that f1 computes and its output X1 is latched onto
P1. Then f2 computes and its output X2 is latched onto P2, then f−1

2 computes X1

from X2, and “unlatches” P1 back to the neutral level. Now f1 can process a new
input and store the result Y1 on P1, at the same time that a further stage f3 is using
the value computed from the earlier value X1. In this way, waves of information
propagate down the pipeline as they are being processed. The pipeline can even loop
back on itself, as long as phases are matched properly. If the clock timing is inverted,
information flows in the opposite direction.

The bottom part of the figure illustrates how non-inverting logic functions can be
computed in a single SCRL stage by the use of a second intermediate level of logic.
The second level uses a clock whose active period is enclosed within that of the first
level’s clock, like a 2-level version of one of Hall’s retractile cascades. With 2 levels
per stage in an SCRL pipeline, one can do universal reversible sequential logic.
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Figure 7.10: Full timing diagram for 3-phase, non-inverting, static SCRL. This was
the timing discipline used in our designs. On the right is a vertical representation of
a sequence of 3 pipeline stages, using a slightly different notation from that presented
in figs. 7.6–7.8: the squares are bidirectional latches, and the triangles are generalized
SCRL inverters. Each element’s clock is shown exactly to its left on the timing
diagram. Time goes from left to right on the timing diagram, and information flows
from top to bottom in the pipeline. This scheme requires 16 clock signals and their
inverses, and 24 distinct non-overlapping transition steps per complete clock period.
The shaded regions indicate times when valid logic values are present on the various
latches.
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CL

Vdd

VL
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+
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φ

0

2Vdd
φ

tr0

Figure 7.11: Simplified circuit model for SCRL analysis. Compare with figs. 7.6
(p. 176) through 7.8 (p. 178). In the simple model, we only look at a single transition,
and we use a single transistor to represent the path through an arbitrary pulldown
network and a transmission gate in a latch.

Following this, section 7.6.4 reveals a case in ordinary SCRL where the dissipation
seems to be larger than in the ideal model, and shows a way to fix it. Then later,
in §7.9, we will talk about some of the long-term limits involved in scaling CMOS
and SCRL technology to smaller length scales.

7.6.1 A simple SCRL model for analysis

Switching energy is dissipated in an SCRL circuit whenever the voltages on some logic
gate’s power supply rails φ, φ change. Energy is dissipated within the transistors of
the gate’s pullup/pulldown networks, and also in the transistors of the transmission
gate in the bidirectional latch attached to the gate’s output. However, to simplify the
analysis, we will lump together all the turned-on transistors within which dissipation
occurs during a transition, and treat them as if they were a single transistor, as in
figure 7.11.

We can consider a number of different cases for switching. A gate’s output node
voltage may be switched either through the gate’s pulldown network of n-FETs or
through its pullup network of p-FETs. And the switching activity may either be to
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clear the output or to set the output. When an output node is cleared, its voltage
goes from a valid level (0 or Vdd) to the neutral value Vdd/2; when it is set, its value
goes from Vdd/2 to 0 or Vdd.

However, all these cases are symmetrically similar to each other with regards to
how their energy dissipation scales with speed, threshold voltage, and temperature.
Therefore, rather than analyzing them all separately, we will just consider one case:
where the voltage VL on the load capacitance CL on the output node is charged up
from 0V to Vdd/2, through a turned-on n-FET which represents the gate’s pull-down
network and N pass transistor.

In our analysis, we will ignore any dissipation that occurs during switching in
transistors along paths that do not actually connect all the way through to the gate’s
output. For example, we ignore energy dissipation that occurs when switching with
the transmission gate turned off. As another example, referring forward to the NAND
gate in figure 7.15 (p. 200), we can see that if input A is high and input B is low,
then transistor T3 will be turned on, and so there will be some dissipation through it,
even though it does not connect through to the output. Ignoring such dissipations is
a simplification that is fairly well justified, because these dissipations involve driving
relatively small capacitances compared to the external load. In adiabatic charging,
there is a quadratic dependence of dissipation on the capacitance being driven. So
the total dissipation we are ignoring should not be large, compared to the dissipation
that we are including.

We assume that the p-FETs and n-FETs in the SCRL circuit have been sized so
that their gain factors are equal, kn = kp = k (matching the rise/fall delay times),
and we assume that the p-FET and n-FET threshold voltages are also equal, Vt0n =
Vt0p = Vt0, so that the analysis of the dissipation through the pulldown network comes
out the same for the pullup network.

7.6.2 Switching losses as a function of technology parameters

To determine the energy dissipation of our model circuit (fig. 7.11), we would like
to know the voltage on the load at each moment during the transition, VL(t), be-
cause this would tell us the instantaneous drain-to-source voltage VDS(t) across the
transistor, which we could plug into the device’s current-voltage relation to give us
the instantaneous current I(t), and thence the instantaneous power, which we could
integrate over time to find the total energy dissipation of the transition Etr:

Etr =

∫ ∞

t=0

P (t)dt (7.5)

=

∫ ∞

t=0

I(t)VDS(t)dt (7.6)
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Unfortunately, VL(t) itself is determined by integrating the current I(t) flowing
into the load capacitance CL, so that determining closed-form formulas for I(t) and
VDS(t) requires solving a tricky differential equation, which we will not attempt here.
Instead, we will approximate the energy dissipation by treating the limiting case
where the supply rise time tr is very large compared to the characteristic RC time
constant of the circuit, where R is the effective resistance of the turned-on transistor.
Cases where the rise time is comparable to RC will not be adequately addressed by
the below analysis.

To understand this limiting case, refer back to the diagrams in figure 7.5 (p. 173).
Diagram (a) shows qualitatively what would happen if the supply rail were to rise
very quickly compared to RC. Essentially the output voltage would rise at an
exponentially-decaying rate and asymptotically approach the supply voltage, just as
happens in a regular CMOS inverter whose input switches very quickly. The energy
dissipation Efast for this fast-switching case is well known to be, as in §7.1.1.1, p. 150,

Efast =
1

2
CL(∆V )2, (7.7)

which in our case is (with ∆V = Vdd/2)

Efast =
1

8
CLV 2

dd. (7.8)

On the other hand, figure 7.5(b) shows what happens in the case which we will
now analyze, where the supply rail rises very slowly. The output voltage VL will
initially rise slowly, but as the voltage drop VDS across the transistor increases, the
current I(t) through the transistor will also rise, until an equilibrium is reached at
which point VL is rising at the same rate as the input voltage, but lagging behind it
by a small amount VDS = IR. Then, when the input voltage stops rising, the output
voltage will finish the approach to Vdd/2 in asymptotic fashion, with an RC time
constant.

We note that if the input rises slowly, VDS is always small compared to Vdd/2,
and so VL(t) ≈ φ(t). During the transition, dφ/dt is constant, and so the current
I = CL

dVL

dt
through the transistor will be approximately constant as well. I will be the

quotient of the total charge Q = CLVdd/2 that is transfered to the load capacitance,
divided by the supply rail rise time tr, since that is the time during which almost all
of this charge is transfered.

I(t) ≈ I = Q/tr =
CLVdd/2

tr
(7.9)

Now, armed with this constant current I, we can use the standard MOSFET
triode-regime current-voltage formula (cf. [139], §2.3.2, p. 44, eq. 2.47) to derive a
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closed form expression for VDS. The reason we use the triode-regime rather than
the saturation-regime formula is that turned-on transistors in SCRL are never in
saturation.2

In the following, VGS is the gate-to-source voltage, and VT the threshold voltage.
Everything except k (the transistor’s gain factor) is here implicitly a function of t.

I = k

(
(VGS − VT)VDS − V 2

DS

2

)
(7.10)

Let’s write VGS − VT as Vdr (drive voltage) for conciseness.

I = k

(
VdrVDS − V 2

DS

2

)
(7.11)

We can easily solve this equation for VDS, using the quadratic formula.

I

k
= VdrVDS − V 2

DS

2
(7.12)

1

2
V 2

DS − VdrVDS +
I

k
= 0 (7.13)

VDS =
Vdr ±

√
(−Vdr)2 − 4

(
1
2

) (
I
k

)

2
(

1
2

)

(7.14)

= Vdr −
√

V 2
dr − 2

I

k
(7.15)

Now, let us make a further simplification of eq. 7.15. We observe that our earlier
approximation, that I(t) was constant, assumed that tr is large, and therefore that
I is small (from eq. 7.9). With I ¿ kV 2

dr, this will allow us to approximate eq. 7.15
as follows. We observe that VDS will be approximately linear in I for these small Is.

2This formula may not be appropriate for turned-on transistors if Vdd is about as small as the
thermal voltage φT = kBT/qe, since then even turned-on transistors may only be in moderate or
weak inversion, and the current may scale exponentially with VGS rather than according to the triode
formula. This is one area where the present analysis needs refinement.
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VDS will pass through 0 at I = 0, and the slope is given by dVDS/dI:

dVDS

dI
=

d

dI

(
Vdr −

√
V 2

dr − 2
I

k

)
(7.16)

= −1

2

(
V 2

dr − 2
I

k

)− 1
2
(−2

k

)

(7.17)

=
1

k
√

V 2
dr − 2 I

k

(7.18)

≈ 1

k
√

V 2
dr

(for small I) (7.19)

=
1

kVdr

. (7.20)

Given this slope, and the fact that VDS = 0 when I = 0, we can therefore simplify
eq. 7.15 to the very concise form

VDS ≈ I/kVdr. (7.21)

Now, the drive voltage Vdr is itself actually time-dependent, because it is defined
in terms of the gate-to-source voltage VGS, and although the gate voltage is constant,
the transistor source voltage changes linearly over time tr, from 0 to Vdd/2, following
φ(t).

Vdr(t) ≡ VGS(t)− VT(t) (7.22)

= [VG − VS(t)]− VT(t) (7.23)

=

(
Vdd − Vdd

2

t

tr

)
− VT(t)

(7.24)

= (Vdd − VT(t))− Vdd

2

t

tr
(7.25)

Moreover, VT(t) as well will vary along with the supply voltage, due to the changing
body effect as the source voltage changes. For example, when the supply voltage
is at Vdd/2, VT might be perhaps (as a roughly estimated typical value) 50% above
the minimum value VT0 that it has when φ = 0V . Using the correct formulas for
VGS and VT, the energy integral in equation 7.6 would still a bit too complicated to
conveniently evaluate, although if we really cared to do it, we could.
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But instead, let’s just make the rough approximation that Vdr(t) is constant, and
is equal to

Vdr =
3

4
Vdd − bavgVT0, (7.26)

taking the average of the initial (Vdd) and final (Vdd/2) values of VGS(t), with an
average body-effect factor bavg = VT/VT0 for a typical body-effected VT. The reason
for expressing the body-effected threshold VT as a multiple of VT0 is that it will later
allow us to derive a very simple expression for the switching energy.

Now, with our approximate constant expressions for I (eq. 7.9) and Vdr (eq. 7.26),
we can consider VDS as given by eq. 7.21 to be roughly constant, which allows us
finally to approximate the transition energy integral (eq. 7.6) and derive a fairly
simple expression for Etr in the slow-transition limiting case. We set the upper bound
on the integral to be time tr rather than ∞, in observance of the fact that in the slow-
transition limit, most of the energy dissipation occurs by time tr.

Etr ≈
∫ tr

t=0

I(t)VDS(t)dt (7.27)

≈ IVDStr (7.28)

= I

(
I

kVdr

)
tr (7.29)

=
I2tr
kVdr

(7.30)

=

(
CLVdd/2

tr

)2

tr

kVdr

(7.31)

=
C2

LV 2
dd

4trkVdr

(7.32)

Now, we would like to take another simplifying step, by assuming that our max-
imum power supply voltage Vdd is being scaled proportionately to VT0, and is equal
to

Vdd = nddVT0 (7.33)

where ndd indicates the scaling factor used for determining Vdd/VT0. SCRL will not
work properly if Vdd is too close to the threshold voltage VT0. A reasonable value for
ndd for SCRL might be 4. Anyway, given eqs. 7.33 and 7.26, we can substitute Vdd

and Vdr in eq. 7.32 to re-express it in terms of a single voltage parameter VT0, the
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zero-bias threshold voltage:

Etr =
C2

L(nddVT0)
2

4trk
(

3
4
nddVT0 − bavgVT0

) (7.34)

=
C2

Ln2
ddV

2
T0

4trk
(

3
4
ndd − bavg

)
VT0

(7.35)

=

(
n2

dd

3ndd − 4bavg

)
C2

LVT0

trk
, (7.36)

and let us finally just make this a bit more concise by renaming the factor containing
ndd as just

cdd ≡ n2
dd/(3ndd − 4bavg). (7.37)

To illustrate what a typical value of cdd might be, if ndd = 4 and bavg = 1.25 (i.e.,
average body-effected threshold 25% above VT0), then cdd ≈ 1.45.

Anyway, we can now write the transition energy formula (7.36) as just

Etr = cdd
C2

LVT0

trk
. (7.38)

There are a couple of very interesting things to note about equation 7.38, when
compared to equations like eq. 7.7 that govern the dissipation in fast SCRL transitions
or ordinary CMOS transitions.

The first thing is that the transition energy in eq. 7.38 scales in proportion to the
square of the load capacitance, in contrast to traditional CMOS where the CV 2 dis-
sipation scales only linearly with capacitance. The reason is that higher capacitance
means higher currents through our transistors, and thus a larger voltage drop across
them, in addition to greater charge to move across that drop. So in designing SCRL
circuits we must be even more careful to get load capacitances small than we are in
regular CMOS. Unless most of the capacitance is in the interconnects, minimum-sized
transistors are favored. If most capacitance is in transistor gates and PN junctions,
then increasing transistor widths increases energy dissipation roughly linearly (not
quadratically, because k is scaled too). The flip side of this coin is that SCRL ben-
efits greatly from improved process technologies that allow smaller, less capacitive
transistors.

The other very interesting point is that given a constant ndd ratio between supply
and threshold voltages, and everything else but VT0 also constant, the switching
energy of SCRL circuits decreases only linearly with decreasing threshold voltage, in
contrast to the quadratic drop of traditional CMOS due to its CV 2 switching energy.
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Intuitively, the reason is because as voltages go down in SCRL, the effective on-
resistance of our transistors increases, so the voltage drop across the transistors during
transitions is increased, causing higher dissipation. In standard CMOS, the voltage
drop across the transistors during switching is already as high as possible, and so
making them more resistive doesn’t affect the dissipation at all.

Equation 7.38 is interesting and useful on its own, because it allows us to predict
the switching energy of SCRL circuits constructed in particular process technologies,
and helps guide us in designing these circuits. But now, let’s go a little further, and
use eq. 7.38 as part of a more sophisticated analysis of SCRL energy dissipation that
includes the effects of leakage.

7.6.3 Minimizing the sum of switching and leakage energy

In this section we explore how to minimize the energy dissipation of SCRL when
taking leakage into account. First, in §7.6.3.1 we see how to minimize energy dissi-
pation when the speed of operation is adjustable but all other technology parameters
are held fixed. Then, in §7.6.3.2 we will see how to minimize dissipation when the
choice of device threshold voltage (and supply voltage) is also adjustable, but other
parameters such as device geometry and operating temperature are fixed.

7.6.3.1 Adjusting speed to minimize dissipation

One often-cited characteristic of the switching energy of adiabatic circuits, based on
equations like eq. 7.38, is that it decreases linearly with increasing transition time tr,
leading to the conclusion that the energy per operation of SCRL circuits can be made
arbitrarily small by just making the transition time larger. However, given current
device technologies, this statement is somewhat misleading, because MOS transistors
also have a leakage power dissipation that is always present, and thus contributes a
term to total energy per operation that increases linearly with increasing time per
operation. This means that there is some speed at which the energy per operation of
an SCRL circuit is minimized; at faster speeds, the switching energy dominates, and
at lower speeds, the leakage energy dominates. In this section we derive a formula
for the optimal rise time for minimizing total energy per operation.

Let us consider what happens to a signal wire in an SCRL circuit during a complete
cycle, from the time it first holds one valid value to the time it first holds the next.
During this time there will be two complete transitions on the wire: one from the
old value to Vdd/2, the other from Vdd/2 to the new value. The total time for the
complete cycle depends on the number of phases in the particular SCRL clocking
discipline in question. A complete cycle of the 2-phase SCRL described by Younis
[191] is the length of 18 transitions; 3-phase and 4-phase SCRL take 24 transitions
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(cf. fig. 7.10, p. 182), etc. These numbers are probably not minimal. Anyway, let nt

be the number of transitions per cycle; the total cycle time is then T = nttr.
Now we can write down an expression for the total energy dissipation associated

with this signal wire per complete cycle, including terms for both the transition energy
and the leakage energy, where the leakage energy is expressed in terms of Pleak, the
average leakage power associated with the signal wire:

Etot = 2Etr + PleakT (7.39)

= 2cdd
C2

LVT0

trk
+ Pleaknttr. (7.40)

where the multiplication by 2 comes from the above-mentioned fact that an SCRL
wire undergoes two transitions per cycle.

We want to find the tr that minimizes Etot. First, let us collapse everything except
tr into coefficients a and b:

a ≡ 2cddC
2
LVT0/k (7.41)

b ≡ Pleaknt (7.42)

Etot =
a

tr
+ btr. (7.43)

Figure 7.12 shows how the total energy in eq. 7.43 scales with tr, regardless of the
values of a and b. We can see that at very high values of tr, Etot is high because of
the high leakage energy, and at very low values of tr, Etot is high because of the high
switching energy. In between, there is a point where the total energy is minimized.

We can find a formula for the tr at this point; it’s just where the derivative of
eq. 7.43 equals zero, which turns out to be where the switching energy equals the
leakage energy:

d

dtr

(
a

tr
+ btr

)
= 0 (7.44)

− a

t2r
+ b = 0 (7.45)

tr =

√
a

b
=

√
2cddC2

LVT0

kPleaknt

(7.46)

tr =

√
2cdd

nt

· CL

√
VT0

kPleak

(7.47)
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Figure 7.12: How total energy dissipation per operation scales with ramp rise time
tr in SCRL, when leakage is significant. The increasing line is leakage energy, the
inversely declining curve is switching energy. Their sum is analytically proven to be
minimized when the two components are equal.

At this minimum-energy setting for tr, the total energy dissipation is:

Etot =
a

tr
+ btr (7.48)

Emin =
a√
a/b

+ b
√

a/b (7.49)

=

√
a2

a/b
+

√
b2a/b (7.50)

=
√

ab +
√

ab (note identical terms) (7.51)

= 2
√

ab (7.52)

= 2

√
2cddC2

LVT0

k
Pleaknt (7.53)

Emin =
(
2
√

2cddnt

)
CL

√
VT0Pleak

k
(7.54)

Looking at eq. 7.54, if we want the energy per operation of an SCRL circuit to
be as low as possible, we will want to first minimize the wiring capacitance and other
parasitic capacitances we need to drive. Then we’d want to maximize the gain factor
k of our transistors. However, if we try to increase k by making the transistors wider,
this also increases the capacitance, and the leakage power. So narrower transistors
are favored.
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Ideally we’d like to get a handle on minimum energy by adjusting the threshold
voltage, so as to minimize the quantity VT0Pleak in eq. 7.54. But choosing the optimal
VT0 is actually a bit tricky, since Pleak itself depends on VT0, in a way which we will
now analyze.

7.6.3.2 Adjusting voltages to minimize dissipation

In a single transistor across which there is a voltage drop of VDS = Vdd, which we will
later see suffices to model the leakage through all the transistors attached to a given
SCRL signal wire, the leakage power Pleak is given by

Pleak = IleakVdd (7.55)

= IleaknddVT0 (7.56)

and Ileak for transistors that are supposed to be “off” (VGS ≤ VT) is given by a
standard formula

Ileak = I0e
(VGS−VT)/((1+α)kBT/q) (7.57)

where I0 denotes the leakage current when the transistor is just barely on the edge of
being off (i.e., when VGS = VT). kB is Boltzmann’s constant, T is the absolute tem-
perature, q is the magnitude of the electron charge, and α is a technology-dependent
constant fudge factor, which is ideally 0 but in practice is perhaps closer to 1. This
factor is needed because real devices are found empirically to have a greater depen-
dence of leakage on temperature than is predicted by the theoretical ideal.

Now, the leakage in SCRL circuits is not really continuous, but fluctuates during
the SCRL cycle as different rails split and merge. In static versions of SCRL such as
Younis’s 3-phase clocking scheme, we can identify two types of leakage: (1) leakage
through the middle of a logic gate across a voltage drop of Vdd when the gate’s supply
rails are split, and (2) leakage through a turned-off pass transistor across a voltage
drop of Vdd/2. All these leakages occur through off devices that have a VGS of zero;
other off devices with VGS < 0 have exponentially less leakage, and so we ignore
them. During some transitions, there are also leakages across voltage drops smaller
than Vdd/2. Some of these happen when VGS < 0, and the others contribute small
amounts to the total leakage power.

One may carry out a careful analysis of leakage based on the timing diagram
of Younis’s 3-phase clocking cycle. We will not relate the analysis in detail here.
However, one finds that for each signal wire, there is leakage inside one of the logic
gates that drive that wire during 22

24
of each cycle, and leakage through a pass transistor

for about 19
24

of the cycle (this latter figure is adjusted to take into account the smaller
voltage drops that occur during transitions).
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Further, the I0 for the leakage inside logic gates may be different than the I0 for the
leakage through the pass transistors, depending on how the devices are sized relative
to each other, and also remembering that if a logic gate is not a simple inverter but
rather contains several parallel paths, there may be leakage through all of the paths.

However, all of these factors can incorporated into our definition of the effective I0

for the SCRL signal wire, as follows. Let I0G be the effective I0 in the pullup/pulldown
networks of our logic gates (taking into account the widths of devices and number of
parallel paths). Let I0P be the I0 through our pass transistors (taking into account
their widths). Then we just define the effective I0 for the single-transistor equivalent
model of the SCRL signal wire’s average leakage as

I0 = I0G
22

24
+ I0P

1

2
· 19

24
(7.58)

where the 1
2

compensates for the fact that the leakage through the pass transistors
involves a voltage drop of Vdd/2 rather than Vdd. This substitution is valid because
the other factor in eq. 7.57 (the exponential) doesn’t depend on the magnitude of the
VDS voltage drop or on which kind of leakage we are looking at, since VGS = 0 for all
the significant leakage.

We further note that almost all of the leakage takes place when VGS = 0 and
VSB = 0, so that at these times VT = VT0, and we can substitute VT0 for VT in
eq. 7.57. Further, for conciseness let’s define convenient notations for the thermal
voltage kBT/q with and without the (1 + α) fudge factor.

φT ≡ kBT/q (7.59)

φ′T ≡ (1 + α)φT (7.60)

Now we can re-express the leakage current as just

Ileak ≈ I0e
−VT0/φ′T . (7.61)

Although the above method for estimating Ileak was developed for the particular
case of static 3-phase SCRL, it is fairly clear that the same approach could be carried
out similarly for other SCRL clocking schemes as well, with appropriate modifications
to eq. 7.58. Remember, however, that in 2-phase SCRL, nodes are not always being
actively driven, and so high leakages can harm functionality as well as dissipating
power; therefore the analysis later in this section will probably not be appropriate for
dynamic 2-phase clocking.

Now that we’ve gotten Ileak expressed in terms of VT0, let’s merge eqs. 7.56 & 7.61
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back into our expression for Emin (eq. 7.54):

Emin =
(
2
√

2cddnt

)
CL

√
VT0Pleak

k
(7.62)

=
(
2
√

2cddnt

)
CL ·√

VT0(nddVT0)I0e−VT0/φ′T

k
(7.63)

=
(
2
√

2cddntndd

) ·

CLVT0

(√
I0

k

)
e−

1
2
VT0/φ′T (7.64)

To make this formula easier to work with, we’ll express the factor involving the
SCRL power and timing parameters ndd and nt as just s. Also, we note that since
I0 and k both scale roughly proportionally to transistor width, the voltage factor√

I0/k is basically independent of transistor width. It scales up with increasing
length however (because k scales down proportionally, but I0 does not scale down
as much), indicating that SCRL favors designing with minimum-length devices and
small gate fan-ins. (Larger fan-ins yield a larger effective length.) In such designs,√

I0/k can be thought of as a width-independent voltage vc that is characteristic of
the particular device technology being used. It can be interpreted as the drive voltage
required to turn on a standard-length transistor strongly enough to conduct current
at some fixed multiple of the transistor’s zero-drive leakage current I0.

3

Given the above definitions, we can re-express the minimum energy as

s ≡ 2
√

2cddntndd (7.65)

= 2

√
2ntn3

dd

3ndd − 4bavg

(7.66)

vc ≡
√

I0/k (7.67)

Emin = sCLvcVT0e
− 1

2
VT0/φ′T . (7.68)

Figure 7.13 shows qualitatively how Emin scales as VT0 is changed. Perhaps sur-
prisingly, above a certain point, the minimum energy/op of SCRL actually decreases
exponentially as the threshold voltage is increased! This contrasts with the situation
in standard CMOS, where higher thresholds mean quadratically larger switching en-
ergy, determined by equations like eq. 7.7. The difference in SCRL is that higher

3Perhaps vc is related to the drive voltage needed for strong inversion. This needs further inves-
tigation.
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Figure 7.13: How minimum energy/operation scales with VT0 in SCRL, as per (7.68).
The curve is only meaningful for points to the right of the maximum, but not too
far to the right. At the very low voltages at the far left, circuits will not function
properly because they will be overwhelmed by leakage currents. At very high voltages
far to the right, gate oxides may break down, depending on their thickness. But up
to this breakdown point, SCRL minimum energy scales down roughly exponentially,
as the ratio VT0/φT is increased.

thresholds mean exponentially smaller leakage power, which allows us to run at ex-
ponentially slower speeds and still not have leakage dominate the total energy, which
thus allows exponentially less energy to be dissipated during our quasistatic charging
at high thresholds.

The curve in fig. 7.13 also suggests that at very low thresholds, the energy/op can
be made arbitrarily small as well. However, this part of the curve is probably not
accurate. Further analysis ([68]) shows that the maximum point on the curve occurs
when VT0 = 2φ′T , twice the adjusted thermal voltage. At thresholds near or below
the thermal voltage, a Vdd that is only a small fixed multiple of the threshold voltage
will probably not be high enough to produce strong inversion, and the square-law
equation (7.10) will probably not accurately represent the source-drain current of our
transistors, upon which the above analysis was based. Moreover, at low thresholds,
the high leakage power will call for a very short rise time from eq. 7.47; if the rise
time is too short, it will not be large compared to the effective RC of our transistors,
which will invalidate the assumptions upon which the analysis of section 7.6.2 was
based.

Also, all of the analysis above is only reasonably accurate for relatively large
devices. As we mentioned 7.1.5, as transistors shrink below present-day sizes, a variety
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of short-channel effects become increasingly significant in their influence on the I-V
characteristics of the device. As we move deeper into this short-channel regime, the
analytical expressions on which the above sections were based will become increasingly
inaccurate. It was deemed beyond the scope of the present work to correct all of the
above analysis to take short-channel effects into account, although such corrections
will be important if adiabatic techniques are to be applied to low-energy computing
applications in the near future.

7.6.4 Fixing a problematic case for plain SCRL

We believe there may actually be a small problem in ordinary SCRL, as originally de-
scribed by Younis and Knight, a problem that seems to lead to non-time-proportional
dissipation, and perhaps even to a dissipation per operation that is bounded below
by kBT (although this is not yet certain). This particular problem occurs even at
low temperatures, at which ordinary leakage currents become exponentially more
insignificant.

The problem occurs in multi-input SCRL gates such as NAND and NOR gates,
as well as in more complex gates, but not in single inverters. The problem is due
to the fact that under some inputs, part of a pull-up or pull-down network may be
conducting even if the whole network is not. So for example, in a NAND gate, when
the output is high, part of the pull-down network may actually be pulled up as well
(see fig. 7.14). So an n-FET, which is designed for passing low voltage, is being
asked to pass a high voltage. n-FETs can only conduct well over part of the high
range, up to a threshold drop VT away from the high voltage Vdd. So, an internal
node in the pulldown network will follow the output ramp closely up to this voltage,
but after that its rate of increase will slow down, because the effective resistance of
the n-FET increases exponentially as its source voltage rises several thermal voltages
φT above the threshold point. Therefore, the voltage drop over this n-FET will
become significantly larger than voltage drops in the rest of the circuit, and some
non-zero amount of charge will flow over this voltage drop, as the n-FET source
voltage gradually edges up to a few thermal voltages above Vdd − VT.

Clearly, this situation will have some impact on the analysis of the energy dissi-
pation of SCRL, but it is not yet clear exactly what the impact will be. It is difficult
to derive an analytical expression for the dissipation due to this effect. However, it
seems likely that the major result will be that the overall dissipation of SCRL cir-
cuits does not decrease anywhere near as quickly as linearly with frequency, once the
overall dissipation is low enough that the dissipation due to the above effect becomes
significant.

To test this intuition, I performed a simple numerical simulation of this situation
for an example circuit, and found that when the ramp time was long enough so that
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Figure 7.14: A case in the simplest version of SCRL where there may be energy
dissipation that does not scale down in proportion to operating frequency. Consider
a NAND gate when the inputs are different, and the higher input goes to the innermost
n-FET. When the rails split, that n-FET will conduct, and the internal node voltage
Vx will track Vout arbitrarily closely (depending on the ramp time), until Vx ≈ Vdd−VT.
Then, the FET will begin to cut off, and Vx will lag farther behind Vx, while it
continues to increase over a range of several additional φT ’s. In the depletion regime,
it takes several φT ’s worth of VGS voltage change in order for a MOSFET’s channel
charge (and thus its conductance) to fall off by several factors of e. During this time,
drain voltage continues to increase at a relatively faster rate and so charge will be
falling over a relatively large voltage drop. NOR gates and more complex gates will
suffer from this problem as well.
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the total dissipation in the earlier part of the ramp was less than kBT , the dissipation
in the subthreshold regime was still ∼ 3000 kBT—but it was still decreasing slowly as
the ramp time was lengthened. If the ramp time was lengthened far enough, perhaps
the source voltage would continue to track the ramp closely all the way up to Vdd, and
the dissipation in this transistor would be less than kBT—but then we are talking
about ramp times so long that energy losses due to leakage would be significant, and
greater than kBT , in other parts of the circuit. The logic would no longer function
reliably because leakage currents would be comparable to charging currents. Overall,
it is not yet clear whether or not this effect leads to a true ∼ kBT lower bound on
dissipation in these simple circuits.

Fortunately, regardless of the precise effect, there is a simple way to fix SCRL
to prevent this problem from occurring, and restore guaranteed time-proportionate
reversibility to SCRL. That fix is to transform the problematic transistors into CMOS
pass gates, with appropriate inputs, which conduct well over the entire voltage range
that they might encounter. Thus, at low speeds the voltage drop across the transistors
will always remain insignificant. The NAND gate problem in figure 7.14 can be
repaired via the addition of just a single p-FET, as shown in fig. 7.15.

A more general way to fix all SCRL logic gates would be to just use dual-rail
(complementary) logic everywhere, to ensure that the appropriate complementary
signal for use in pass gates is available. This would have the advantage that it would
also eliminate the need for 2-level retractile cascades in non-inverting logic stages,
and would lead to greater data-independence of the overall capacitance of the chip,
allowing the resonant power supply signal to be tuned more cleanly. The primary
disadvantage would be the need for a roughly factor of 2 increase in the number of
gates, wafer surface area, and entropy coefficient. But in the spirit of the asymptotic
emphasis of this thesis, we remind ourselves that this is only a small constant factor.

That concludes our discussion of general properties of SCRL. In the next section
we discuss the particular SCRL-based circuits that we designed and fabricated.

7.7 Experimental SCRL Circuits

The first SCRL circuits to be fabricated were those of Younis [191] in his original
experimental tests. Younis fabricated a demonstration chip that included reversible
adders and multipliers. Younis tested these chips and measured their power dissi-
pation, and found that it scaled roughly as predicted within the range of sensitivity
of the measurements. More accurate measurements of dissipation in other adiabatic
circuits have been performed by Solomon and Frank (1995, [153]).

In parallel with my own work, Carlin Vieri has been designing Pendulum, a fully-
adiabatic RISC-style processor based on SCRL. I assisted Vieri with various Pendu-
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Figure 7.15: A simple way to eliminate the problem discussed in figure 7.14. A p-FET
“T3” tied to input B is placed in parallel with the inner n-FET “T1”. T3 will be
fully turned on in the problem case where A = 1 and B = 0, and thus node Vx will
follow Vout all the way up to Vdd, and so there will be no problematic voltage drop
over T1. The truth table on the right verifies that the logic of the pulldown network
remains correct in all cases with the addition of T3.
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lum instruction set issues, about which I will have more to say in chapter 9. Scott
Rixner and I designed and tested Tick, a non-adiabatic 8-bit version of Pendulum
that was intended to gauge the complexity of the reversible instruction set design.
(Unfortunately, the chip failed to operate fully, due to inaccuracies in the layout
design-rule checking software that we used; design modifications would be necessary
to get Tick working.) As of this writing, the fabrication of the fully adiabatic Pendu-
lum prototype has recently been completed, and it is now in the testing phase.

Vieri and colleagues have also designed and fabricated XRAM [179], a fully-
adiabatic static memory component, whose design I discussed with Vieri, but was
not intimately involved with.

The primary SCRL design effort that I have been centrally responsible for (with
assistance from other group members) has been the design of FlatTop, a chip com-
prised of an adiabatic mesh-style array of processing elements that are very simple,
yet capable of fully universal reversible computation. The FlatTop chips can be
tiled in 2-D or 3-D arrays, and together with the appropriate external resonant rail
generators, reversible communications links, and power delivery/entropy removal sys-
tems, would constitute a concrete example of a time-proportionately reversible 3-D
mesh processor, such as we conjectured was asymptotically optimal in ch. 6. As such,
sufficiently large arrays of FlatTop chips would be, in principle, faster for their
size than any possible irreversible machine. At least, this would be the case if the
FlatTop design was repaired to circumvent the dissipative flaw in SCRL that we
discussed in §7.6.4, which had not yet been discovered at the time FlatTop was
designed. Also, in reality the FlatTop machine sizes necessary to outperform the
fastest irreversible architectures would be astronomically large. But FlatTop is still
an important proof-of-concept, demonstrating that it is not only possible but fairly
straightforward to design a universal, sequential reversible mesh processor using fully
adiabatic circuits.

We now discuss some of the background for the FlatTop design.

7.7.1 The Billiard Ball Model

The basic operation of FlatTop is to simulate the “Billiard Ball Model” (BBM)
of computation, an idealized physical model of reversible computation that was in-
troduced by Fredkin [74] in the course of some of his early work on reversible logic
circuits. The model involves computation using idealized perfect spheres, that move
ballistically through 2-D space along precise trajectories, and bounce off fixed walls
and each other in perfectly elastic collisions. Fredkin showed that using only this
behavior, one can construct elementary reversible boolean logic gates (fig. 7.16) and
put them together to compose arbitrary reversible logic circuits.

The BBM is of course an idealization. In reality, to avoid the accumulation of
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Figure 7.16: Examples of two logic gates in the physical billiard ball model of com-
putation. The “Crossover Gate” on the left permits two ball-signals to effectively
pass through each other without delay. The “Feynman Gate” on the right computes
a reversible AND/NAND function.

errors in ball trajectories, the balls would have to be made to travel along troughs in
a potential energy surface, pushed along by waves of potential to keep their global
timing consistent, and to make up for frictional losses. In reality, the collisions would
not be perfectly elastic—but this is just an example of time-proportionate reversibil-
ity, since real collisions between hard objects become more nearly elastic as the speeds
involved are decreased. Energy can be injected into the system, at a rate per inter-
action that declines with the balls’ speed, to keep the system progressing forwards
at a constant rate. In talks given at MIT, Fredkin has discussed physically plausible
mechanisms for performing the above-mentioned types of corrections.

But the main conceptual importance of the model is that it provides a way to
see how extremely simple interactions—ball collisions—can be used to build up ar-
bitrarily complex logic circuits. Further, in essence it is a purely digital model. It
only cares about discrete positions and times. In contrast, other researchers have
investigated analog models of computation in which an unlimited number of decimal
places of precision in physical parameters are used to carry information important to
computation [177, 151, 148], but such models are not physically realistic, because in
quantum mechanics, bounded systems only have a finite number of distinguishable
states, as we noted in §2.2; infinite precision is not a physically realistic assumption.

Furthermore, the BBM is ultimately a parallel model of computation—interactions
may be occurring in many parts of the space simultaneously—and a 3-D version of it
could asymptotically efficiently simulate any (non-quantum) physical algorithm.

Due to its ultimate digital nature, its simplicity, its reversibility, its asymptotic
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Figure 7.17: The Billiard-Ball Model Cellular Automaton. (a) Updates are performed
alternately in two overlapping meshes of 2×2 blocks of cells. This partitioning scheme,
also called the “Margolus neighborhood,” is an easy way to produce a global reversible
dynamics from a local reversible update rule. (b) BBMCA block update rule. In a
2×2 block of cells, a single 1-bit moves to the opposite corner of a block (propagation),
whereas 2 bits in opposite corners move to the other 2 corners (collision). All rotations
of the illustrated cases also apply. All other configurations remain unchanged. Note
that this rule is reversible.

efficiency, and its universality, the billiard ball model is a useful starting point for
investigations of reversible computation.

7.7.2 The Billiard Ball Model Cellular Automaton

Making the ultimately digital nature of the billiard ball model even more apparent,
in 1983 Norman Margolus invented a digital cellular automaton, with only 1 bit per
cell, that precisely and efficiently simulates the billiard ball model on a 2-D grid of
cells [116, 115]. In this “Billiard Ball Model Cellular Automaton” (BBMCA), balls
are represented by pairs of 1-bits that move along diagonal paths through the grid
of cells. The grid is updated by breaking it into two overlapping meshes of 2×2
blocks of cells (fig. 7.17a), which apply on alternate update steps, and within each
block transforming its state according to a simple reversible update rule (fig. 7.17b).
The reader should be warned that it is somewhat non-obvious how this update rule
leads to behavior that imitates the billiard ball model; see [116] or §2.4 of [115] for a
detailed description.

Because of the extreme simplicity of the BBMCA update rule, we chose it as
our target for our proof-of-concept mesh architecture, which was therefore named
FlatTop, after the local billiards pub, “Flat-Top Johnny’s.” This architecture is
not intended to be particularly efficient in terms of its constant factors, or to be
particular easy to program directly. But ultimately, since it can asymptotically effi-
ciently simulate any (non-quantum) parallel architecture, it demonstrates the points
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S = (A + C) (B + D)

A  = S A + S A (C + B D)

... and similarly for B, C, D

A B

D C

Figure 7.18: Boolean logic form of BBMCA update rule. The S bit is true when there
are bits in both diagonals, in which case the block should remain static, unchanged.
If there aren’t bits in both diagonals, the block may change, and a given bit (e.g., A)
should turn on if it was off and the opposite bit was on (propagation rule) or the two
adjoining bits were on (collision rule).

we are trying to make about asymptotic scaling. Given a large enough array of Flat-
Top chips, one could efficiently simulate any alternative architecture or programming
model on top of it.

A more practical reversible mesh processor would probably have a design and a
programming model closer to that of Vieri’s RISC-style Pendulum chip. In fact, given
a suitable communication network between neighboring processors, Pendulum itself
would probably work fine as a processing element. But FlatTop was relatively easy
to design, and it gives us the proof-of-concept we wanted. It also seems entirely pos-
sible to design a reversible FPGA element that would be intermediate in complexity
and programmability between FlatTop and Pendulum, and might permit greater
logical density on a wider variety of problems than either.

7.7.3 Logic minimization

After choosing the BBMCA as the target functionality, the next step was to trans-
late the BBMCA update rule into a boolean logic expression that could be easily
implemented in a real SCRL logic circuit. After trying several ways of translating
the update rule into a boolean formula, we settled on the solution shown in fig. 7.18,
which is the simplest such representation of the logic that we have found so far.

The idea behind these formulas is that under the BBMCA update rule, one of two
things happen: either the block might change, or it must stay the same. It must stay
the same if there are 1 bits in both of the two diagonals across the block. Letting “S”
represent this case, we have (with reference to fig. 7.18) that S is (A or C) and (B or
D).

Then, the new value of A itself, A′, is fairly easy to compute. If S, then A′ is
just A, unchanged. Otherwise, A′ turns on if and only if A was originally off, and
either the opposite bit was on (propagation rule), or both of the adjacent bits were
on (collision). If all bits are off, they all remain off. One can see by inspection of the
possible cases that this rule yields exactly the BBMCA update rules.
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To implement this logic in SCRL, we would need at least two logic stages in each
processing element: The first stage would take the initial state of the 4 cells in a
block as input, and would produce the S signal using a complex gate implementing
the formula for S, while passing the input bits through unchanged to the second stage.
The second stage would use a complex gate for each cell to compute its new state
given S and the original cell states. This was the basic function of each processing
element. Since we were using 3-phase SCRL, a third stage was needed to put the
data in the correct phase for passing to an adjacent processing element. We also used
the third stage to implement a special shift register functionality for initializing the
whole array.

7.7.4 FlatTop array design

Figure 7.19 outlines how the array of processing elements was connected. The horizontal-
vertical grid shows the cell space partitioned according to the Margolus neighborhood
into 2 overlapping grids of 2×2 blocks, as in fig. 7.17a. The updating of each block
is handled by a corresponding processing element, which can be visualized as resting
at the center of that block. The state of each cell is passed back and forth along
wires between the PE’s at the centers of the two diagonally-overlapping blocks that
contain the given cell. The array of PE’s thus naturally forms a mesh that is oriented
at a 45◦ angle relative to the original CA mesh. We orient the chip edges along this
diagonal mesh, so that the wires between processing elements can be parallel to the
chip edges, which is a constraint required by some fabrication processes.

One artifact of this design is that, if all the processing elements operate simultane-
ously, they will actually be simulating two parallel non-interacting BBMCA systems.
We can separate the PEs into “dark” and “light” processors in a diagonal checker-
board pattern as pictured. One CA system is the one that is processed by light
processors on even-numbered time-steps and by dark processors on odd-numbered
steps. The other CA system is the one that is processed by dark processors on even-
numbered steps and by light processors on odd-numbered steps. The two systems
do not interact at all, and they can be used to represent two completely different
configurations of balls and mirrors in the BBM. Using both systems can be seen as
a way of making more efficient use of the hardware, which would otherwise be only
half utilized.

The two systems can be connected together at one or more chip edges to form
one larger system with an alternative topology. In fact, we did this in our prototype
FlatTop chip. Also, at various points at the chip edges we passed signals to bidi-
rectional I/O pads to connect to neighboring processors in a larger array. Normally
in the BBMCA the grid is 2-D, but there is nothing to prevent a topology that is
locally 2-D on-chip, but globally 3-D, with the chips connected in a 3-D mesh. As
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Figure 7.19: Schematic illustration of a grid of FlatTop processing elements. Each
2×2 block of cells in the Margolus partitioning (see fig. 7.17a) is updated by a different
PE. The state of a given cell is stored, on alternate time steps, on one or the other of
the two wires running between diagonally adjacent PEs. The PEs thus naturally form
a square mesh oriented 45◦ from the BBMCA mesh. To make layout more convenient,
the chip edges were oriented parallel to the PE mesh.
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NMOS PMOS
Var Value Var Value
φ0 1.1V φ0 0.8993
mj 0.726 mj 0.4905

mjsw 0.2451 mjsw 0.2451
Cj 4.67x10−4 F/m2 Cj 8.76x10−4 F/m2

Cjsw 3.20x10−10 F/m Cjsw 2.13x10−10 F/m
tox 9nm tox 9nm
µn 978.1 cm2/V2-s µp 228.5 cm2/V2-s
Cox 3.89x10−15 F/µm2 Cox 3.89x10−15 F/µm2

k′n 3.80x10−4 A/V2 k′p 8.889x10−5 A/V2

Table 7.5: Device parameters for the HP14 process, from Cadence models. These
figures were used in our hand-calculations of the minimum energy dissipation per
operation in FlatTop.

long as each chip has at least 3 external connections, a globally 3-D network can be
made [185].

Appendix A shows most of the Cadence schematics and layout for the FlatTop
unit cell and processor array. The design was simulated using Verilog and functioned
as expected in simulation. Individual PEs were simulated in HSPICE to verify that
there were no errors causing CV 2 dissipation. The chips have been fabricated but
have not yet been tested. It is expected that their basic functionality will work, and
that fairly low-energy operation is possible, but that the dissipation will not be quite
as low as was originally projected due to the SCRL flaw we discussed in §7.6.4.

7.7.5 Minimum energy estimation

After designing FlatTop, we carried out an approximate hand-analysis of the circuit,
using the device parameters of the fabrication process we used (table 7.5), and the
formulas we derived in §7.6.3.1 (p. 190), to estimate the circuit’s minimum energy
dissipation per operation when operated at 3.3 V, the standard supply voltage for
the process (HP14) that was used. As the circuit is clocked more slowly, switching
energies decrease proportionally, but leakage energies increase. As we pointed out
in §7.6.3.1, the minimum total energy per operation turns out to be achieved at the
speed at which switching energy equals the leakage energy (refer back to fig. 7.12,
p. 192).

The energy estimation procedures we used are also described in more detail in
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our conference paper [72] on FlatTop. The upshot was that the optimal cycle time
turned out to be around 12µs, at which point FlatTop would dissipate around 10 fJ
per cycle per cell, whereas in our estimation the equivalent iCMOS circuit dissipates
around 20 pJ, a reduction of energy dissipation by a factor of 2000! When cooled
below room temperature, the chip would have less leakage, and even greater energy
efficiency could be obtained at lower speeds.

Unfortunately, there has not yet been an opportunity to actually test the energy
dissipation in FlatTop. Indeed, such low levels of dissipation would be hard to
measure accurately. Also, the actual dissipation is probably higher than we first
estimated, since at design time we did not know about the SCRL bug mentioned
in §7.6.4. However, if this bug were fixed, we believe that dissipation in the chip
would be roughly as predicted.

7.8 Resonant power supply techniques

In most of the above, we have glossed over the issue of how to build a resonant power
supply that can provide the power/clock waveforms that SCRL requires, in such a
way that the energy loss per cycle scales down arbitrarily in proportion to frequency.
This particular issue has not been the primary focus of my own research, but it is
important for the overall scaling results.

Various techniques for powering adiabatic circuits have been described in the lit-
erature: [156, 157, 194, 63, 3]. However, many techniques do not have asymptotically
zero dissipation. One interesting recent technique is the one developed in our group
by Becker and Knight [12, 13]. This technique uses a transmission line with tuned
nonuniformities that allow it to end up resonating with any desired waveform; in
particular, it has been used to produce the trapezoidal ramp-shaped waveforms used
by SCRL4. However, due to nonlinear effects of the signal on resistivity in Becker’s
transmission lines, the dissipation per cycle does not scale down quite in proportion to
the frequency f , but apparently rather as

√
f . Thus the scaling results for a reversible

system powered by these circuits is not quite as good as the ideal.
An open problem for adiabatic computing is the design of an external resonant

element that can provide waveforms usable for adiabatic computing while at the
same time retaining the property of having a dissipation per cycle that scales down
to arbitrarily small levels, in direct proportion to frequency. It is also important
for the cost-efficiency arguments of §6.2 that the cost of the resonant element does
not increase substantially as its frequency is decreased. One problem with using
Becker’s transmission line approach in reversible computing is that the length of the
transmission line scales up in proportion to its frequency, therefore increasing the cost

4As reported by Becker in personal discussions.
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of the system when run at low speeds.
However, we (optimistically) suspect that if enough attention is paid to the issue

of designing resonant power supplies, a power supply technique having the desired
properties can be found. Certainly it has not been proven, to our knowledge, that
no such technique can exist. It is an important area for future work to determine
with certainty whether an ideal supply technique can exist, and to design a technique
having the most favorable scaling properties that are physically possible.

7.9 Scaling SCRL to future technology

generations

Although it is difficult to precisely forecast the future performance of CMOS-based
technology in the near term (next 10 years), over the long term one can point out some
qualitative aspects of how performance scales with technology shrinkage in CMOS-
like circuits, based on some fundamental scaling laws, and see how these factors affect
SCRL compared with standard irreversible CMOS.

Consider the effect of shrinking all circuit dimensions by a factor of f` (that is,
any length ` is shrunk to `/f`). Intuitively speaking, one must consider the effect of
shrinking all dimensions, rather than just one or two, because any dimension that
does not shrink will eventually dominate in terms of its parasitic effects, and one
could improve performance by shrinking that dimension as well.

Under f` scaling in all dimensions, the width and length of capacitive elements will
decrease, but so will their thickness, so capacitances will decrease by ∼ f`. Resistive
elements will get shorter, but also narrower along the other two dimensions, so their
resistance will increase by ∼ f`. Characteristic RC delays through resistive elements
thus do not scale down by much, since these factors cancel out. (In the near term,
resistance is dominated by the effective resistance through transistors. These are
harder to model accurately. But if their resistance decreases, RC’s might decrease
for a while, but then eventually the resistance in the wires will come to dominate, so
at some point RC cannot decrease further.)

Earlier, we saw that energy dissipation per operation in adiabatic technologies
such as SCRL scales as CV 2 RC

t
. If the RC part doesn’t improve much beyond a

certain point, as we just saw, then what about the CV 2 part? This part corresponds
to node energy. For a while, C will scale down as 1/f`, and V at some point will
be forced to scale down at least as fast as 1/f` because otherwise, as gate oxides
get thinner, the electric field through the oxide would increase and at some point
would break down. So CV 2 eventually must scale down at least as fast as f−3

` . This
makes sense intuitively, because it corresponds to the energy density in the circuit not
increasing beyond a fixed maximum level that the circuit’s materials can withstand.
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But, can CV 2 continue to decrease indefinitely? In §7.1.2, p. 151, we already
demonstrated that in irreversible CMOS, we can show that CV 2 cannot decrease be-
low a reliability-dependent factor times kBT from a pure thermodynamics argument.
But this reliability-based limit affects SCRL as well. The electrons in a circuit at
normal temperatures behave like a thermal gas, and this leads to a well-known noise
component called “kT/C noise,” because anything that samples a signal will find
that the σ2 variance in the sampled voltage is kBT/C, where C is the capacitance
of the sampling node (cf. p. 155). Such sampling occurs in SCRL all the time; each
time a pass gate in an bidirectional latch cuts off, it can can be viewed as sampling
the previous logic gate’s output voltage on a sampling node whose capacitance is just
the load capacitance of the latch output. If thermal noise causes a sampling error
comparable to Vdd/2, correct logical functionality can be impaired. Therefore, just
like in irreversible CMOS, node energies in SCRL cannot be made smaller than a
reliability-dependent factor times kBT .

Therefore, as typical node energies decrease with f−3
` at a given temperature,

eventually they will reach this point where further decreases cannot be made without
sacrificing reliability, so to continue shrinkage, the temperature will have to start
scaling down as f−3

` as well. But note that at this point, the entropy generation
per operation in SCRL is no longer decreasing along with the shrinkage. We know
S = E/T , and the dissipation E is decreasing as f 3, but now so is T . So ultimately,
SCRL’s entropy generation per operation becomes exactly RC/tr times a reliability-
dependent constant (ln N), regardless of further circuit shrinks.

Further decreases in entropy coefficients beyond this point would require non-
scaling-related decreases in R, such as less resistive wiring materials, a switching
device with better I-V characteristics than MOSFETs (perhaps micro-electro-mech-
anical switches, if they could be made small enough), or even superconducting circuit
elements. Irreversible CMOS, on the other hand, could not take full advantage of such
improvements, because its dissipation per operation does not fundamentally improve
with R, and its entropy generation per operation is bounded below by ∼ ln N nat.

This leads to a long-term advantage of SCRL as the technology scales. As lengths
are shrunk by f`, one can create f 3

` times as many processing elements out of a given
mass of materials. Beyond a point, entropy generation for a fixed mass of reliable
irreversible CMOS scales as ∼ nat, whereas entropy generation in SCRL is ∼ RC

tr
nat,

where we assume we have reached a limit where RC cannot be decreased further. But
as the number of processors increases with f 3

` , the clock frequency of the irreversible

machine must be slowed down for some tasks by a factor f
1/3
` , due to the increasing

number of processing elements and the heat-removal arguments of §6.2.3.1, whereas
the SCRL machine only needs to be slowed by f

1/4
` . Therefore, as f` increases, the

overall processing rate Rop of the irreversible machine goes as f
2 2/3
` whereas the

reversible machine goes as f
2 3/4
` , for a reversible advantage increasing as f

1/12
` as
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devices shrink by a factor of f`.
The above analysis imagines that it is possible to continue scaling MOSFETs with-

out fundamental differences up to and beyond the point where reliability constraints
become dominant. In reality, MOSFETs may hit a wall for other reasons before this
(cf. [121]), at which point, we might have to switch to a radically different technology
for further improvements. Different technologies might have different scaling consid-
erations, but in any irreversible technology, the lower bound of S = 1 nat still holds,
and in any reversible technology, we expect there will be a characteristic transition
time parameter tc, playing a role similar to the RC parameter in CMOS, that ap-
proximately gives the entropy coefficient for the technology (the entropy goes below
1 to the extent that t goes above the characteristic transition time). To the extent
that this expectation is true, the reversible advantage with shrinking components will
be at least the f

1/12
` factor mentioned above, and if the characteristic time were to

scale down with the length scale as well, so much the better for reversible technology.
In that case, processing rate would scale as f 3

` , an advantage of f
1/3
` over irreversible

technology.

7.10 Mostly reversible computation

This thesis primarily focuses on the concept of arbitrarily reversible computation.
But there are of course benefits to be gained from a more limited use of reversibility
in digital circuits. For example, one could construct a processor’s functional units
using fully adiabatic circuits, and use irreversible switching only to update the high-
level processor state between instructions. Or, one could identify the highest-power
components of a chip (often, the long buses) and apply energy-recovery techniques
only to those sections (this is the direction being explored by the ISI ACMOS group
[4, 2, 170]).

Such limited uses of reversibility are potentially quite beneficial in highly energy-
limited environments such as portable or embedded systems [66, 1]. And since re-
versibility need not be complete in order to gain substantial energy savings in these
applications, the algorithmic overheads for full reversibility that we explored in §3.4
need not apply.

This line of work can lead to immediate practical, commercially viable products,
thereby introducing adiabatic circuit concepts to industry. After this introduction,
we expect that gradually over time, users will come to demand more and more com-
putational power using less and less energy, and so the degree to which systems will
need to rely on reversible techniques will increase. Eventually, we expect designs for
energy-limited systems will converge to encompass the arbitrarily-reversible sort of
architectures that we discuss in this thesis.
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7.11 Adiabatic Circuits—Conclusion

In this chapter we reviewed the most immediately feasible technology for reversible
computing, namely the technology of adiabatic circuits. We discussed the prototype
mesh-style processor that we constructed using this technology, which is a proof of
concept that illustrates that adiabatic circuit techniques such as SCRL are powerful
enough to implement fully reversible parallel machines such as we proposed in ch. 6.

The most important areas for future work on adiabatic circuits, in the context of
exploring the limits of computing, include:

• More thorough analysis of the precise performance characteristics of SCRL (or
similar techniques) compared with irreversible CMOS in near-future technology
generations, to obtain a more precise estimation of the cost level above which
reversibility confers a real advantage.

• Research on directions in VLSI technology (such as MEMS switches or super-
conducting materials) that might lead to much lower-resistance switches, which
would benefit adiabatic techniques much more than irreversible techniques.

• More research on resonant power supplies for adiabatic circuits, in search of a
technique whose dissipation scales down in proportion to frequency, asymptot-
ically all the way to zero, while still providing waveforms that are suitable for
use in SCRL or comparable adiabatic circuit techniques.

• Similarly, design of reversible or even ballistic interconnection technologies for
communication between adiabatic circuit chips.

• Design of good parallel reversible processor architectures, building on FlatTop
and Vieri’s Pendulum work.

In summary, the future for reversible computing with adiabatic circuits looks in-
teresting, but several new developments are still needed before adiabatic techniques
could become competitive with traditional techniques at affording cost-efficient su-
percomputing. It may well be that in the short run, more effective cooling systems
(which benefit irreversible techniques more than reversible techniques) will be easier
to develop. However, in the long run there are limits to how much cooling systems can
be improved—and cooling a system does not ultimately reduce total energy. Mean-
while, various factors on the horizon threaten the ability of CMOS circuits to keep
shrinking indefinitely.

Eventually, to gain further improvements in machine speed, it seems we may
well be forced to jump to an alternative, non-CMOS-like, computing technology.
Interestingly, many of the alternative technologies that have been proposed by various
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researchers are capable of efficient reversible computation. In the next chapter, we
briefly survey some of these, and then in chapter 9 we go on to discuss issues in the
architecture and programming of reversible machines, regardless of the details of the
underlying reversible logic technology.
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Chapter 8

Future reversible device
technologies

In the previous chapter, we reviewed adiabatic circuits, the reversible computing
technology that is most similar to the irreversible semiconductor technology that is
the basis of essentially all present-day computing.

In this chapter, we look a bit farther afield, and review a number of proposals that
have been made for computing technologies that might supersede traditional CMOS,
once the limits of MOSFET technology are reached, and manufacturing processes
develop to the point where constructing machines based on these alternative device
technologies is feasible and economical. A number of the technologies we describe
are (time-proportionately) reversible, or at least have reversible variants. We will
describe the important parameters of these technologies that impact the scaling issues
we discussed in chapter 6. We also will review several proposals that have been made
for advanced cooling technologies.

We then calculate, using the formulas developed in §6.2.2.1, p. 128, how large a
reversible machine would have to be, in the various proposed reversible technologies
and under the various proposed cooling systems, in order for it to be faster per
unit area than a machine built using various irreversible technologies. Most of these
calculations were previously reported in §7 of our journal article [70].

8.1 Cooling technologies

Ordinary CPU chips in most present-day computers rarely dissipate more than 100 W
of heat from a square centimeter of chip surface using normal passive cooling mech-
anisms, such as conduction through a ceramic package, and natural or forced con-
vection through air. The chip surface is normally at least at room temperature
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Max entropy flux FS

Cooling technology in bits/s cm2

Digital optic fiber 1013

Typical passive emission 3.5×1022

Drexler’s fractal plumbing 3.8×1024

Slow atomic ballistic 1026

Fast atomic ballistic 3×1033

Quantum maximum 5×1040

Table 8.1: Estimates of the maximum entropy flux per unit area achievable with
various existing and hypthetical cooling technologies. These are all rather rough
estimates, and the last limit is especially arbitrary, since it is technically only valid
for black holes having an arbitrarily-chosen 1 Å radius.

(300 K), so the entropy flux attained by these mechanisms is no larger than F =
100 W/(kB(300 K) ln(2)/bit) = 3.5×1022 b/s-cm2.

David Tuckerman [166, 167] has created and tested advanced semiconductor cool-
ing systems which use forced convection of liquid coolant through micron-scale chan-
nels etched into the back of a silicon wafer. He has experimentally verified cooling
rates on the order of ∼ 1000 W from a square centimeter-size chip, and has projected
that higher rates are possible.

Drexler (1992, [51]), §11.5.3, p. 332, has designed a nanotechnological cooling
system using a fractal plumbing network that ought to be able to remove at least
10kW/cm2 of heat at 273 K from a flat slab of material up to 1 cm thick. This
corresponds to an entropy removal rate of 3.8×1024 bit/s cm2.

This figure corresponds roughly to the heat flux in the cooling systems of current-
day nuclear reactors, which transport megawatts of heat through massive pipes on
the order of a square meter in cross-section. (According to an acquaintance in the
nuclear engineering department.)

If entropy were to be encoded in some material at the atomic scale at a density ρS of
no more than 1 bit per cubic Ångstrom (roughly the volume of a small atom), and the
material moves nearly ballistically through the computer at a speed of v = 1 m/s, the
maximum entropy flux FS = ρSv is 1026 bit/s cm2. (Allowing most of the machine’s
volume to be occupied by the cooling material.)

If the material instead moves at a tenth of the speed of light (a very fast speed
that is still easy to analyze since relativistic effects are small), then the maximum
flux is 3×1033 bit/s cm2.

For materials around the density of water, 1 g/cm3, Bekenstein’s fundamental
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quantum-mechanical/general-relativistic bound on entropy (see §2.2.1, p. 33 and [15])
implies that even if all the material’s mass-energy could be used for storing informa-
tion, no more than about 1.7×106 bits can exist in an region 1 Å across. At a tenth
the speed of light this gives an entropy flux of 5×1040 bit/s cm2.

If entropy is removed digitally through 1 mm wide 100 GHz optical fiber available
today, the maximum flux is only about 1013 bits/s cm2. The maximum entropy flux
that can be achieved using electromagnetic radiation is the blackbody flux, as we
described with eq. 2.16 (§2.3, p. 39). We should note that the entropy density S/V in a
thermal photon gas scales in proportion to T 3 ([88], p. 571), so achieving unboundedly
high entropy densities using a stream of photons would require unboundedly high
temperatures, which we may reasonably disallow.

Further, we should remember that the limit on entropy density given by Beken-
stein’s bound actually increases as information is encoded across regions of smaller
and smaller diameters. If some technology can achieve Bekenstein’s limit, then it may
change the entire form of the appropriate scaling analysis. However, Bekenstein’s
bound may not actually be achievable, and in any case it seemingly only applies in
the high-gravity realm that we have decided to avoid. So for now, we will stick with
our general assumption that for any particular technology, entropy density is finite.

Table 8.1 summarizes the above figures.
Now, let us examine how these different flux limits affect the maximum possible

rate of computing per unit area, under various computing technologies.

8.2 Irreversible device technologies

Based on the switching energy issues we discussed in §7.1.1 (p. 148), and typical
parameters of modern VLSI fabrication processes, we estimate that the best present-
day CMOS irreversible device technologies still generate at least ∼ 106 bits of entropy
per device-switching operation. This number will decrease somewhat over successive
VLSI technology generations, as power supply voltages and circuit node capacitances
decrease. However, as we saw in §7.1.2.1 (p. 155), supply voltages cannot decrease
too much because of difficulties in setting device thresholds accurately. Moreover, in
order to cope with thermal noise, total entropy generation per operation in irreversible
CMOS circuits cannot decrease below a reliability-dependent number of nats per
operation.

One very interesting alternative semiconductor logic technology is the “rapid single
flux quantum” (RSFQ) superconducting logic family being developed by K. Likharev’s
research group at SUNY, and colleagues [109, 110, 195, 50]. This technology may be
able to dissipate as little as 1 aJ (10−18 J) of energy per irreversible bit-operation at
a temperature of 5 K, which corresponds to an entropy generation of only 21 kilobits.
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Operations per second per cm2

surface in each cooling technology
Irreversible device Entropy generated Typical Fractal Slow atomic
technology per bit erased passive Plumbing ballistic
Modern CMOS 106 3.5×1016 3.8×1018 1020

Likharev RSFQ 2.1×104 1.7×1018 1.8×1020 4.8×1021

Best possible 1 3.5×1022 3.8×1024 1026

Table 8.2: Maximum rate RA of irreversible operations per unit area achievable with
various irreversible device technologies and cooling technologies from table 8.1.

Finally, we would like to consider a “best possible” irreversible technology that
produces only 1 bit of physical entropy for each bit of information that is discarded.
Merkle and Drexler (1996, [126]) argue that their proposed “helical logic” electronic
logic technology could perform irreversible bit erasure with an energy dissipation
approaching kBT ln 2, which would create just 1 bit of entropy. Drexler’s nanome-
chanical “rod logic” is also estimated to be capable of performing close to this limit
as well (Drexler 1992 [51], §12.4.3d, p. 359). We expect that in general, as compu-
tational devices approach the nanoscale, a wide variety of different device designs
will be found that are capable of asymptotically approaching the minimum entropy
generation of 1 bit of entropy per bit of logical information that is irreversibly erased.

In table 8.2 we combine these entropy generation figures with the entropy flux
rates from the previous section to calculate a maximum rate of irreversible bit op-
erations per second, per unit of enclosing surface area, for various combinations of
irreversible device technologies and cooling technologies. Note that these limits ap-
ply no matter how much extra hardware one packs in along the third dimension!
As we saw in §6.2.2.1, ultimately, all irreversible technologies are limited to a fixed
processing rate per unit of outer surface area, such as the limits given here.

Now, let us examine some reversible technologies and estimate the scales above
which they exceed these irreversible rates of performance per unit area.

8.3 Reversible technologies

We now examine the entropy coefficients of a variety of reversible device technologies.
Recall that the entropy coefficient of a technology expresses the amount of entropy
generated per device operation, per unit of frequency at which the device is operated.

Based on the SCRL adiabatic circuit technology described in the previous chapter,
we calculated the entropy coefficient for typical reversible logic gates fabricated in the
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fairly recent 0.5 µm VLSI process (HP14) that we used for FlatTop, when operating
at room temerature. We obtained a value of about 43 bits/kHz. In an estimated “best
available” process with around 10 kΩ transistor on-resistance, 1 V power supply, and
60 fF node capacitance, we estimate a somewhat lower value of ∼ 6 bits/kHz.

SCRL’s entropy coefficient might be even better in an implementation based on
low-resistance micro-electro-mechanical switches, as was suggested by Younis ([191],
§2.7.3, p. 34). However, based on calculations I did using figures obtained from the
MEMS (micro-electro-mechanical systems) community, although some of the best
available MEMS switches apparently might offer an entropy coefficient as low as
∼ 0.003 bits/kHz, the size of these switches (on the order of 100 microns) is large
enough that they do not end up outperforming MOSFETs in terms of reversible cost-
efficiency. In other words, although the individual switches can run faster for a given
dissipation per operation, a machine of a given speed per unit area must be larger.

Merkle [123] analyzed the energy dissipation of the reversible transfer of a packet
of 100 electrons through a minimal quantum FET, and found it to be around 3×10−21J
at a rate of 1 GHz. The corresponding entropy coefficient at room temerature is about
1.2 bits/GHz.

Drexler’s rod logic, operated reversibly, would dissipate about 2×10−21 J per oper-
ation at a speed of 10 GHz ([51], p. 354). Its entropy coefficient at room temperature
thus comes out to 0.070 bits/GHz.

The “parametric quantron” superconducting reversible device of Likharev [108]
dissipates about 10−24 J during a 1 ns operation at around 4 K ([108] p. 322); its
entropy coefficient thus comes out at about 0.026 bits/GHz.

Finally, Merkle and Drexler’s proposed helical logic [126] was analyzed by them
to dissipate around 10−27 J at 10 GHz and 1 K when operated reversibly; its entropy
coefficient thus comes out to be 10−5 bits/GHz. This is the lowest entropy coefficient
that we have encountered so far.

Table 8.3 summarizes the above figures. Armed with them, we are now in a
position to calculate the scale at which the various reversible technologies will beat the
various irreversible technologies that we mentioned in §8.2. We will measure this scale
first in terms of the number of devices required per unit area, then, in technologies
for which we know the device volume, this can be used to find the necessary diameter
or thickness of the machine.

Based on the analysis of section 6.2.2.1 (p. 128), we can express the number of
reversible devices NA per unit area required to achieve a given rate RA of operations
per unit area as

NA = R2
AkS/FS,

where as usual kS is the entropy coefficient and FS is the entropy flux per unit area.
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Reversible Entropy coefficient kS

device technology in bits/GHz
SCRL in HP14 4.3×107

SCRL in best available CMOS 6×106

Merkle quantum FET 1.2×100

Drexler rod logic 7.0×10−2

Likharev parametric quantron 2.5×10−2

Helical logic 1.0×10−5

Table 8.3: Entropy coefficients kS for some existing and proposed asymptotically
reversible logic device technologies

To achieve the same rate of operation achievable by an irreversible machine that
produces S bits of entropy per operation and uses the same cooling system, the
number becomes

NA = FSkS/S
2.

Table 8.4 shows the number of reversible devices in various technologies needed
to beat the maximum per-area processing rate for the 3 combinations of irreversible
technologies and cooling technologies that fall along the diagonal of table 8.2. The
parenthesized numbers indicate cases in which the number of devices required may
be determined by the maximum rate of operation of the devices, rather than by the
entropy limits. The number given is the number of devices that would be required
if the individual devices could run with as high a frequency as needed. The actual
number required will most likely be higher.

To make sense of the non-parenthesized numbers in table 8.4, we estimate the
volumes of the logic devices in various technologies. SCRL logic gates we will take to
be about 10 µm× 10 µm× 1 µm = 100 µm3. Merkle’s quantum FET we estimate at
about (10 nm)3, a rod logic interlock as 40 nm3 ([51], §12.4.2, p. 357), and a helical
logic switch as 107 nm3 ([126], §5.2, p. 330). Given these values we produce the results
in table 8.5.

The parenthesized numbers in table 8.5 need explanation. The entries that say
“any” indicate that even if the given reversible devices are arranged over a surface
in only a single layer, they will still be faster than any machine built with the given
irreversible technology within that surface. As for the 0.1 mm figure we calculated for
1012 helical logic devices per square centimeter beating the best possible irreversible
technology given a 1026 bit/cm2 entropy flux, it is probably inaccurate because the
individual helical logic devices probably couldn’t be made to run at the implied rate
of 100 THz.
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Irreversible device and cooling technology combination
best CMOS/passive RSFQ/convective best/atomic

Entropy S, bits/op 106 2.1×104 1
Flux F , bits/s cm2 3.5×1022 3.8×1024 1026

Rate R, ops/s cm2 3.5×1016 1.8×1020 1026

Reversible Technology Devices required per square cm to beat the above rate
SCRL/best CMOS 2.1×108 5.2×1013 6×1023

Quantum FET (42) (107) 1.2×1017

Rod logic (2.4) 6×105 7×1015

Helical logic (3.5×10−4) (86) (1012)

Table 8.4: Numbers NA of reversible machines per unit area required to beat different
irreversible device technologies with different cooling strategies. Parenthesized num-
bers indicate lower bounds, where the real bounds depend on the maximum rate of
operation of the devices.

Irreversible device and cooling technology combination
Reversible Technology best CMOS/passive RSFQ/convective best/atomic
SCRL/best CMOS 0.21 mm 52 m (4 au)
Quantum FET (any) (any) 1.2 mm
Rod logic (any) (any) 2.8 µm
Helical logic (any) (any) (0.1 mm)

Table 8.5: Thicknesses d of reversible machines that can beat different irreversible
technologies in terms of operations per unit area. “Any” indicates that even a single
layer of the given reversible devices will suffice to beat the given irreversible technol-
ogy.
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The entry in the upper right corner of the table indicates that a machine built with
current CMOS reversible technology, such as SCRL, would have to be the size of the
inner solar system (!!) before it would be faster per unit area than the most efficient
possible irreversible technology. Needless to say, a machine this large, composed
mostly of solid silicon, would collapse under its own gravity.

In any case, the table indicates overall that most of the listed reversible technolo-
gies outperform most irreversible technologies, in terms of raw numbers of operations
per second per unit area, for a wide range of cooling capabilities and for machines
at a reasonable scale. Current CMOS reversible technology does not perform so well
against the most efficient conceivable irreversible technologies, but it can still beat
machines based on contemporary irreversible CMOS technology at reasonable scales.

One caveat to the above results is that in general a reversible device operation is
not quite as computationally useful as an irreversible operation, due to the algorithmic
issues we discussed in §3.3. However, for problems that have efficient reversible algo-
rithms, like physical simulations (see §9.5.6), a small constant number of reversible
device operations should suffice to do as much useful computational work as a single
irreversible operation. The diameters in table 8.5 should therefore be increased by a
factor of the same small constant.

8.4 Future device technologies—Conclusion

In this chapter, we listed a number of existing and proposed device technologies
for both irreversible and reversible logic, and a variety of existing and hypothetical
cooling technologies. Many of the technologies described cannot currently be built,
but it is plausible that someday they might, and in any case all the technologies
described serve as interesting points for comparison.

For each device technology, we gave the explicit numerical parameters determining
its entropy generation, and from this, we determined limiting rates of operation per
unit area for the irreversible technologies. Then, based on the superior scaling laws we
have derived for time-proportionately reversible machines, we estimated the thickness
of the reversible machines that would beat the irreversible machines’ performance per
unit area.

The upshot is that although present reversible technology is not so great, many of
the proposed future reversible technologies would outperform any irreversible tech-
nology in terms of rate per unit area, even when considering only very thin layers—on
the order of microns to millimeters thick—of packed logic devices in the given tech-
nology. This result holds firm unless a way is found to remove entropy from a system
at a flux much higher than our rather arbitrarily-chosen maximum rate of 1026 bits
per square centimeter per second. (A rate corresponding to 1 bit per cubic Ångstrom,
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moving at an arbitrary 1 m/s.)
These figures argue that in the long term, as computing technology moves down

into the nanometer realm, and (eventually) away from conventional bulk-semiconduc-
tor techniques, reversibility will become a clear win in any macroscopic-scale com-
puters built from such nano-scale devices.

This long-term trend makes it interesting and important to study reversible com-
puter architectures and algorithms even today, because no matter the precise details
of the future nano-scale device technologies that might become dominant, we can
expect that using them in an asymptotically reversible way will confer substantially
more computational power, in many applications for all but the smallest-scale ma-
chines. We will need reversible architectures and algorithms eventually; we can get a
head start by designing them today. In the next chapter, we describe what we have
learned along that direction so far.
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Chapter 9

Design and programming of
reversible processors

In the previous two chapters we reviewed a variety of computing technologies, ranging
from the standard VLSI technology of today to visionary nanotechnologies that we
cannot yet manufacture, that are all fundamentally capable of operating reversibly
in a time-proportionate way that facilitates the central scaling advantages that we
discussed in chapter 6. As technology improves, the potential advantage from re-
versibility becomes increasingly great.

However, independently of the precise hardware, we can ask: How should a re-
versible machine be programmed, so as to realize these potential benefits? In this
chapter, we begin to answer this question, by describing our experience illustrating
that it is actually quite straightforward to design reversible microprocessor instruc-
tion sets and reversible programming languages that allow the inherent asymptotic
cost-efficiency of the underlying logic hardware to be preserved at higher levels. We
describe the assembly language, high-level language, and compiler for the reversible
processor designed in our group. We also give examples of reversible programs and
algorithms, including a constant-space, linear-time simulation of a reversible physical
system.

The overall message of this chapter is that once some basic concepts of reversible
computing are understood, programming reversible hardware need not be significantly
more difficult than programming normal machines. In this chapter we primarily focus
on serial programming, but we close with some thoughts on the need for fundamen-
tally new kinds of abstraction and programming techniques for expressing parallel
“physical” algorithms.
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9.1 Context of this work

First we briefly review the historical context of the present reversible systems design
effort.

9.1.1 Previous reversible architectures

The first reversible computer architectures that we know of were designed by Barton
(1978, [11]) and Ressler (1981, [140]) as thesis projects at MIT. These designs were
based on the conservative (reversible and 1-bit-conserving) logic model developed by
Fredkin and Toffoli (cf. [74]). The “conservative” aspect of the model actually seems
rather irrelevant to efficiency issues, since both conservative and nonconservative logic
systems can simulate each other with only small constant-factor overheads.

Several years later (1994), Hall [81] described a reversible instruction set architec-
ture based on his “retractile cascade” reversible circuit style and the PDP-10 instruc-
tion set.

9.1.2 Pendulum architecture

In 1995, Vieri [179] developed the first version of the Pendulum architecture. Pendu-
lum was unique in that it was the first reversible computing architecture designed for
implementation in a real reversible silicon technology (SCRL, see §7.5). For concep-
tual simplicity and ease of implementation, it was a RISC (Reduced Instruction Set
Computing) style architecture, in contrast to the CISC basis of Hall’s architecture.

The original version of the Pendulum instruction set archietcture (PISA) had a
few drawbacks. There was a lack of software control over garbage data, which meant
that the architecture was not capable of realizing the full potential asymptotic cost-
efficiency afforded by SCRL. (For example, one could not efficiently run Bennett’s
1989 algorithm [19] or reversible physical simulations on it.) Also, the instruction
set did not guarantee full reversibility independently of program correctness, which
precluded some of the possible alternative applications for reversibility, such as bi-
directional debugging (see ch. 10).

In our work we therefore studied several improved variations of PISA (cf. [64, 67]),
which were used in our prototype reversible processor [65] and in the compiler design
effort. Yet another improved and simplified version of PISA is being implemented
now by Vieri for his Ph.D. dissertation research [178]. Since reversible architectures
still only exist for purposes of isolated academic research, there has not yet been
much need to standardize on a particular version of the instruction set. This would
be easy enough to do at a later time, if and when more widespread interest develops.
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Appendix B lists the version of PISA that we used for developing our reversible
high-level language and compiler, which we will discuss later, in §9.4.

9.2 Reversible instruction set architectures

We now delve into some of the important issues in the design of reversible instruction
set architectures in a bit more detail.

9.2.1 Asymptotic efficiency

One important desideratum for a reversible instruction set architecture is that it
should be possible to write programs for it that perform tasks with the same asymp-
totic efficiency that could be achieved by a custom reversible circuit for that task.
That is, the architecture should not hide the underlying efficiency of the circuit model.
A sufficient condition for this is if a program for the processor can efficiently simulate
a model of the hardware.

Of course, a single serial von Neumann style processor cannot be expected to
be asymptotically as efficient as an arbitrarily-large parallel circuit. So in order to
judge such an processor fairly, we imagine that it just represents a single node in
an arbitrarily-large mesh of such processors, and ask whether the resulting mesh can
simulate arbitrary circuits efficiently.

One consequence of this criterion is that the architecture should permit running
arbitrarily-long reversible physical simulations with only constant space usage. This
immediately rules out instruction set architectures that provide reversibility by con-
stantly pushing garbage data onto an ever-growing stack. In such architectures, space
usage increases asymptotically with time, and so cannot be bounded by a constant
in an arbitrarily long simulation.

For instance, the first version of the Pendulum architecture [179] had this problem,
since all branches and many data operations pushed information onto a “garbage
stack” which could not be uncomputed except by reversing the entire processor. So
one could not write a constant-space loop, for example.

Later versions of Pendulum avoided this problem by allowing garbage data to
be uncomputed in software, and by using paired branches to avoid the generation
of garbage during control flow operations. This type of branching is an important
concept in reversible instruction sets and deserves further discussion.

9.2.2 Use of paired branches

The control flow instructions such as branches and jumps in normal architecures are
generally not reversible, because after branching to a location, there is in general no
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way of telling which of many possible locations one might have branched from.

Branch stacks. One way to make branches reversible would be to treat every
branch like a subroutine call, in that the address branched from (the old value of the
program counter, or PC) becomes pushed onto a special stack, along with the value
of a branch counter that has been keeping time since the previous branch. In reverse,
when the branch counter reaches zero, one pops the previous PC and branch counter
values from the stack, which undoes the branch.

Vieri’s original Pendulum architecture took this approach, but avoided the need
for the branch counter by placing special “come-from” instructions at branch destina-
tions. These would trigger the popping of the old PC value when encountered when
running in reverse.

Unfortunately, though it is simple, the branch stack approach is not asymptoti-
cally efficient because of the potentially large size of the stack of branch information
that must be maintained. A loop that executes N times would require Θ(N) space
with this approach, even if it only explicitly manipulates a constant number Θ(1) of
variables.

A better approach. To solve this problem, and avoid generating extra garbage
data on every branch instruction, one can take the approach of using paired branches .
That is, the destination of each branch instruction should be another branch instruc-
tion, which refers back to the original instruction and takes care of absorbing the
old PC value, or performing the backwards branch when running in reverse. The
resulting control flow constructs are completely time-symmetric.

Control flow structures. Any of the usual high-level patterns of structured control
flow can be implemented using paired branches. Figure 9.1 schematically illustrates
some examples. Detailed examples of some of these can be seen in the example
program in §9.3, p. 232.

If/then statement. A reversible implementation of a plain conditional state-
ment (if/then) requires two branch instructions, one at the beginning and one at the
end of the body of the conditional code. Before the first branch, the condition being
tested is computed, and the desination address is loaded. Then if the condition fails,
the branch instruction changes the machine state so that before the next instruction,
the PC will be updated to point to the branch at the end of the IF body. For example,
the PC could be swapped with a register holding the destination address. Then when
the second branch executes (testing the same condition), it toggles the mode back to
normal sequential operation, and the code after the second branch uncomputes the
condition and unloads the address of the first branch.

There are a variety of straightforward mechanisms which will work for low-level im-
plementation of paired branch functionality like this. We describe one in appendix B.
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Figure 9.1: Abstract schematics of some reversible control-flow structures, using the
PISA instruction set of Appendix B. Vertical arrows represent sequential flow of
control through the program, other arrows represent non-local flow of control. Gray
arrows represent the flow of control when the code is run in reverse.

If/then/else. Like if/then, but each of the two conditional branches is paired
with an unconditional branch which serves to separate the two alternative paths
through the construct. See the second diagram in figure 9.1.

Switch/case statement. The destination address is computed based on data,
and we branch to it using a branch instruction that gets its destination from a register.
The entry point is a literal branch that refer to the dispatching instruction to receive
control from it. At the end of the case body we branch to a literal point in the outer
context at which the address of the end of the case body is uncomputed based on the
same data that was used to compute the start address.

Simple loop. A simple loop (such as a FOR loop) has the same structure as
an IF except that the branches at the start and end are activated at different times.
The first branch tests a loop-entry condition, and the second a loop-exit condition—
these may or may not be identical. When we first hit the initial branch, the loop-
entry condition succeeds and allows us into the body of the loop (the branch is not
activated). When we hit the trailing branch, it should activate if we are to perform
another loop iteration. We go back up to the first branch, which should now also
be activated, to receive us. The process repeats until the final branch condition fails
(loop exit condition succeeds) and we fall out of the loop.
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A WHILE or UNTIL loop can also be implemented this way, so long as there is
some piece of information maintained within the loop that is sufficient to tell when
the loop was first entered; this information controls entry to the loop. For example,
it suffices to keep a count of the number of times through the loop; the loop is only
entered (initial branch deactivated) when this is zero. One must remember though
that in that case, the count remains around after the loop is completed.

More complex loops with alternative entry/exit points can be constructed, but
they require matching code on the outside of the loop that knows how to dispatch or
absorb control to/from the proper points inside the loop.

Subroutine call. There are several ways to implement this; one of the simplest
is the structure shown in the figure. The entry/exit points of the subroutine are at the
same address; the body of the subroutine can loop around so as to exit from the same
point where it was entered. The call instruction refers to the entry/exit point. We
branch to it, for example by loading up a special branch register with the offset. The
body of the subroutine saves away the branch register, using a free register and/or a
stack. The offset is negated, and then used again for the branch at the subroutine’s
return. We branch back to the call instruction, which re-absorbs the offset. This is
the approach that was used in most of the recent variants of the Pendulum design.

An alternative mechanism is to have separate entry and exit points at the begin-
ning and end of the subroutine. The code before the call loads up the address of the
start of the subroutine into a register. We branch to it (swapping PC and register,
for example). The body of the subroutine saves away the address of the branch in-
struction that we came from. This same address is then used for the branch at the
subroutine’s return. We branch back to the entry point, which activates and receives
the address of the subroutine’s end point back into a register. Then the code after
the call uncomputes the address of the end-point.

One very nice feature to have in the subroutine call instruction is a way to reverse
the processor direction when entering and leaving the subroutine. This way the same
subroutine can be used to either compute or uncompute some result, depending on
which direction it is called in. This may reduce program size by up to a factor of
two, compared to the alternative approach of maintaining two separate versions (one
forward and one backward) of every subroutine whose results may need uncomputing.

Summary of paired branches: All the standard structured control-flow constructs are
straightforward to implement using paired branches. This approach helps to minimize
the generation of garbage data as code is executed.

9.2.3 Reversible logic/arithmetic operations

Many standard machine data instructions are already reversible. Fixed-length integer
addition and subtraction, logical and two’s complement negation, bit rotation, and
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exclusive-OR’ing one register into another are all examples. However, other opera-
tions, such as ANDing one register into another, normally lose information. There
are several means for allowing such operations to be performed reversibly. One is
to save on an internal machine stack the word that would otherwise be demolished.
But this would not give the programmer the opportunity to uncompute that word
later when it is no longer needed. A better approach is to require that operations like
AND should write their result into a third register, distinct from the other two inputs,
which is either required to be previously clear, or else the result is XOR’ed into it,
or added into it, for example. Then a matching instruction should be provided that
can uncompute the result. (In the case of XOR’ing the result into the destination
register, the uncomputing instruction is just the same instruction over again.)

9.2.4 Data transfer operations

Similarly, operations that move values around, such as between registers and other
registers or memory, must either (1) require that the destination be initially clear, (2)
XOR/ADD the source into the destination, or (3) swap the source and destination.
A swap can be implemented with 3 XORs, or 2 XORs if one location is initially clear.

9.2.5 Hardware-guaranteed reversibility

An important issue to decide about a reversible architecture is: Does it guarantee full
reversibility of operation at the hardware level, independently of program correctness?
If the hardware does not guarantee reversibility, then there is the risk that an incorrect
program could inadvertently cause dissipation, and burn up the hardware.

One could imagine instead guaranteeing reversibility at the software level, in a
compiler, but there are some problems with that approach. First, if the compiler al-
lows asymptotically efficient reversible programs, then it can only guarantee reversibil-
ity by compiling programs to a set of guaranteed-reversible pseudocode primitives,
which then might as well have been implemented directly by the hardware.

To understand why it is hard to introduce a guarantee of reversibility above the
instruction set level, consider for example an instruction set whose expanding logic in-
structions (e.g., NAND) do not guarantee reversibility unless the destination register
is initially empty. So, in order to guarantee reversibility, the compiler has to guar-
antee that the program never accidentally does a NAND into a destination register
that contains a value that is possibly non-zero.

Now, suppose one were to write a section of code that starts with some initially
empty memory, and then uses that memory as scratch storage for performing some
complex computation. One may know how to prove mathematically that after the
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code segment is finished, the memory it worked with will all have been restored to
zero.

For example, suppose I first move to the scratch storage two primes a, b (a < b)
that I wish to multiply. I generate their product ab and put it elsewhere, then I
run a factoring algorithm to compute a, b given ab, and thereby subtract or XOR
out a, b from the scratch storage, leaving me with just ab. Since I have proven that
my factoring algorithm is correct, I know that the locations that held a, b are now
empty, and I can go on to use them for some other computation. The emptiness of
the location is an invariant that I can prove is maintained by my code section.

On the other hand, unless the compiler is required to be able to find proofs of
such invariants, or the user is required to supply them, the compiler cannot assume
that after my user-defined manipulation is completed, the locations are really empty.
Therefore, the compiler will have to consider those locations to contain indestructible
garbage, and it will have to allocate new memory for use in future operations. If the
program involves a long sequence of manipulations like this, it will not be as space-
efficient, asymptotically, as it could have been if the compiler was not responsible for
guaranteeing reversibility.

9.3 Simple example PISA program: Multipication

algorithm

As a simple example of reversible programming techniques, figure 9.2 shows a simple
hand-coded multiplication subroutine for one 32-bit version of PISA. See appendix B
for detailed specifications of individual instructions. The registers used in the routine
are documented in table 9.1. Let us go through this routine line-by-line, to explain its
operation. It is based on the simple grade-school multiplication algorithm, in which
we just march through the digits of one multiplicand, multiplying them individually
by the other multiplicand, and adding up the partial products, shifted appropriately,
to form the complete product.

Line 1: subtop: BRA subbot This is the first of a pair of labeled unconditional
branches, pointing to each other, that frame the entire subroutine. These permit
the subroutine to exit from the same point as where it is entered. They also have
the side effect that if the flow of control encounters the subroutine sequentially,
it will just skip over it.

Line 2: mult: SWAPBR R2 This is a conventional subroutine entry/exit point. On
entry, the branch register is saved away into register R2, which is reserved for
this purpose. On exit, R2 is swapped back into the branch register, causing
control to be transfered back to outside the subroutine.
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;; Label Instr Args ; Pseudocode description
;; -------- ------ ---- ; ----------------------
1 subtop: BRA subbot ; MULT top.
2 mult: SWAPBR R2 ; Subroutine entry/exit point.
3 NEG R2 ; Negate offset to return to caller.
4 EXCH R2 R1 ; Push return offset to stack.
5 BRA alloc4 ; Allocate 4 empty registers (R28-R31).
6 ADDI R31 32 ; limit <- 32
7 ADDI R2 1 ; mask <- 1
8 looptop: BNE R30 R0 loopbot ; unless (position != 0) do
9 ANDX R28 R3 R2 ; bit <- m1&mask

10 iftop: BEQ R28 R0 ifbot ; if (bit != 0) then
11 SLLVX R29 R4 R30 ; shifted <- m2<<position
12 ADD R5 R29 ; product += shifted
13 SLLVX R29 R4 R30 ; shifted -> m2<<position
14 ifbot: BEQ R28 R0 iftop ; end if
15 ANDX R28 R3 R2 ; bit -> m1&mask
16 RL R2 1 ; mask <=< 1 (rotate left by 1)
17 ADDI R30 1 ; position++
18 loopbot: BNE R30 R31 looptop ; and repeat while (position != limit).
19 SUB R30 R31 ; position -> limit
20 ADDI R2 -1 ; mask -> 1
21 ADDI R31 -32 ; limit -> 32
22 RBRA alloc4 ; Deallocate 4 registers (R28-R31).
23 EXCH R2 R1 ; Pop return address.
24 subbot: BRA subtop ; MULT bottom.

25 alloctop: BRA allocbot
26 alloc4: SWAPBR R2 ; This sub-subroutine frees
27 NEG R2 ; 4 registers for use in the
28 ADDI R1 1 ; MULT subroutine. It leaves
29 EXCH R31 R1 ; the stack pointer pushed
30 ADDI R1 1 ; above, but we don’t mind.
31 EXCH R30 R1
32 ADDI R1 1
33 EXCH R29 R1
34 ADDI R1 1
35 EXCH R28 R1
36 allocbot: BRA alloctop

Figure 9.2: Hand-coded reversible assembly-language multiplication routine. The
registers used are documented in table 9.1.
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Register Variable name Purpose

R0 ZERO Constant zero.
R1 SP Stack pointer.
R2 SRO Subroutine return offset.
” mask Bit in some position 0–31.
R3 m1 Arg 1: First multiplicand.
R4 m2 Arg 2: Second multiplicand.
R5 product Arg 3: Product accumulator.
R28 bit A single bit of m1, in place.
R29 shifted bit, shifted to proper position.
R30 position Index of current bit position.
R31 limit Bit position limit (32).

Table 9.1: Registers used in the MULT routine shown in figure 9.2.

Line 3: NEG R2 This negates the subroutine return offset so that when we exit the
subroutine we will take exactly the opposite offset of the one that got us into
the subroutine, so that we will return to exactly the point where we were called
from.

Line 4: EXCH R2 R1 R1 is by convention the stack pointer. This instruction pushes
R2 onto the (presumed empty) top-of-stack location, so that R2 will be available
for use in calling further subroutines. (And also to be a temporary variable.)

Line 5: BRA alloc4 This is a call to the subroutine alloc4 (see lines 25–36) which
simply pushes the upper four registers onto the stack, so we may safely use
them for holding temporary values. (This is a “callee saves” register saving
convention.) Routines such as alloc4 may be shared by many subroutines.

Line 6–7: Here we just initialize a couple of registers. limit is just a constant 32
for use in the loop termination condition. mask is a bit, initially at position 0.

Line 8: fortop: BNE R30 R0 forbot This is the loop entry condition. The loop
is entered if the position variable is zero, which initially it is. Otherwise the
loop would be skipped over.

Line 9: ANDX R28 R3 R2 Simply extracts the desired bit from the first multipli-
cand.

Line 10: BEQ R28 R0 ifbot Skips the IF body if the extracted bit was zero.
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Line 11: SLLVX R29 R4 R30 Shifts the second multiplicand by an amount corre-
sponding to which bit of the first multiplicand we are currently multiplying
by.

Line 12: ADD R5 R29 Add the appropriately-shifted second multiplicand into the
accumulating product.

Line 13: Undo line 11 to clear register R29.

Line 14: Absorbs the transfer of control if the IF body was skipped.

Line 15: Undo line 9 to clear register R28.

Line 16: RL R2 1 Shift the bit-mask left to the next position.

Line 17: ADDI R30 1 Increment the position index.

Line 18: loopbot: BNE R30 R31 looptop Loop exit condition. If we’re not yet
at the position limit, then branch back to the loop top.

Line 19: SUB R30 R31 position is now equal to limit, so subtract limit out of
it to restore it to zero.

Lines 20–21: Uncompute the constants that we set up in lines 6–7. mask is 1 because
it has rotated from position 0 by 32 positions, back to position 0.

Line 22: RBRA alloc4 Reverse-call the register-allocation subroutine, to restore
the caller’s registers back off the stack.

Line 23: EXCH R2 R1 Pop return address back off the stack.

Line 24: subbot: BRA subtop Subroutine bottom: branch back up to subtop,

to get back to the entry/exit point.

Line 25–36: Register allocation subroutine. Alternates between incrementing the
stack pointer, and exchanging a register we want to use with the current stack
location. Effectively, pushes those registers onto the stack. They can be restored
from the stack later by calling the subroutine in reverse.

9.3.1 Discussion

The routine illustrates several of the general reversible programming techniques we
discussed in section 9.2. In particular, note the following points:
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• Subroutine calls are implemented using save/restore of the branch-register off-
set, and a single subroutine entry/exit point.

• Any registers we use to hold temporary values are always restored to zero when
we are finished with them.

• The subroutine works by accumulating the desired result in one of its arguments.
This product can later be uncomputed by simply calling the subroutine again
in reverse (using RBRA).

• Similarly, the auxilliary routine alloc4 is called in reverse at the end of the
MULT routine, in order to undo its earlier effects.

• An IF functionality is implemented via a matching pair of branches.

• A looping functionality is implemented using a pair of branches that determine
the entry and exit conditions for the loop.

• Note that although the routine uses order n repetitions of the inner loop (where
n = 32 is the word length), it only uses a constant amount of temporary storage,
just as an irreversible version would. This is a good example of an algorithm that
requires asymptotically no more space or time to do reversibly than irreversibly.

This concludes our discussion of reversible instruction sets. Many variations on the
above theme are of course possible, but the above discussion should address many of
the common underlying issues. More details would of course be necessary to support
features such as floating-point arithmetic, arithmetic overflows, and asynchronous
interrupts. But we believe that most of these features will be similarly straightforward
to implement reversibly.

9.4 Reversible programming languages

9.4.1 General issues

If we are seriously considering the implications of building a reversible computer, then
naturally we will want to investigate the possibility of programming that computer
in a high-level language, rather than directly in machine code.

One approach to high-level programmability would allow programs to be written
in a standard, irreversible programming language (for example, C) and then provide
an interpreter or translator that allows them to be run on a reversible architecture.
This would be straightforward, given the known general algorithms for simulation of
irreversible machines on reversible ones (see §3.3).
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However, this approach incurs a cost in terms of asymptotic inefficiency. As we
saw in chapter 3, general-purpose reversible simulations are expected to require in-
creased asymptotic time or space. However, for a particular problem, there may be
an alternative reversible algorithm that is either just as asymptotically efficient as the
original irreversible algorithm, or is only insignificantly less efficient. But an asymp-
totically good reversible algorithm for a problem cannot in general be expected to
be a straightforward translation of the best irreversible algorithm. It may require
a completely different structure. (For an example, see §9.5.5.) The programmer’s
ability to write asymptotically well-performing programs for the machine will in gen-
eral be crippled if its underlying reversibility is hidden from him/her. Since all the
known general-purpose simulation techniques incur at least polynomial asymptotic
overheads, writing efficient reversible programs requires exposing a universal set of
reversible constructs that incur no hidden asymptotic overheads, so that the program-
mer can explicitly manipulate information in a way that constitutes an asymptotically
good reversible algorithm for the problem at hand, an algorithm that no automatic
“reversibilizing” system could be expected to have discovered.

This leads to an approach wherein the input is allowed to be in a general irre-
versible language, but if a given program only uses a certain reversible subset of that
language’s constructs, then that program will be compiled in such a way that it incurs
no asymptotic overheads, compared to what the programmer could have written if he
were hand-coding in assembly language.

For example, if one is coding in C, but if assignment statements are eschewed in fa-
vor of reversible mutation statements such as +=, and if all local variables are asserted
(see the Unix assert(3) manual page) to be restored to zero before function return,
and if other assert()s are used to inform the compiler of loop entry conditions, and
if one avoids frequent use of dynamic memory allocation (because garbage collection
is irreversible; see [8, 7]), and overall if one’s programs are written essentially in a
style that looks basically like assembly language augmented with named variables,
nested expressions, and structured control-flow, then it should be possible to com-
pile the resulting programs to efficient reversible machine code without a need for
an ever-growing garbage stack, or other asymptotically inefficient run-time support
mechanisms.

Coding up a complete PISA-targeted compiler system for even a fairly simple
conventional programming language was deemed to be too time-consuming a goal to
fit within the scope of the present research project, especially given that there is no
commercial interest yet in reversible machines, and also that no lessons of even much
academic interest would be expected to be learned from such an exercise.

However, it was deemed feasible and useful to write a simple compiler for an
extremely simple toy programming language similar to a reversible subset of C. In
reference to the 1-letter programming language naming convention, we called our
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(defsub mult (m1 m2 prod)
;; Use grade-school algorithm:
(for pos = 0 to 31 ; For each of the 32 bit-positions,

(if (m1 & (1 << pos)) then ; if that bit of m1 is 1, then
(prod += (m2 << pos))))) ; add m2, shifted over to that

; position, into prod.

Figure 9.3: A simple, efficient multiplication routine in the R language. This is essen-
tially the same algorithm as that used in the hand-coded assembly-language routine in
figure 9.2 (p. 233). Note that the high-level code is much more concise. The compiler
(see §9.4.3) converts this routine into a sequence of 66 assembly code instructions:
not quite as concise as our 36-instruction hand-coded routine, but reasonable.

language “R.” 1

9.4.2 “R,” a reversible language

The essence of R is a very simple procedural C-like language based on machine-
supported fixed-precision integer arithmetic, with nested expressions, arrays, efficient
control flow statements, and with a Lisp-like (parenthesis-based) syntax for ease of
parsing. The user-level constructs in the current version of R are documented in
appendix C. To quickly illustrate what R code looks like, figure 9.3 shows a simple
multiplication subroutine.

R is not actually the first reversible high-level language. Recently, we learned
that around 1982, Chris Lutz and Howard Derby created a reversible programming
language called “Janus” for a class at CalTech. (Our source is a letter [114] from Lutz
to Rolf Landauer, describing the language.) It turns out that Janus’s feature set is
very similar to R’s, which is interesting given that the two languages were developed
entirely independently. However, Janus ran only under SIMULA on a DECSYSTEM-
20, and it may no longer exist anywhere in usable form.

Also, Henry Baker described a reversible Lisp-like language called “Ψ-lisp” in a
1992 paper [8]. Ψ-lisp was based on so-called “linear” functional languages, cf. [7],
which have the additional restriction that references must be conserved; there is
always exactly one pointer to any given storage cell. Ψ-lisp is theoretically interesting,
but it is not clear to us whether it constitutes an asymptotically efficient programming
language. Also, the reasons for and implications of linearity seem to us to be mostly

1After naming our R language, we learned there is a statistics package called “R”: see
http://www.ci.tuwien.ac.at/R/contents.html. So if our R ever hits the big-time, we may want
to rename it “RL”, or something, to avoid confusion.
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orthogonal to the reasons for and implications of reversibility.

9.4.3 The R compiler

In addition to specifying the R language, I also wrote a simple compiler for translating
R programs into assembly code executable on a certain version of the Pendulum
architecture. The main points of this exercise were (1) to demonstrate that the R
language, as envisioned, is easy to implement, and (2) to provide a convenient way
to create substantially-sized test programs for the Pendulum architecture.

Since both the Pendulum architecture and the R language design are in flux,
the compiler was written so as to make modifications very easy. The compiler is
written in Common Lisp, and works through a process similar to macro-expansion,
where high-level language constructs are broken down into sequences of lower-level
constructs, and the process finally bottoms out when the lowest-level constructs are
translated directly into assembly language instructions. This design makes it very
easy to add new high-level constructs, or change the compiler to support a different
low-level architecture.

The R compiler did indeed turn out to be completely straightforward to implement
(no surprises), and it was used to successfully compile a number of test programs,
which were run under a simulator for the Pendulum architecture. It would be easy
to extend the language and write more programs, if that were a priority.

The R compiler source code, internal constucts, and a brief usage summary are
given in appendix D. The source files can also be downloaded from http://www.ai.-
mit.edu/~mpf/rc/memos/M08/*.lisp.

9.5 Reversible algorithms

In this section we summarize what we have learned about efficient reversible serial
algorithms for a variety of problems in computer science and physics. These include
sorting, arithmetic, matrix operations, graph problems, and physical simulations.
Due mainly to a lack of time, we have not written down sample code for any of these
except our physical simulation (appendix E). An important area for future work is to
specify a broad range of reversible algorithms in complete detail, with sample code.
However in most cases the details are fairly obvious and straightforward.

We focus on serial algorithms in this section primarily for simplicity. To support
the long-term applications of reversibility in massively parallel computing, the devel-
opment of good reversible parallel algorithms (for a mesh architecture) for a variety
of problems would also be desirable.
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9.5.1 Sorting

Sorting a list in place is an inherently non-reversible operation, because information
is lost: namely, the original order of the elements. So in general, a reversible sort
must produce some extra garbage data. For arbitrary lists, the minimal worst-case
garbage is Θ(log n!) since that is the number of bits required to specify the original
permutation of the elements.

Simple insertion sort performs Θ(n2) comparisons in the worst case. Hall [81]
observed however that only O(n log n) garbage bits need be generated to run this
algorithm reversibly: n integers each O(log n) bits long telling how far each element
was moved down the list before being inserted in the proper place. If these numbers
are stored as variable-length bit-strings instead of fixed-length words, the garbage
space usage becomes Θ(log n!), exactly the minimum.

Similarly, we realized that any of the standard efficient Θ(n log n)-time compari-
son-based sorting algorithms, such as quicksort, are easy to turn into good reversible
algorithms, by simply saving away bits giving the result of each comparison, telling
whether two elements were exchanged or not on any given step of the algorithm.

Even radix sort, which takes Θ(n) time for n Θ(1)-size elements, can be easily
turned into an efficient reversible sort which takes Θ(n) time and produces Θ(n)
garbage.

9.5.2 Arithmetic

Addition or subtraction of one n-bit number into another can be performed reversibly
in Θ(n) time with no garbage data.

The simple Θ(n2)-time grade-school algorithm for multiplication (e.g., see fig. 9.3)
can also be performed reversibly with no loss in asymptotic efficiency, and no garbage
other than the operands (if they are no longer needed). If the multiplicands are
specified to be nonzero, then one of them can be uncomputed based on the product
and the other multiplicand, thus reducing the garbage further. (After computing the
product, the multiplicand can be uncomputed using Θ(n2)-time division.)

If the multiplicands are prime and sorted, then in principle both of them could be
uncomputed from the product reversibly, and the operation would create no garbage
(since the number of bits in the product will be roughly the sum of the number of
bits in the two multiplicands). However, since there is no known efficient classical
algorithm for factoring, doing this is in general very slow.

9.5.3 Matrices

Similarly, the simple Θ(n3) algorithm for multiplying n×n matrices can also be effi-
ciently reversible. If the left multiplicand is nonsingular, then the right multiplicand
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can be uncomputed given the product, reversibly and efficiently (Θ(n3)).

9.5.4 Searches

A systematic depth-first or breadth-first search of a tree can be carried out reversibly;
the nodes are visited in a particular sequence, and the prior node in the sequence can
be determined from the current node. So, for example, the naive SAT algorithm, of
generating and testing all possible assignments to the boolean variables, incurs no
additional asymptotic overheads when performed reversibly.

9.5.5 Graph problems

For the all-pairs shortest-path problem, one of the best algorithms is the Floyd-
Warshall algorithm, which takes time Θ(n3), space Θ(n2). This is an example of an
algorithm which appears to require asymptotically either more time or space when
performed reversibly. The reason is that the Floyd-Warshall algorithm performs
Θ(n3) irreversible updates of array elements in working storage, in the worst case.
Performing all those updates reversibly would thus require Θ(n3) temporary storage,
significantly worse than the original irreversible algorithm.

However, if one instead uses an alternative algorithm, of repeatedly “squaring”
a connectivity matrix between graph edges, then all-pairs shortest path can be per-
formed reversibly in time Θ(n3 log n) and space Θ(n2 log n)—only slightly worse than
the irreversible Floyd-Warshall algorithm on both time and space. Thanks are due
to F. Thomson Leighton and his collaborators for pointing out the high reversible
efficiency of this alternative approach, in personal discussions.

This example of the all-pairs shortest path problem illustrates how the best re-
versible algorithm for a problem might not necessarily correspond to a simple modifi-
cation of the best irreversible algorithm for that problem, which is why hiding the fact
of a machine’s underlying reversibility from the programmer (or algorithm designer)
is not a good idea.

9.5.6 Physical simulations

Direct, dynamic spatial simulation of reversible physical systems is often straightfor-
ward to perform reversibly with no asymptotic overheads compared to an irreversible
version of the simulation. This is true at least when the system model being simulated
is reversible. Since physics really is reversible at a low level, such models are often
appropriate, and can exhibit much more stable and realistic behavior than competing
irreversible dynamic models [75].
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x position →

Real part of wavefunction

Imaginary part of wavefunction

Probability distribution

Shape of potential well

0

0
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Figure 9.4: Example of an initial state of the Schrödinger wavefunction simulation.
A wave for an initially stationary electron is placed up along the side of a 1 Å wide
parabolic potential well. Its initial potential is approximately 4000 eV, relative to the
bottom of the well. (A very strong potential given the small size of this space!)

As an example, we wrote a reversible simulation of the evolution of a simple quan-
tum wavefunction according to Schrödinger’s wave equation (see figures 9.4 and 9.5
for example output). The original irreversible version of the algorithm behaved well
for a few hundred steps, but was eventually swamped by ever-growing artifacts of
the simulation technique. We then reimplemented our update rule so that it would
perform a perfectly reversible transformation of the wavefunction state on each step.
The artifacts disappeared; the system was never observed to blow up again even after
runs lasting millions of steps.

Moreover, the new version of the algorithm could be implemented under our re-
versible programming language in such a way that no garbage data would be accu-
mulated; the algorithm required only constant space on our reversible architecture,
independently of the number of simulation steps that were performed.

The mathematical derivation and code for the algorithm (in C, R and PISA ver-
sions) are given in appendix E.
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x position →
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wavefunction

Imaginary part
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Figure 9.5: The state of the simulated wavefunction of fig. 9.4 after ∼ 1000 simulation
steps, representing about 1

2
atto-second (5×10−19 sec) of physical time. The electron

wave packet has fallen to the bottom of the potential well, and is now moving to the
right at about 1

10
of the speed of light.
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9.6 Operating system issues

So far I have discussed reversible computer programming from the point of view
of running a single reversible program at a time. However, if we want to allow
for the possibility that eventually reversibility will, for one reason or another, be
in widespread use for general-purpose computing, then we should address the issue
of how users might be enabled to run multiple programs concurrently on a single
reversible computer, since this sort of multitasking has proven to be extremely useful
in current computer systems.

Running multiple programs concurrently is traditionally part of the job of an op-
erating system. In this thesis, we have not attempted to study how the wide range of
services provided by modern operating systems might be implemented on a reversible
computer, since we believe that most of these services would straightforward to imple-
ment reversibly (given our general purpose reversible-programming framework) and
thus would not be very interesting.

However, we now briefly examine how a multitasking facility might be imple-
mented on a reversible computer, since we know of some interesting problems associ-
ated with that goal.

If the multiple reversible programs are not interacting at all with each other, then
it appears straightforward to run them concurrently on a reversible processor. There
simply needs to be a mechanism for CPU control to be periodically transfered from
within the individual programs out to an external scheduler, which decides which
other program to run next, and makes the appropriate changes to machine state to
transfer control to within the body of that other program, in order to continue from
the point where that program left off.

One way to achieve this “escaping to the scheduler” would be to simply have the
compiler periodically insert in program code instructions that transfer control to the
scheduler. Timed hardware interrupts are also quite possible and straightforward.

In fact, even if the computer’s instruction set includes software control over the
direction of execution, and even if the running of individual programs involves those
programs switching the CPU direction, and running pieces of their code backwards
and forwards, it is still straightforward to integrate this activity with process switch-
ing, by having the scheduler keep track of which way the CPU was going when a
process was last being run, as part of the saved state of that process.

However, a problem arises if we wish to allow multiple concurrently executing
reversible programs to communicate with each other. Namely, what happens when a
program reverses over an I/O instruction that communicates with another reversible
process?

For example, suppose process A is running forwards and outputs a piece of data X
through a stream-like facility, and later the datum X is received by another process B,
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which is also running forwards. Then process A reverses CPU direction, and attempts
to undo the operating system call that sent X. How does the OS handle this situation?

Similarly, looking at the situation from B’s point of view, suppose B reverses and
undoes the call that received X, and then proceeds forwards again. Will the next
piece of data received be X again, or will it be the next datum produced by A after
it produced X? (We note that this question is related to the question of whether a
theoretical reversible finite automaton (RFA) should be defined as having a one-way
read-only input, as Pin defined it (see §3.3.2.2, p. 60), or as having a two-way input
with operations to both read and unread data.)

There are several possible answers to this question.

• Disallow reversing over I/O calls. Declare such an action to be illegal, an error.
However, this approach seems overly restrictive.

• Allow reversing over I/O instructions, but treat this as a no-op; don’t actually
undo the I/O action. This is like treating each process as if it were running on a
separate reversible processor, but with an irreversible communications channel.
This seems OK, but still limited.

• Finally, allow reversing over I/O instructions, but when this happens, actually
reverse the flow of data in the data stream. Reversing over output is just like
pulling back out the last thing that you output when running forwards; reversing
over input is like stuffing the last thing you input back into the pipe.

In future work we may experiment with all three options, and will perhaps think
of more. The third option seems the most interesting to explore, however. It raises
the further question of what happens when you attempt to reverse over an output
instruction, but the program at the other end of the pipe has already pulled out and
used the last datum X that you sent.

One possibility is that the program B is then forcibly reversed until it gets back
to the point where it received X, so that then X gets stuffed back into the pipe, and
A retrieves X (running backwards). However, this seems rude; it prevents B from
doing whatever it might have been planning to do with X before reversing over the
input instruction that got it.

Another possibility treats the situation more symmetrically. Suppose that revers-
ing over an instruction to output data to a stream really is exactly like getting input
from the stream—just like the stream were a totally symmetric, big, stretchy hose
where you can stuff things in either end, and get things from either end, but where
the things inside always remain in the same order relative to each other.

Well, then if you try to get a datum out, but there is no datum inside, then the
normal thing is to block and wait until the data is available. I.e., when A tries to
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reverse over its “output X” instruction, it blocks until B decides to reverse over its
“input X” instruction. This is just like what happens in a normal operating system
when you try to input from a stream when running forwards, and there is nothing in
the stream to be read.

This of course leads to still more problems. What if B pushes back into the pipe
a different value than the one that A originally sent? (This can happen whenever
programs have control over their own execution direction in a non-trivial way.) Pro-
gram A might not be expecting to get a different value back when he reverses over
his “output X” instruction; and so program A might not function as expected. (If
reversibility isn’t guaranteed at the hardware level, and we’re not careful, program
A might even fail to reverse properly, and may irreversibly dissipate information to
heat.)

All we can say about this problem at this point is that a communications mecha-
nism is not a communication protocol, and if we want multiple concurrent reversible
programs to communicate meaningfully with each other along reversible channels
such as this, we will have to describe more precisely what the intent of those com-
munications would be. It would help if we had in mind some particular candidate
application for which multitasking would be a useful abstraction.

9.7 Parallelism

Finally, we note that we have not said much so far about the design and programming
of parallel reversible computers. Of course, one can treat a parallel computer as just
a set of interacting serial computers, and program it that way. As long as reversible
I/O operations are provided, nothing need be broken. And, as we discussed in earlier
chapters, the processors could be organized into a mesh structure that would be very
regular, relatively easy to program, and asymptotically optimal.

However, even with the right physical architecture, programming a parallel system
as a set of independent interacting serial processes is very hard. It would of course
be nice to have a means to express parallel reversible algorithms at a high level, and
have a compiler do to the work of translating that high-level parallel algorithm into
sequential algorithms to run on the individual interconnected processors.

Such a language would allow us to easily express “physical” algorithms, specify-
ing the movements and interactions of whole “fields” of data extending through the
machine. The ideal language would somehow implicitly incorporate the realities of
physical constraints, such as that large amounts of data can not all be in the same
place at the same time. It might describe data operations in terms that traditionally
we associate more with physical processes: moving, sifting, mixing, separating, re-
combining, chemically reacting, etc. Such analogies become increasingly appropriate
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when the computing system is designed to admit the fact that information is con-
served (in the sense that its transformation are reversible), takes up space, and must
physically move from one place to another.

Programmers of such a “physical” programming system would use the skills of
a computer systems architect, or even those of a mechanical or industrial engineer,
such as an assembly-line designer, as well as the skills of a sequential program coder.
The programmer’s job would be to design a dynamic assembly line for information
within the real physical 3-D space of the machine. He would have an advantage
over the factory designer in that all parts of his “factory” (namely, the individual
processors) can be reprogrammed and reconfigured dynamically at will to serve his
needs. Also since the material being manupulated is just information, there are no
concerns with weight, structural support, etc. But there are still concerns about flows!
The information takes up space. Where does the unwanted information go when it
is no longer needed? The programmer would design pathways for the flow of both
useful information and garbage information through the machine.

Good programming tools might perform the detailed routing of these pathways
automatically, even dynamically as the system runs. But a good programmer should
still occasionally find that concerns with the physical nature of information come into
his thinking during the algorithm design process. The expert programmer should not
mind expanding his expertise to designing algorithms for the manipulation of infor-
mation considered as a conserved material-like thing, embedded in 3-D space. After
all, that is what information really is like. The ultimate, best-performing algorithms
can never be discovered by those who are afraid to step out of the imaginary serial,
random-access, bit-destroying world of programming that we have constructed for
ourseves up to now.
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Chapter 10

Alternative applications for
reversibility

Most of this thesis has focused on the benefits of reversibility that are gained through
its reduction of the energy dissipation of computation. However, full reversible oper-
ation may be useful for other reasons as well. In this short chapter we briefly survey
some of the possibilities.

10.1 Auditable/verifiable/trustable computation

One interesting application for full reversibility in a computer system is to assist in
meeting requirements for auditable or verifiable computation. This requirement exists
in at least two forms for which reversibility might be useful:

• It should be possible to determine, with high confidence, whether a transient
hardware error of some sort (e.g., a random bit-flip in memory) might have
occurred during a computation, to help us determine whether the result of the
computation can be considered valid.

• The system should ensure that any malicious intruder not having physical access
to the hardware is unable to destroy any information stored in the system, and
that the intruder’s presence and complete actions can always be determined
after the fact.

Let us examine how reversibility might be useful for helping to satisfy these re-
quirements.

249
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10.1.1 Detecting transient errors

Full reversibility could be used to detect transient hardware errors as follows. The
initial state for the computation is set up, and we record the entire initial state, or
if that is too large, a cryptographically secure hash of the entire initial state. Then
a computation is run, and produces some result. Then we reverse the processor
direction, and run in reverse, back to the initial state. Then we compare the state
with the stored state or the checksum. If there are any differences, then some error
must have occurred during the computation, and the result should be considered
untrustworthy.

If the processor is designed to guarantee reversibility at the hardware level, then
any differences in initial state will indicate that a hardware error occurred. However,
if the processor only guarantees reversibility under an assumption of the correctness
of some piece of software, then differences in initial state could indicate the presence
of either a hardware error or an error in that software.

Hardware errors. If the error is a transient hardware error due to some random
influence from the environment (such as a cosmic ray shower, perhaps), then it is very
unlikely that an error would be missed by this detection scheme, as this would require
two independent error events, one during the forward computation and one during
the reverse computation, that happened to cancel each other out so that the identical
initial state was reached even though the final result might have been corrupted.

If such a transient hardware error is detected, then the user can simply try running
the computation again, and repeat until the computation proceeds forwards and
backwards with no error being detected. In this way, a very high-confidence result
can always be obtained eventually, even if there is a significant probability of transient
hardware errors occurring during an individual run of the computation.

Of course, an alternative technique for detecting and correcting transient errors,
without resorting to reversibility, is to run multiple copies of a system side-by-side, or
run a single machine multiple times, and compare the results, and perhaps compare
the entire state at checkpoints along the way.

Reversibility may also be useful for detecting the presence of some kinds of perma-
nent hardware faults, since if the fault is permanent, then presumably the difference
between initial states would be the same each time. The time at which the fault
first makes itself felt could be rapidly determined by running forwards and backwards
for different lengths of time in a binary search pattern. Note, however, that some
permanent faults, such as a bitwise logical-complement instruction that consistently
fails to flip a certain bit (in both the forwards and reverse directions), may maintain
reversibility, and so will not be detected by the process of comparing initial states.

Note also that we will not necessarily catch transient or permanent hardware
errors if they affect the state-comparison process as well as (or instead of) the main
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computation.

Software errors. If the system does not guarantee reversibility at the hardware
level, the above technique will also catch those software errors that happen to lead
to forward computations that fail to match the corresponding reverse computations.
However, other kinds of software errors will not be caught. For example, if the system
compiler correctly guarantees that all programs will be correctly reversible, then any
errors in user programs compiled by that compiler will remain undetected by this
technique.

Note also that if we detect an error in reversibility that is a software error, then
an easy way to pinpoint its precise location is to run partial computations forwards
and backwards, and find exactly how far forwards you must go before the reversibility
of the system is corrupted. A binary search can be used to pinpoint the precise time
of the error after O(log(n)) partial computations, where n is the number of steps in
the entire computation. The machine state at this time can be examined to help
determine the cause of the error. This technique will be a useful tool in debugging
software that is intended to ensure reversibility on hardware that does not by itself
guarantee reversibility. However, this will of course incur the usual reversibility cost
of slower execution time, on traditional serial processors.

10.1.2 Logging or limiting effects of unwelcome intrusions

Suppose we have a requirement that any computer cracker that manages to get past
system security measures should (1) be unable to actually permanently destroy any
data, and (2) have the complete history of his actions on the system be determinable
once his interference is discovered.

A traditional approach to item 1 is to make backups of data and log user activities,
but this does not help if the cracker destroys data before it manages to get backed
up, or corrupts the backup software itself so that new data does not get backed up
properly.

However, if the system guarantees full reversibility at some level that is impossible
for the cracker to interfere with (e.g., at the hardware level), then by the definition
of reversibility, whatever actions he takes cannot permanently destroy any user data,
or any information that the cracker had input to the system in order to do his dirty
work.

Additionally, once the presence of the cracker is detected, the machine can be
disconnected from the network and reversed to recover any desired earlier state of
execution, and all of the cracker’s actions can be observed, and the clean state prior
to his break-in can be recovered.

However, note that reversibility does not protect us from the cracker’s corrupting
the system’s outputs after the time he breaks in. He could in general still alter the
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running state of the system so that it produced invalid or misleading data until his
interference is discovered, and its effects on the system are undone. Any inputs to
the system while it was in a corrupted state would have to be re-input once a clean
state is restored. All those inputs could be recovered by backing up over the time
after the cracker’s interference.

But this suggests an alternative technique for achieving the same protection with-
out requiring reversibility. Namely, one could simply have an incorruptible mechanism
for recording the initial state of the system (when it is first turned on in a clean-slate
state) and for recording every bit of information that flows into the system, including
any timing information, if that is important. If the system is deterministic, then that
stored information is sufficient for reconstructing the complete machine state at any
later time—the system is “reversible” in the sense that we could always back up to
the state at any earlier time by simply going back to the initial state and proceeding
forwards from there.

The obvious drawback to this technique is that if the system has been running
continuously for a long time, say a year, and we only want to back up a small amount,
we will have to spend another year to get up to the desired point. But then, the
obvious solution is to also have an incorruptible mechanism for checkpointing the
system state periodically, so that we can just go forwards from the last checkpoint.

In summary, although reversibility may be useful for tracing the activity of mali-
cious crackers, and preventing them from damaging any data, it is not theoretically
any better than just reliably recording the system’s initial state and all inputs. It
may or may not turn out to be easier to implement. Thus, this application is not, by
itself, a convincing justification for reversibility.

10.2 Program debugging

One interesting application of a reversible instruction set is that it makes it very
simple to write a bi-directional debugger, which allows stepping backwards as well
as forwards through a program. This feature eases the software debugging process,
since, when observing that the program is behaving incorrectly, one can simply run
in reverse from the point where the problem was first observed, to quickly trace back
through the preceding events that led to the errant behavior.

Our simulator for the Pendulum instruction set (written by Matt DeBergalis) has
the feature that one can step backwards as well as forwards through the program code,
while observing registers. The simulator is thus a simple example of a bi-directional
debugger, at the level of assembly instructions.

During the development of the compiler discussed in §9.4.3, these bi-directional
debugging capabilities proved very useful several times, for tracking down the causes



10.3. TRANSACTION PROCESSING AND DATABASE ROLLBACK 253

of incorrect program behavior caused by bugs in the compiler. During the compiler
development process, we were using a version of the Pendulum instruction set that
guaranteed reversibility independently of program well-formedness. This allowed the
bidirectional capabilities of the simulation/debugging envrionment to function even
when the compiler still had bugs. Incorrect program behavior was tracked backwards
in time until the instructions that had caused the inappropriate behavior were found,
at which point the compiler could easily be fixed.

So we have seen that a reversible computing capability can ease debugging. How-
ever, reversible computing is not strictly necessary for implementing a bi-directional
debugger. For example, Boothe (1998, [27]) describes algorithms that can be used
to implement bi-directional debugging environments for normal (irreversible) pro-
gramming languages. There are many other bi-directional debuggers as well; see for
example [172] and the references in [27]. One simple technique that is sometimes
used is to save periodic checkpoints of program state, and when stepping backwards,
just re-compute forwards from the previous saved checkpoint to reach the state of the
program at a desired time-point.

So, alhough pure reversible computing makes bi-directional debugging trivial, it is
not strictly necessary to compute reversibly in order to achieve this debugging capa-
bility. If one’s only requirement is bi-directional debugging, it might be easier to just
reinstrument an existing programming environment to achieve this directly, rather
than coming up with a full computing reversible computing system from scratch.

10.3 Transaction processing and database rollback

It seems that the operation of “rolling back” the effects of an aborted transaction,
which is common in some types of database systems, could possibly be implemented
on top of a more general framework for undoing the actions of inter-communicating,
reversible processes in a multitasking operating system for a reversible computer.

However, many details of this connection remain to be worked out; I can not yet
say with confidence that this sort of application for reversible processing makes sense.
Database rollback can already be performed quite well without requiring that the
computer system be reversible at all levels. It is not yet clear whether the requirements
of this application justify the sort of total, low-level reversibility that we have been
discussing.

10.4 Speculative execution in multiprocessors

Similarly, it appears that reversibility might be useful to coordinate the activities of
multiple CPUs which are running an underlying sequential algorithm in a parallel
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multiprocessing system. The individual CPUs might optimistically perform compu-
tations on data under the assumption that the data is valid (as in Knight’s paper
[90]), but when an inconsistency is detected, rather than restarting the processor’s
computation entirely, the processor might be reversibly rolled back to the point at
which it read the bad data, and then proceed from there using the new, correct data.

10.5 Numerical stability in physics simulations

Apart from the performance benefits discussed in previous chapters, there are some
advantages to using reversible algorithms when simulating physical systems. Re-
versibility is a sort of conservation law that is maintained in the real world, and so
should also be maintained in the simulation. The flow of information in the physi-
cal system can and should be mirrored by the flow of information in the simulation.
Failing to do this can lead to the simulated state of the system drifting farther and
farther from the set of states that are possible in the real system being simulated.

We saw this behavior in our simulation of the Schrödinger wave equation (§9.5.6,
p. 241). In the original irreversible version of the program, errors that crept into the
wavefunction would grow in amplitude without bound. The simulation could only
run for a certain amount of time before being swamped by ever-increasing artifacts in
the wave function and going completely haywire. The reversible version, in contrast,
although it was certainly not completely precise, always maintained a reasonably-
shaped wave function, and was never observed to become swamped out by artifacts.

Perhaps this makes sense because if the artifacts steadily grow in one time-
direction, then that would mean they would have to steadily decrease in the other
time-direction. But such asymmetry was unlikely since the reversible algorithm was
completely time-symmetric. So any artifacts that appeared could not grow unbound-
edly; they remained small relative to the desired wave data.

The advantages of reversibility in physical simulations are discussed further by
Margolus [115]. Note however that these advantages can be gained as long as the
simulation is simply reversible at the relatively high level of its state-update rule. The
low-level instructions and circuits in the computer need not be individually reversible
to obtain this improved simulation stability, although we saw in chapter 6 that doing
so confers an efficiency advantage in large parallel systems.

10.6 Alternative applications: Conclusion

Pure reversible computing has possible applications in areas such as verifiable com-
putation, intrusion detection and data protection, program debugging, transaction
processing, and physical simulation. However, in most of the cases we have considered
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so far, it seems that the same benefits that could be achieved using total reversibility
could be achieved using other, perhaps simpler, means as well; thus most of these
alternative applications are not, in and of themselves, convincing justifications for
the use of reversible computing technology.

However, if one has constructed a reversible system for other (e.g., thermody-
namic) reasons, then it is interesting to note that the various above capabilities fall
out as a side effect. But we must remember that these alternative applications apply
only if the system maintains full logical reversibility, but as we have seen in previous
chapters, depending on the computations being performed, full reversibility may not
be desirable from an asymptotic cost-efficiency standpoint. Even in our own reversible
3-D mesh model, the machine is allowed to be irreversible on its outer surface at least.
Unless free energy is very expensive in a given application, it will probably be cheaper
to generate some amount of permanent entropy and store it in the external universe,
than it is to provide enough reversible digital storage so that a very long computation
that is not inherently reversible can still be run perfectly reversibly.

Other applications for pure logical reversibility may yet be discovered, but at
this time it appears that the most promising application of reversible computing
technology will remain its selective use in making computation more cost-efficient by
various measures; thus, that application remains the focus of our research.
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Chapter 11

Conclusion and Future Work

In this chapter we summarize our conclusions and point to the important areas for
future research along the lines of this thesis.

11.1 Summary of Contributions

In this thesis, we have attempted to comprehensively survey the entire range of current
knowledge about reversible computing techniques, with an emphasis on the use of
these techniques to make computers more efficient in a variety of ways. In the course
of my own research in this area, I have discovered a substantial number of original
and very interesting results, the most important of which we summarize here:

• In the context of traditional models of computation, purely reversible models
appear to be asymptotically sub-optimal when both time and space costs are
considered. (§3.4)

• However, given our understanding of the fundamental constraints and oppor-
tunities for information processing implied by well-established laws of physics
(chs. 2,4), it becomes clear that those traditional models of computation lead to
scaling predictions that are either suboptimal or physically unrealistic. Based
on the constraints of physics, one can conceive of an ultimate physical model
of computation that gives exactly the asymptotically best scaling for all prob-
lems that is permitted by physics. We conjecture that the ultimate model must
take the form of some class of reversible 3-D mesh (either time-proportionately
reversible, ballistic, or quantum coherent). (Chapter 5)

• We show that any of the proposed varieties of reversible 3-D mesh are asymp-
totically strictly faster per unit area or per unit mass than any irreversible
physical computing architecture. The advantage per unit area grows with the
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square root of the reversible mesh thickness. However, the advantage per unit
mass of the non-quantum approaches is only a very small polynomial, growing
at best only with the 18th root of the number of processors. (Or 9th root, if
ballistic computation is possible.) (Chapter 6)

• We demonstrate that an asymptotically optimal reversible 3-D mesh could be
built today using existing commercial VLSI processes, by giving a complete cir-
cuit design for a proof-of-concept universal reversible mesh processing element
(FlatTop). Unfortunately, we also find that despite the superior asymptotic
scaling, reversible processing in VLSI is not competitive for supercomputing
applications at feasible cost levels. Tipping the scale would require the devel-
opment of much lower-resistance transistors. (Chapter 7)

• Fortunately, in the long term, a wide variety of advanced superconducting and
nano-scale logic device technologies have been proposed that would not only be
much faster than traditional VLSI, but would also entail much larger advantages
for reversible processing, since they are much more nearly ballistic than are
systems based on highly-resistive MOSFETs. Only a very thin layer (microns
to millimeters thick) of these future reversible devices would be needed in order
for the resulting machine to be faster per unit area than any possible irreversible
technology of any thickness . The advantages would continue to increase with
the square root of further increases in machine thickness. (Chapter 8)

• In order to take full advantage of the long-term efficiency benefits offered by re-
versible computing, it is required to use new microprocessor instruction sets and
new high-level programming languages, in order to permit the optimal reversible
algorithms to be expressed and executed with their intended efficiency. However,
the necessary changes are fairly straightforward. We presented some important
principles for reversible instruction sets, and a simple proof-of-concept C-like
programming language. Algorithms must in general also be redesigned to take
best advantage of the reversible paradigm. We give examples, including an
efficient reversible algorithm for simulating quantum mechanics. (Chapter 9)

• In addition to its thermodynamic advantages, pure reversible computing may
conceivably have applications in other areas such as audit trails, transaction roll-
back, and backwards debugging. However, after considering a number of such
possibilities, we have not found any very convincing benefits in areas other than
in increasing computational efficiency. For other applications, there seem to be
equally good solutions that do not require complete reversibility. (Chapter 10)

The upshot of all this is that substantially reversible computing techniques do
not seem to be immediately practical through the next 10 years or so of semiconduc-
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tor technology, but in the much longer term, as we move to a nano-scale computing
technology, the issues and techniques described in this thesis will be not only prac-
tical, but essential in order to make good use of the physical resources available for
computing. We can confidently predict that meter-scale and larger machines com-
posed of good nano-scale reversible components will be much faster, at many types of
problems, than any physically possible mostly-irreversible computer of any size. De-
signing and programming these superior machines will require processor architectures
and algorithms along the lines we have discussed.

Although the manufacturing technology does not yet exist to produce many of the
proposed future logic devices, with a bit of optimism, one can look at the present rate
of progress of technology, and see that it is at least a fairly good bet that at some
point, probably a few decades hence, that technology will exist, and we will need
to build computers with it. Based on that projection, it is worthwhile for computer
scientists to start thinking now about how to architect and program those machines,
and for device physicists to start thinking about how to improve their components
with the future reversible revolution in mind.

It is hoped that the research reported in this thesis will serve as an impetus to
that work, and a guide for future researchers starting out in this important area.

11.2 Major areas for future research

The future research that will be needed in reversible computing spans a wide variety
of disciplines.

Fundamental theoretical physics. In chapter 2 we saw that among the ulti-
mate physical limits on computation, the fundamental limits on entropy density (and
entropy flux) are currently not very well understood. (At least, I have not yet en-
countered a definitive statement of them.) For example, it is not clear to me what is
the maximum density with which entropy can be stored within normal atomic matter
at manageable temperatures, or whether there are other types of matter that might
achieve higher densities and still be useful. Entropy density limits determine en-
tropy flux limits, and thus are important for understanding the limitations of cooling
systems.

Another important area for theoretical physics is in further elucidating the physics
relating to quantum computing, devising better ways of avoiding decoherence, and so
forth.

Of course, it would also be nice to have a simple, complete, unified theory of
physics, rather than the somewhat incomplete picture we still have. It is possible
that with a complete theory, we might see some surprising new implications for the
fundamental limits of computation. Of course, pinning down a complete theory is
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the holy grail of theoretical physics, and physicists are already hard at work on this
problem.

Nano-scale device physics. There is of course also much need for work on design-
ing new physical devices that can be used as computational elements at the nanoscale,
devices that have the appropriate physical properties so that they can be operated
quickly in time-proportionately reversible fashion, with an entropy coefficient that is
low enough so that the devices are nearly ballistic. (One would like to not have to
start clocking the devices more slowly than their maximum speed until a very large
scale of machines.)

More difficult than just designing new devices is designing buildable devices, or
more broadly, designing economically feasible pathways for the development of future
manufacturing technology that will eventually lead to the ability to build the desired
devices. Fortunately, the entire field of nanotechnology (cf. [51, 41], and the journal
Nanotechnology) is already working hard in this direction, since it can be seen that a
flexible nano-scale manufacturing infrastructure would benefit society enormously in
ways that go far beyond just making faster computers.

Semiconductor device physics. Meanwhile, one direction to try to make effec-
tive reversible supercomputers would be to try to find ways to make lower-resistance
switches using more conventional fabrication technology. We saw that low-resistance
switches benefit adiabatic circuit techniques because they would decrease entropy
coefficients. However, they do not benefit traditional irreversible circuits as much
because the CV 2 switching energy is independent of switch resistance, and so a
dissipation-limited system will not go any faster beyond a certain point no matter
how fast its switches are. One promising approach to making lower-resistance switches
might be to make smaller, faster micro-electromechanical relays. Other approaches
might be possible.

Resonant power supplies. Another element that would be needed for good, scal-
able adiabatic circuits is a good resonant power supply. Currently, we do not know of
a resonant supply technique that has a high Q, the desired scaling properties, and can
provide the desired waveforms. Becker and Knight’s technique [12, 13] comes close,
but the scaling seems not quite right. It might be that the desired scaling isn’t pos-
sible, in which case adiabatic circuits overall might not scale as well asymptotically
as reversible circuits based on other types of devices.

Adiabatic circuit designs. If lower-resistance switches and good resonant power
supplies can be found, the adiabatic circuit approach to reversible computing might
become attractive enough so that it is worth some effort to try to find an adiabatic
logic circuit family that is simpler than SCRL, while still providing all of SCRL’s
desirable features. SCRL already seems pretty good, but a further improvement by
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a small constant factor might still be possible.

Reversible architectures. Independent of the precise logic technology used, work
can already be done on designing better reversible processor architectures. Our proof-
of-concept FlatTop chip was not designed to be easy to program. Vieri’s Pendulum
architecture [179, 178] is much better, but further improvements in the efficiency of
the design are likely possible. For use in parallel mesh architectures, a processor
including hardware support for routing might be desirable.

Reversible programming languages. Our proof-of-concept R programming lan-
guage was intentionally extremely simple. It would be interesting to have reversible
versions of more sophisticated programming languages with more advanced features.
However, one should be careful when choosing a programming language that it does
not necessarily impose any asymptotic inefficiencies compared to programming in
raw machine language. Constant-factor overheads are acceptable, but if the language
is asymptotically inefficient, then to some degree it ruins the point of developing a
reversible architecture to begin with.

Mesh programming languages. Traditional programming languages are tied to
the idea of a uniprocessor architecture, and do not help much in expressing effective
parallel algorithms. In order to concisely express reversible 3-D mesh algorithms, it
would be nice to have a language in which one could express algorithms at the level
of specifying where information is located in 3-D space, how it should flow around
the system as it is computed and uncomputed, and so forth.

Given the ultimate physical nature of information, we suspect that a good parallel
programming language should have a bit of the flavor of a language for specifying
the detailed design and layout of a complex assembly line in a factory, in which
physical objects (data structures) are assembled and disassembled (computed and
uncomputed), and must physically move from place to place, at bounded speeds
(no more than c), without ever occupying the same space as each other (consuming
more memory than is available at a given node). Moreover, like in a factory, one
has to route power to the subsystems, and provide ventilation and cooling systems
to remove unwanted heat (entropy)—except that in a reversible mesh architecture,
the entropy could be moved out of the system while it is still in digital form, if
this is beneficial. Moreover, the production of unwanted entropy could be kept to
a minimum by uncomputing objects that are no longer needed, rather than, say,
“melting them down” to the “raw material” of free memory—which is an appropriate
physical analogy for what we do when we overwrite memory that contains a data
object.

Unlike in a factory, however, the structure of the manufacturing machines (pro-
grams) in the mesh computer would be relatively easy to reconfigure dynamically, un-
der program control. They could replicate themselves at will, and move around freely
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from one part of the factory to another. At the programming level in the computer,
one need not worry about factors such as gravity, strength of materials, vibrations,
and wearing out of parts. (Hopefully, the bottom-level logic devices are sufficiently
reliable enough and/or the architecture fault-tolerant enough that the programmer
does not have to worry about failure of the underlying physical components.)

Reversible manufacturing. The above analogy between computing and manu-
facturing also suggests the intriguing idea that in future nanomechanical factories,
one might also apply reversible computing principles to manufacturing. In a real
nano-scale factory that is producing nano-scale components, from time to time, tem-
porary structures may need to built. The system will be able to operate with less
heat dissipation, and thus faster overall, if it uses a knowledge of how a temporary
structure was built when disassembling it. If the structure of an atomically-precise
object is known precisely, it can theoretically be disassembled to raw materials with
no production of entropy. In contrast, disassembling the temporary object using a
general approach with no knowledge of the object’s structure is bound to be wasteful.

An analogy from everyday experience: when the face of a tall building is repaired,
often the contractor will construct a temporary scaffolding, in a regular structure, to
aid the work. When the work is finished, they carefully unscrew the pipes making up
the scaffolding, in an appropriate order, dissassembling the scaffolding piece by piece.
An alternative approach would be to just knock down the whole scaffolding, break it
into pieces, melt it down, mold new pipes, and rebuild it next time from scratch. But
of course this would be much less energy-efficient.

The same basic principle could be applied in manufacturing at all scales. For very
fast nano-scale systems where heat removal is a major concern, this principle would
be essential for allowing as many nano-manufacturing operations as possible per unit
time, per unit of outer surface area.

Reversible mesh algorithms. Finally, even given a good programming language,
one is still left with the task of designing good algorithms for all the computationally
expensive problems that one encounters. As we saw in ch. 9, in general the best
reversible algorithm for a problem might not be derivable from the best irreversible
algorithm in a straightforward way. The same applies to mesh algorithms. If we wish
to find the truly best algorithms for solving very hard problems, we should be working
on algorithms for reversible 3-D mesh architectures. (And as we saw in ch. 4, perhaps
the algorithms should be quantum coherent as well.) It would be very interesting and
useful to compile a catalog of the best classical (and quantum) reversible 3-D mesh
algorithms that can be devised for a variety of the hard, data-intensive problems that
have historically motivated the development of massively parallel supercomputers.
That way, once we have developed the technology to start building computers based
on high-quality reversible nano-scale components, we will already have a good idea
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of how to use them effectively.

11.3 Final words

In closing, we hope that this thesis has shed a revealing new light on an fascinat-
ing area of computer science, reversible computing, an area that has previously been
somewhat obscure, and not very well-understood. We hope that this work will con-
tribute significantly to an eventual consensus in the computing community that it is
worth the effort to design and build new types of nano-scale physical logic devices
with reversible usage in mind, and to develop and study reversible algorithms to run
on the massively parallel reversible meshes that we will someday be able to construct.

It is our fervent hope that such a consensus will arrive sooner rather than later, in
order to facilitate a more rapid evolution towards the reversible computing revolution
that must eventually occur. By enabling vastly more efficient computing, reversible
computing techniques should greatly facilitate many amazing feats of technological
and social progress that we expect and hope our civilization will accomplish, over the
course of the new millenium that is about to dawn.
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Appendix A

FlatTop processor schematics and
layouts

This appendix gives the detailed Cadence schematics and layout for the FlatTop
universal parallel reversible processor which we discussed in §7.7. These diagrams
were also included in our conference paper [72].

A.1 High-level blocks

Figure A.1 shows a schematic block diagram of a single processing element cell. Note
the three blocks, one for each of the three stages in the 3-phase SCRL pipeline which
makes up the logic of the cell. The lollipop-shaped icon above each stage represents
the set of swinging supply rails, in a particular phase, which drive the stage adiabati-
cally. The cell has four inputs A, B, C, D which come from the four neighboring cells,
and four corresponding outputs which go back out to those cells.

The SHIFT in and out signals are global signals shared by all cells; they tell the
cells whether to operate in initialization mode or normal mode. In initialization mode
the array of cells behaves as a shift register, and the array contents may be shifted in
and out; in normal mode, the array just obeys the BBMCA update rules.

The boxes attached to the input are for setting initial conditions during HSPICE
simulation of the circuit.

Figure A.2 shows our schematic icon representing an entire processing element.
The icon portrays the 2×2 block of BBMCA cells which the PE is updating, with
the PE inputs and outputs placed in the appropriate cells. The cell grid is rotated 45
degrees from the representation in fig. 7.19 to show how the CA array is orientated
with respect to the edges of the chip. With this orientation, the array of processing
elements can communicate along pathways that run parallel to the chip edges, making
layout easier.
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Figure A.1: Cadence schematic block diagram of the FlatTop PE cell. The three
blocks are the 3 SCRL logic stages, each clocked by a separate set of clock rails,
indicated by the “lollipop” icons above the blocks, whose phases are offset by 1/3
cycle from each other.

Figure A.2: Icon for a single FlatTop cell. The depiction graphically illustrates the
block of 4 CA cells, oriented by 45◦ to the inter-PE wiring, that is updated by the
PE. The two terminals in each cell connect to and from the neighboring PE in the
given direction, whose icon is overlapped with this one, as a reminder that the two
PEs take turns updating the same CA cell.
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Figure A.3 shows one corner of an array of these processing elements. In the upper
left corners are pathways used for initialization and reading out the whole array when
used as a shift-register. Along the edges of the array are edge cells which provide
connections to pins, allowing the chip to communicate with other chips during normal
operation. There are not enough pins to allow communication everywhere along the
edge, so in other places the wires at the edge just loop around to feed back into the
array. Every PE receives the global shift signals, which run horizontally.

Figure A.4 shows the entire 20×20 array of processing elements which we fabri-
cated for testing purposes.

A.2 Detailed gate schematics

Below are the schematics for the logic in the three stages of each cell. We have
not yet had time to size the transistors in our design so as to minimize power, but
within each gate, we have, for uniformity, sized its transistors so that the worst-case
conductances are the same as that of an inverter with a minimum-width n-FET and
a twice-minimum-width p-FET.

Figure A.5 shows the logic in stage 1 which computes the inverses of the inputs,
together with the inverse of the S (static) signal used in stage 2. Note that S is
turned on when in sh (shift) mode. This special case was added to support array
initialization.

Figure A.6(a) shows the gate used for computing each second-stage output. The
forward part of stage 2 includes four repititions of this gate, differing as to which
inputs are fed to the A,B, C, D pins, plus 6 “fast” inverters for generating the
A, B, C, D, S, shift signals from their inverses using the fφ2 and fφ2 rails, plus one
other inverter for generating S on the stage 2 output.

Finally, figure A.6(b) shows the gate that is repeated four times (with different
pin assignments) in the forwards part of stage 3. This gate selects either A or the
bit in the opposite corner of the block for passing through to the output, depending
on sh. Thus if sh is on, input bits go to the opposite output bits, enabling the array
as a whole to act as one large shift register, which can be used to initialize the array
contents.

A.3 Cell layout

Figure A.7 shows the complete layout of a single PE cell. For clarity, the metal3 rails
that run vertically across the entire cell are not shown. The cell measures 167.6 µm
× 91.3 µm.
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Figure A.3: Schematic diagram of the upper-left corner of a large array of FlatTop
processing elements. The rows and columns of cells of CA array being simulating can
be seen running diagonally across the array. You can see how the PE icons (fig. A.2)
are overlapped to represent the shared management of each CA cell. Meanwhile,
clock-power signals are strapped horizontally across the array. Periodically along the
edge of the array are units for inter-chip communication. Other signals along the
edges are simply wrapped around to a neighboring edge cell. The buffers in the far
upper left corner provide initialization and readout capabilities.
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Figure A.4: Schematic block diagram of the full 20×20 array of FlatTop processing
elements which we fabricated on each die. This simply extends the structure shown
in fig. A.3.
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Figure A.5: Stage 1 logic, S = sh + (A + C)(B + D).
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(a) (b)

Figure A.6: (a) Gate for computing Aout in stage 2. (b) Gate for computing A′ =

sh A + sh C in stage 3.

Figure A.7: Complete layout of a single FlatTop PE cell, except for metal3 layer.
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Appendix B

The Pendulum instruction set
architecture (PISA)

This appendix gives a detailed description of the assembly language instruction set
for the Pendulum reversible microprocessor currently being fabricated by Carlin Vieri
[178]. Some reversible instruction set issues encountered during the development of
this instruction set (which I assisted Vieri with) were discussed in §9. The version of
the instruction set described here was the target for the compiler described in §9.4.3
and appendix D.

Vieri’s thesis describes these instructions at a more detailed level, that gives the
precise instruction word layout for purposes of machine code assembly and instruction
decoding in his real hardware implementation. For our purposes of testing compiler
techniques, such details were unimportant. Thus, in this reference we only describe
the instructions from an assembly language programmer’s point of view.

B.1 Overall organization

The PISA instruction set can be divided into three categories: reversible artih-
metic/logical operations, ordinary branch instructions, and special instructions.

The set of arithmetic/logical operations is designed to be logically complete, yet
purely reversible. To achieve this, the results of operations are generally XOR’ed into
separate destination registers, an operation which can be inverted by simply repeat-
ing it. Certain “non-expanding” operations can be performed reversibly without a
separate destination register.

As for the branch instructions, these are designed to be used in pairs, where
each branch instruction points to a corresponding branch that points back to the
original instruction, as per the discussion in §9.2.2. Given this, one way to implement
branches reversibly is to have the branch instruction add its offset into a special
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Key:
rsd,rt = 5-bit register identifier.
No-Op if rsd is same reg as rt.

imm,amt = 16 bit signed immediate
[imm] = imm sign-extended to 32 bits

"Non-expanding" arith./logical operations:

Mnem. Args. Forwards behavior
----- --------- ---------------------
NEG rsd rsd = -rsd
ADD rsd,rt rsd += rt (mod 2^32)
ADDI rsd,imm rsd += [imm] (mod 2^32)
SUB rsd,rt rsd -= rt (mod 2^32)
XOR rsd,rt rsd ^= rt
XORI rsd,imm rsd ^= [imm]
RL rsd,amt rsd = rsd rol amt
RLV rsd,rt rsd = rsd rol rt
RR rsd,amt rsd = rsd ror amt
RRV rsd,rt rsd = rsd ror rt

Figure B.1: “Non-expanding” arithmetic/logical operations in the 32-bit simula-
tor/compiler version of the PISA instruction set.
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Key:
rd,rs,rt = 5-bit register identifier.
No-Op if rd is same reg as rs or rt.

imm,amt = 16 bit signed immediate
[imm] = imm sign-extended to 32 bits

"Expanding" arith./logical operations:

Mnem. Args. Forwards behavior
----- --------- ---------------------
ANDX rd,rs,rt rd ^= rs&rt
ANDIX rd,rs,imm rd ^= rs&[imm]
NORX rd,rs,rt rd ^= ~(rs|rt)
ORX rd,rs,rt rd ^= rs|rt
ORIX rd,rs,imm rd ^= rs|[imm]
SLLX rd,rs,amt rd ^= rs<<amt
SLLVX rd,rs,rt rd ^= rs<<rt
SLTX rd,rs,rt rd ^= (rs<rt)?1:0
SLTIX rd,rs,imm rd ^= (rs<imm)?1:0
SRAX rd,rs,amt rd ^= rs>>amt
SRAVX rd,rs,rt rd ^= rs>>rt
SRLX rd,rs,amt rd ^= (unsigned)rs>>amt
SRLVX rd,rs,rt rd ^= (unsigned)rs>>rt

Figure B.2: “Expanding” arithmetic/logical operations in the PISA instruction set.
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Key:
rd,ra,rb = 5-bit register identifier.
off = 16 bit signed offset
loff = 26 bit signed offset
dir = +1/-1 bit where +1=forward, -1=reverse
BR = internal "branch register"

Branch instructions:

BEQ ra,rb,off if ra=rb, BR+=off*dir
BGEZ rb,off if rb>=0, BR+=off*dir
BGTZ rb,off if rb>0, BR+=off*dir
BLEZ rb,off if rb<=0, BR+=off*dir
BLTZ rb,off if rb<0, BR+=off*dir
BNE ra,rb,off if ra!=rb, BR+=off*dir
BRA loff BR+=loff*dir
RBRA loff dir=-dir, BR+=loff*dir
SWAPBR r r<->BR

PC update between instructions:
if (BR=0) pc+=dir else pc+=BR*dir

Memory & I/O instructions:

EXCH rd,ra rd <-> mem[ra]
READ ra ra ^= next word from input str.
SHOW ra Copies ra to output stream.
EMIT ra Emit ra to garbage stream.

Figure B.3: Branching, memory access, and input/output operations in the PISA
instruction set.

“branch register” which is normally zero. Between instructions, if the branch register
is non-zero, the program counter increments by the branch register value, instead of
by the normal 1 instruction. Then the branch at the destination executes, canceling
out the value stored in the branch register and resuming normal execution.

In this scheme, even if the programmer forgets to put in the branch at the destina-
tion, the resulting behavior will still be reversible. But it will not be useful behavior:
the program counter will jump forward through the program in repeated leaps, of size
equal to the original offset.

To implement subroutine calls, the branch destination can be the special SWAPBR
instruction, which exchanges the branch register with an empty register. The body of
the subroutine negates the register, so when the subroutine hits the next SWAPBR
it branches back to the location it came from; the branch at that location cancels out
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the branch register and the processor continues sequentially. SWAPBR can also be
used in a complementary way to perform switch statements.

All memory access happens through the EXCH instruction which exchanges a reg-
ister with a variable memory location. There is an interesting case here, in which an
EXCH instruction tries to exchange itself with a memory location. The machine can
be designed to do nothing in such a case. Or, if the instruction fetch/unfetch mech-
anism works via an exchange, the register will actually be exchanged with the single
constantly-moving value that sits in the instruction register between instructions, and
in the current PC location in memory during instructions.

The processor direction can be reversed in software using the special RBRA (re-
versing branch) instruction, which toggles the processor direction bit while it is per-
forming BRA functionality. This allows subroutines to be called either forwards or
in reverse, thus reducing the need for repeated code.

Special instructions to perform reversible output are also available—the SHOW
instruction which just exports a copy of a register, and the EMIT instruction which
actually reversibly sends the information in the register out of the processor to what-
ever system it is embedded in. Input instructions could also be defined, and there
could be two types: a SEE instruction which just XOR’s an input word into a regis-
ter, but does not consume it (the external system would be responsible for disposing
of the original) and a TAKE instruction which would reversibly consume the outside
information and bring it into a register, would have to be initially clear. Another
option would just be a single IOEX instruction which simply exchanges a register
with the value currently present in the external I/O system, which could then move
the old value to its output, and move a new value into place from its input.

Finally, there are START/FINISH instructions for marking the start/endpoints of
programs when running in the simulation environment. Presumably, a real processor
would always be running its operating system, and would never need to halt.

Let us now give all the instructions, in a reference format.

B.2 List of Instructions

Figures B.1, B.2, and B.3 list the name, arguments, and forwards behavior of all the
instructions in the 32-bit version of the PISA instruction set that was used in the
Pendulum simulator and the R language compiler.
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B.3 Arithmetic/logical ops

ADD Add one register into another.

Usage: ADD regd regs

Arguments:

regd — The destination register.

regs — The source register.

Description:

Adds the value of register regs into register regd, that is, modifies regd be equal
to the previous value of (regd + regs) mod 232. Note that this operation is inherently
reversible, no matter the previous values of regd and regs. It is inverted by SUB with
the same arguments.

ADDI Add an immediate value into a register.

Usage: ADDI regd imm

Arguments:

regd — The destination register.

imm — The immediate value to be added into regd.

Description:

Sign-extends the immediate 16-bit value imm to 32 bits and adds it into regd.
That is, regd ← (regd + imm) mod 232. Note that this operation is inherently re-
versible, no matter the previous value of regd. It is inverted by another ADDI with
the immediate value negated, or by doing NEG of regd followed by the identical
ADDI, followed by another NEG of regd.

ANDX Exclusive-OR the result of an AND into a register.

Usage: ANDX regd regs1 regs2

Arguments:



B.3. ARITHMETIC/LOGICAL OPS 281

regd — The destination register.

regs1 — The first source operand.

regs2 — The second source operand.

Description:

Computes the bitwise logical AND of the contents of regs1 and regs2, and exclusive-
OR’s the result into register regd. That is, regd ← regd ⊕ (regs1 ∧ regs2). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again. Note
also that plain AND may be emulated by letting regd be a register that was previously
0. ANDX corresponds to 32 Toffoli gates operating in parallel on the corresponding
bits of the 3 operands.

ANDIX XOR an AND with an immediate value into a register.

Usage: ANDIX regd regs imm

Arguments:

regd — The destination register.

regs — The source register.

imm — The immediate value to AND with.

Description:

Like ANDX, except the source register is AND’ed with the immediate value imm
instead of with a second source register.

NORX Exclusive-OR the result of a NOR into a register.

Usage: NORX regd regs1 regs2

Arguments:

regd — The destination register.

regs1 — The first source operand.

regs2 — The second source operand.

Description:
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Computes the bitwise logical NOR of the contents of regs1 and regs2, and exclusive-
OR’s the result into register regd. That is, regd ← regd ⊕ (regs1 ∨ regs2). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again.

For no particular reason, there are no corresponding NORIX, NANDX, or NAND-
IX instructions. I believe this was just to keep the instruction set smaller. But NORX
itself is not strictly necessary either, since one can emulate it by using ORX and then
XORI’ing −1 into the result.

NEG Two’s-complement negate the given register.

Usage: NEG regsd

Arguments:

regsd — The source/destination register.

Description:

Replace the contents of regsd with its (two’s complement) negative. That is,
regsd ← (232 − regsd) mod 232. Note that this operation is inherently reversible. It is
its own inverse.

ORX Exclusive-OR the result of an OR into a register.

Usage: ORX regd regs1 regs2

Arguments:

regd — The destination register.

regs1 — The first source operand.

regs2 — The second source operand.

Description:

Computes the bitwise logical OR of the contents of regs1 and regs2, and exclusive-
OR’s the result into register regd. That is, regd ← regd ⊕ (regs1 ∨ regs2). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again. Note
also that plain AND may be emulated by letting regd be a register that was previously
0.

ORIX XOR an OR with an immediate value into a register.
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Usage: ORIX regd regs imm

Arguments:

regd — The destination register.

regs — The source register.

imm — The immediate value to AND with.

Description:

Like ORX, except the source register is AND’ed with the immediate value imm
instead of with a second source register.

RL Rotate a register left by a fixed number of bits.

Usage: RL regsd amt

Arguments:

regsd — The source/destination register.

amt — The immediate number of bits to rotate by.

Description:

Rotate the bits in register regsd left (that is, in the direction from least-significant
positions to most-significant positions) by the given number of places (0-31). Bits
rotated off the left end of the word rotate back onto the right end. RL is inherently
reversible; it is inverted by RR amt, or by RL’ing by the amount (32− amt) mod 32.

RLV Rotate a register left by a variable number of bits.

Usage: RLV regsd regt

Arguments:

regsd — The source/destination register.

regt — The register giving the number of bits to rotate by.

Description:
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Rotate the bits in register regsd left (that is, in the direction from least-significant
positions to most-significant positions) by the number of places given by regt mod 32.
Bits rotated off the left end of the word rotate back onto the right end. RLV is
inherently reversible; it is inverted by RRV.

RR Rotate a register right by a fixed number of bits.

Usage: RR regsd amt

Arguments:

regsd — The source/destination register.

amt — The immediate number of bits to rotate by.

Description:

Rotate the bits in register regsd right (that is, in the direction from most-significant
positions to least-significant positions) by the given number of places (0-31). Bits
rotated off the right end of the word rotate back onto the left end. RR is inherently
reversible; it is inverted by RL amt, or by RR’ing by the amount (32− amt) mod 32.

RRV Rotate a register right by a variable number of bits.

Usage: RRV regsd regt

Arguments:

regsd — The source/destination register.

regt — The register giving the number of bits to rotate by.

Description:

Rotate the bits in register regsd right (that is, in the direction from most-significant
positions to least-significant positions) by the number of places given by regt mod 32.
Bits rotated off the right end of the word rotate back onto the left end. RRV is
inherently reversible; it is inverted by RLV.

SLLX XOR with result of shifting a register left logically by a
fixed number of bits.

Usage: SLLX regd regs amt
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Arguments:

regd — The destination register.

regs — The source register.

amt — The immediate number of bits to shift by.

Description:

Logically shifts the given register left by amt, filling in 0’s on the right, and XOR’s
the result into the destination register regd. Note that since the shift operation is
information-losing, we cannot put the result back into the same register. Instead, we
XOR the result into a register as with NANDX and other operations.

SLLVX XOR with result of shifting a register left logically by a
variable number of bits.

Usage: SLLVX regd regs regt

Arguments:

regd — The destination register.

regs — The source register.

regt — Register specifying amount to shift by.

Description:

Like SLLX but with a variable number of bits. See RLV.

SRAX XOR with result of shifting a register right
arithmetically by a fixed number of bits.

Usage: SRAX regd regs amt

Arguments:

regd — The destination register.

regs — The source register.

amt — The immediate number of bits to shift by.

Description:
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Arithmetically shifts the given register right by amt, filling in with copies of the
leftmost bit, and XOR’s the result into the destination register regd. Note that
since the shift operation is information-losing, we cannot put the result back into the
same register. Instead, we XOR the result into a register as with NANDX and other
operations.

SRAVX XOR with result of shifting a register right
arithmetically by a variable number of bits.

Usage: SLLVX regd regs regt

Arguments:

regd — The destination register.

regs — The source register.

regt — Register specifying amount to shift by.

Description:

Like SRAX but with a variable number of bits. See RLV.

SRLX XOR with result of shifting a register right logically by
a fixed number of bits.

Usage: SRLX regd regs amt

Arguments:

regd — The destination register.

regs — The source register.

amt — The immediate number of bits to shift by.

Description:

Logically shifts the given register right by amt, filling in 0’s on the left, and XOR’s
the result into the destination register regd. Note that since the shift operation is
information-losing, we cannot put the result back into the same register. Instead, we
XOR the result into a register as with NANDX and other operations.

SRLVX XOR with result of shifting a register right logically by
a variable number of bits.



B.3. ARITHMETIC/LOGICAL OPS 287

Usage: SRLVX regd regs regt

Arguments:

regd — The destination register.

regs — The source register.

regt — Register specifying amount to shift by.

Description:

Like SRLX but with a variable number of bits. See RLV.

SUB Subtract one register from another.

Usage: SUB regd regs

Arguments:

regd — The destination register.

regs — The source register.

Description:

Subtracts the value of register regs from register regd, that is, modifies regd be
equal to the previous value of (regd − regs + 232) mod 232. Note that this operation
is inherently reversible, no matter the previous values of regd and regs. It is inverted
by ADD with the same arguments.

XOR Exclusive-OR one register into another.

Usage: XOR regd regs

Arguments:

regd — The destination register.

regs — The source register.

Description:

Exclusive-OR regs into regd, that is, sets regd equal to regd ⊕ regs. This is a
self-reversible operation.

XORI Exclusive-OR an immediate value into a register.
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Usage: XORI regd imm

Arguments:

regd — The destination register.

imm — The immediate value to XOR with.

Description:

Exclusive-OR the 16-bit immediate value imm into regd, that is, sets regd equal
to regd ⊕ imm. Self-reversible.

B.4 Ordinary branches

BEQ Branch if equal.

Usage: BEQ rega regb off

Arguments:

rega, regb — Registers to compare.

off — Immediate offset.

Description:

If the contents of registers rega and regb are equal, arrange to branch to an in-
struction off steps ahead of the current instruction. That is, add the signed 16-bit
value off into the branch register. The destination must be a branch pointing back
to the current location, or a SWAPBR.

BGEZ Branch if greater than or equal to zero.

Usage: BGEZ rega off

Arguments:

rega — Register to compare.

off — Immediate offset.

Description:
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If the value in register rega, interpreted in two’s complement form, is greater than
or equal to zero (that is, if its high bit is 0), then branch to an instruction off
steps ahead of the current instruction. That is, add the signed 16-bit value off into
the branch register. The destination must be a branch pointing back to the current
location, or a SWAPBR.

BGTZ Branch if greater than zero.

Usage: BGTZ rega off

Arguments:

rega — Register to compare.

off — Immediate offset.

Description:

If the value in register rega, interpreted in two’s complement form, is greater than
zero (that is, if it is not zero but its high bit is 0), then branch to an instruction off
steps ahead of the current instruction. That is, add the signed 16-bit value off into
the branch register. The destination must be a branch pointing back to the current
location, or a SWAPBR.

BLEZ Branch if less than or equal to zero.

Usage: BLEZ rega off

Arguments:

rega — Register to compare.

off — Immediate offset.

Description:

If the value in register rega, interpreted in two’s complement form, is less than or
equal to zero (that is, if it is zero or its high bit is 1), then branch to an instruction
off steps ahead of the current instruction. That is, add the signed 16-bit value off
into the branch register. The destination must be a branch pointing back to the
current location, or a SWAPBR.

BLTZ Branch if less than zero.
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Usage: BLTZ rega off

Arguments:

rega — Register to compare.

off — Immediate offset.

Description:

If the value in register rega, interpreted in two’s complement form, is less than
zero (that is, if its high bit is 1), then branch to an instruction off steps ahead of
the current instruction. That is, add the signed 16-bit value off into the branch
register. The destination must be a branch pointing back to the current location, or
a SWAPBR.

BNE Branch if not equal to zero.

Usage: BNE rega regb off

Arguments:

rega, regb — Registers to compare.

off — Immediate offset.

Description:

If the contents of registers rega and regb are equal, then branch to an instruction
off steps ahead of the current instruction. That is, add the signed 16-bit value off
into the branch register. The destination must be a branch pointing back to the
current location, or a SWAPBR.

BRA Unconditional branch.

Usage: BRA loff

Arguments:

loff — Long immediate offset.

Description:
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Unconditionally branch to a location loff steps ahead of the current instruction.
That is, add the signed value loff into the branch register. The value loff is a signed
long immediate value, with more bits than the short offsets in the various conditional
branches above. The exact number of bits depends on the instruction encoding and
the number of bits reserved for opcodes. The destination must be a branch pointing
back to the current location, or a SWAPBR.

B.5 Special instructions

EXCH Exchange a register with a memory cell.

Usage: EXCH regd rega

Arguments:

regd — The data register.

rega — The address register.

Description:

Exchanges the contents of the given data register regd with the contents of the
RAM memory cell at the 32-bit address given in register rega. If the address given
happens to be the address of the EXCH instruction being executed, the hardware
may treat this as a special case, and for example, ignore the instruction. Whatever
it does, it must be reversible, however.

SWAPBR Exchange register with branch register.

Usage: SWAPBR reg

Arguments:

reg — Register to swap with the branch register.

Description:

Swap the contents of register reg with the contents of the branch register. This
instruction is useful at the entry/exit points of subroutines and switch statements.

RBRA Direction-reversing unconditional branch.
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Usage: RBRA loff

Arguments:

loff — Long immediate offset.

Description:

Like BRA, but also toggles the processor direction bit. After the branch is taken,
the processor will proceed in the opposite direction from the one it was traversing
originally. Useful for making reverse subroutine calls.

READ Copy information from input device.

Usage: READ reg

Arguments:

reg — Register to read data into.

Description:

This instruction XORs the next word of data from the processor’s canonical input
device into register reg. In a multiprocessing architecture, this might be a means to
receive information from the interprocessor communication network.

SHOW Copy information to output device.

Usage: SHOW reg

Arguments:

reg — Register whose contents to show.

Description:

This instruction copies the information in register reg and sends the copy to the
processor’s canonical output device. In the Pendulum simulator, this is used to echo
data to the standard output stream, for viewing program output. In a multiprocess-
ing architecture, this might be a means to send information into the interprocessor
communication network.

EMIT Emit information from the processor.
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Usage: EMIT reg

Arguments:

reg — Register whose contents to emit.

Description:

Like SHOW, but moves the data out of reg, instead of making a copy. This is
presumed to represent the explicit, reversible removal of unwanted data from the pro-
cessor to an entropy-removal mechanism. This mechanism might be a sub-processor
that first compresses the garbage stream, then erases it using as little energy as possi-
ble. Or, it might be a mechanism for reversible, digitally transmitting the information
to the edge of a multiprocessor mesh, and then dissipating it there. Or, it might be
another mechanism for moving information out to an interprocessor communication
network.

START/FINISH End-points for computation.

Usage: START

FINISH

Arguments:

Description:

These instructions merely mark the start and end of a program, for ease of sim-
ulation. They could be used in a real processor: FINISH could halt the processor,
and START could halt if running in reverse. Note, however, that actually halting
the processor is an irreversible event, since one has lost the information about how
long ago the processor halted. One should be careful not to build a very large, dense
reversible mesh processor that will explode when all the processors simultaneously
reach the FINISH instruction, as a result of each processing node dissipating the
kBT ln 2 energy to clear the bit of information that tells it that it is still running.

One could fix this problem by having FINISH merely switch to a mode where
the processor starts counting the number of time-steps since it halted. When the
counter runs out of space, however, the processor must either erase information, or
start running again.
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Appendix C

The R reversible programming
language

This appendix gives a detailed description of the “R” reversible programming lan-
guage we developed, which we mentioned in §9.4.2.

C.1 Introduction

R is a programming language for reversible machines. The language is currently very
incomplete and not particularly stable. This appendix documents the current state
of the language, to convey a feel for the language as it stands, and solicit feedback
regarding how the language should develop.

The R language compiler translates R source into Pendulum assembly code. In this
document we will also describe the workings of the R compiler. Currently the compiler
works by applying code transformations similar to macro expansions, to reduce high-
level constructs into successively lower level constructs until the expansion bottoms
out with Pendulum assembly language instructions.

Because of the many levels of constructs involved in this gradual transformation
process, the distinction between the constructs intended for end-use in R source pro-
grams and the intermediate constructs used internally by the compiler is currently
rather fuzzy. This document will attempt to separate user-level from compiler-level
constructs, but the status of constructs may change as the language evolves, and
currently there is nothing to prevent an R source program from using constructs at
all the different levels. However, the lower-level constructs are perhaps somewhat
more likely to change as the language and compiler evolve, so their use in application
programs is discouraged.

295
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C.2 What type of language is R?

R is like C in that it is (currently) a procedural language, not a strict functional
language, with data types and primitive operations centered around the two’s com-
plement fixed-precision integers and the corresponding arithmetic/logical operations
that are supported directly by the machine hardware. The language supports simple
C-like arrays, for loops, if statements, and recursive subroutines with arguments.

Reversibility of execution of R programs is guaranteed by the reversibility of the
assumed version of the Pendulum instruction set, so long the program does not use
the EMIT assembly-language instruction (which explicitly permits information to be
removed irretrievably from the processor). However, if the user wishes his programs
to run not only reversibly but correctly, he is responsible for ensuring that certain
conditions are met by his code. Currently, these conditions are not checked automat-
ically. If the conditions are not met, then the program will silently proceed anyway,
with nonsensical (but still reversible) behavior. However, this is not as fatal as it
sounds, because the reversibility of execution allows the errant program to be de-
bugged, after the misbehavior is discovered, by running it in reverse from the error
to see what caused it.

C.3 Overview of R Syntax

R programs are currently represented using nested, parenthesized lists of symbols and
numbers, as in Lisp. Similarly to Lisp, the first element of a list may be a symbol that
identifes the kind of construct that the list is representing, for example, a function
definition, an if statement, a let construct for variable binding. However, in R,
currently some constructs may also be denoted using infix notation, in which the
identifying symbol is the second element of the list instead of the first. Many of these
infix lists have a C-like syntax and behavior, for example, the (a += b) statement
which adds b into a. Infix notation is also often used in subexpressions of a statement
which are intended to evaluate to a value, for example, (a + b) in the statement
(print (a + b)).

C.4 User-level Constructs

This section describes constructs that are intended for use in end-user R applications.
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C.4.1 Program Structure

The executable portion of a program normally consists of a single defmain statement,
and any number of defsub statements. These statements may appear in any order.

defmain Define program’s main routine.

Syntax: (defmain progname

statement1

statement2 . . . )

Elements:

progname — A symbol naming the program. The name should be a sequence
of letters and digits starting with a letter. It should be distinct from the
names of all subroutines and static data items in the program.

statement1, statement2, . . . — Statements to be executed in sequence as
the main routine of the program.

Description:

The defmain statement is used to define the main routine of a program. It is
intended to appear as a top-level form, but may actually appear anywhere a statement
may appear. (If executed as a statement, it does nothing.) Currently there is no
“command line” or other argument list available to the program; it must either be self-
contained along with its data or explicitly read data from an input stream. Defmain
generates information in the output file that tells the run-time environment where to
begin executing. If there are zero or more than one defmain statements in a given
program, then the result of attempting to run the program is undefined.

Defmain currently also has the side effect of causing the entire standard library
to be included in the output program. Right now there is only one subroutine in the
standard library (named smf), so this is not too burdensome.

defsub Define subroutine.

Syntax: (defsub subname (arg1 arg2 . . . )

statement1

statement2 . . . )

Elements:
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subname — A symbol naming the subroutine. The name should be a se-
quence of letters and digits starting with a letter. It should be distinct
from the names of the main routine, all other subroutines, and all static
data items in the program.

arg1, arg2, . . . — Formal argument names, with the same alphanumeric for-
mat. These names are not required to be distinct from any other names
in the program. However a single subroutine cannot have two arguments
with the same name. Currently, the compiler does not support subroutines
taking more than 29 arguments.

statement1, statement2, . . . — Statements to be executed in sequence as
the body of the subroutine.

Description:

Defsub statements are used to define subroutines within a program. They are
intended to appear only as top-level forms, but may actually appear anywhere that a
statement may appear. (If executed as a statement, a defsub construct does nothing.)
If there are two defsub statements with the same subname in a given program, then
the result of attempting to execute that program is undefined.

The formal arguments may be accessed as read-write variables within the body of
the subroutine. On entry to the subroutine, the values of these variables are bound
to the values of the actual arguments that were passed in via the call statement in
the caller. The call statement must pass exactly the number of arguments required
by the subroutine or else the behavior of the subroutine is undefined. On exit, the
values of the argument variables become the new values of the actual arguments (see
the description of call).

Any subroutine may also be called in reverse; see rcall.

C.4.2 Control Structure

Within the program’s main routine and subroutines, the flow of execution is controlled
using call, rcall, if, and for statements.

call, rcall Call or reverse-call subroutine.

Syntax: (call subname arg1 arg2 . . . ) or

(rcall subname arg1 arg2 . . . )

Elements:
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subname — The name of the subroutine to call. If zero or more than one
subroutines with that name exist in the program, the result of the call is
undefined.

arg1, arg2, . . . — Actual arguments to the subroutine. These may be vari-
ables, constants, or expressions, with restrictions described below. The
number of arguments must match the number of formal arguments listed
in the subroutine’s defsub statement.

Description:

A call or rcall statement is used to call a subroutine either forwards or in
reverse, with arguments. If a particular actual argument is a variable or a memory
reference, then the subroutine may actually change the value of its corresponding
formal argument, and the caller will see the new value after the call is completed. If
the argument is a constant or an expression, then it is an error for the subroutine to
return with the corresponding formal argument having a value that is different from
the value that the constant or expression evaluates to after the return. (Nonsensical
behavior will result.)

Rcall differs from call only in that with rcall, the subroutine body is executed
in the reverse direction from the direction in which the rcall is executed.

if Conditional execution.

Syntax: (if condition then

statement1

statement2 . . . )

Elements:

condition — An expression representing a condition; considered “true” if its
value is non-zero.

statement1, statement2, . . . — Statements to execute if the condition is
true.

Description:

An if statement conditionally executes the body statements if the condition ex-
pression evaluates to a non-zero value. If the value of the condition expression ever
has a different value at the end of the body from the value it had at the beginning,
then program behavior after that point will in general be nonsensical.

The top-level operation in the condition expression may be a normal expression
operation, or one of the relational operators =, <, >, <=, >=, != which have the
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expected C-like meanings of signed integer comparison. These relational operators
are not currently supported for use in expressions in contexts other than the top-level
expressions in if conditions.

Actually the compiler does not yet support all the different relations with all of
the possible types of arguments even in if conditions. The if implementation in the
compiler needs some major rewriting.

In the future, if statements will also be allowed to appear in forms containing
else clauses, using the syntax

(if condition

if-statement1 if-statement2 . . .
else

else-statement1 else-statement2 . . . ),

but this form of if is not yet implemented by the compiler.

for For loop; definite iteration.

Syntax: (for var = start to end

statement1

statement2 . . . )

Elements:

var — A variable name.

start — Start value expression.

end — End value expression.

statement1, statement2, . . . — Statements to execute on each iteration.

Description:

A for statement performs definite iteration. Var must not exist as a variable at
the point where the for construct appears, but it may exist as a name of a static
data element, in which case this meaning will be shadowed during the for.

Before the loop, the start and end expressions are evaluated, and var is bound to
the value of start . The scope of var is the body of the for. On each iteration, the
body statements are executed. After each iteration, if var is equal to the value of end
which was computed earlier, the loop terminates; otherwise, var is incremented as a
mod-232 integer and the loop continues. After the loop, the start and end expressions
are evaluated again in reverse to uncompute their stored values.
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It is an error for either the start or end expressions to evaluate to different values
after the loop than they do before the loop. If they do, program behavior afterwards
will be nonsensical. The same goes for any of their subexpressions.

Note that although for is intended for definite iteration, in which the number of
iterations is always exactly the difference between the initially-computed start and end
values, actually there is nothing to prevent the value of var from being modified within
the body, so that the number of iterations can actually be determined dynamically
as the iteration proceeds. One can thus construct “while”-like indefinite iteration
functionality using for as a primitive. However, this is inconvenient, so the language
will eventually explicitly include a while-like construct, though it does not do so
currently.

C.4.3 Variables

New local variables may be created and bound to values anywhere a statement may
appear, using the let statement.

let New variable binding.

Syntax: (let (var <- val)

statement1

statement2 . . . )

Elements:

var — A new variable name. This name must not exist as a local variable
name at the point where the let statement occurs. However, it may exist
as the name of a static data item, in which case that meaning will be
shadowed within the body of the let.

val — An expression to whose value var will be bound.

statement1, statement2, . . . — Statements to execute in the scope where
var is available as a variable.

Description:

Let creates a new local variable var and binds it to a value. The body of the let

may change the value of var, but the value of var at the end of the body must match
the value that the val expression has at the time the body ends. Otherwise program
behavior will be unpredictable thereafter. The val expression is actually evaluated
twice, once forwards before the body, to generate the value to bind to var, and once
backwards after the body, to uncompute this value.
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Actually the current implementation of let does require the value of val and all
its subexpressions to remain the same at both the start and end of the body. Future
implementations may relax this restriction.

Other forms of the let construct currently exist, but are not currently documented
as user-level constructs.

C.4.4 Data Modification

Currently, R programs modify variables and memory locations using a variety of
vaguely C-like data modification constructs: ++, -, <=<, >=>, +=, -=, ^=, <->, and
others not currently documented as user-level operations.

In general, it is an error for a data modification statement to modify a variable or
memory location whose value is used in any subexpressions of the statement. If this
happens, program behavior thereafter will be nonsensical.

++ Integer increment statement.

Syntax: (place ++)

Elements:

place — A variable or an expression denoting a memory reference.

Description:

The mod-232 integer word stored in place, which may be a variable or a memory
reference, is incremented by 1.

- (minus sign) Unary negate statement.

Syntax: (- place )

Elements:

place — A variable or an expression denoting a memory reference.

Description:

The integer word stored in place is negated in two’s complement fashion.

<=<, >=> Rotate left/right.
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Syntax: (place <=< amount )

(place >=> amount )

Elements:

place — A variable or an expression denoting a memory reference.

amount — An expression for the amount to rotate by.

Description:

<=< rotates the bits stored in the given place to the left by the given amount.
Rotating left by 1 means the bit stored in most significant bit-location moves to
the least significant bit-location, and all the other bits shift over to the next, more
significant position. Rotating by some other amount produces the same result as
rotating by 1 amount times. >=> is the same but rotates to the right (exactly undoing
<=<).

+=, -= Add/subtract statement.

Syntax: (place += value )

(place -= value )

Elements:

place — A variable, or an expression denoting a memory reference.

value — An expression for the value to add/subtract.

Description:

+= adds value into place, as an integer. -= subtracts value from place.

^= Exclusive OR.

Syntax: (place ^= value )

Elements:

place — A variable, or an expression denoting a memory reference.

value — An expression for the value to XOR.

Description:
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^= bitwise exclusive-OR’s value into place.

<-> Swap.

Syntax: (place1 <-> place2)

Elements:

place1, place2 — Each is a variable or an expression denoting a memory ref-
erence.

Description:

<-> swaps the contents of the two places.

C.4.5 Expressions

Variables and constants count as expression, as do the more complex parenthesized
expressions described here. Expressions may be nested arbitrarily deeply. Parentheses
for all the subexpressions must all be explicitly present. Currently, all expression
operations are of the infix style, where the symbol for the operator appears as the
second member of the list; however new kinds of expressions may exist later.

Currently available expression operations include +, -, &, <<, >>, *, */, _, and
others for internal use by the compiler.

There are also relational operators =, <, >, <=, >=, != which may currently only
be used at top-level expressions in if conditions. They are not yet documented
individually yet, but they have the expected behavior of signed integer comparison.
Conceptually they return 1 if the relation holds, and 0 otherwise.

Inside expressions, only expression constructs may be used. Expression constructs
may never be used in place of statements.

Expressions are generally evaluated twice each time they are used, once in the for-
ward direction to generate the result, and once in the reverse direction to uncompute
it.

There is currently no way within the language to define a new type of expression
operator, but this may change later.

+,- Sum/difference expression.

Syntax: (val1 + val2)

(val1 - val2)

Elements:
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val1, val2 — Expressions for values to add.

Description:

Evaluates to the sum or difference of the values of the two sub-expressions taken
as mod-232 integers.

& Bitwise logical AND expression.

Syntax: (val1 & val2)

Elements:

val1, val2 — Expressions for values to AND.

Description:

Evaluates to the bitwise logical AND of the word values of the two sub-expressions.

<<, >> Logical left/right shift expression.

Syntax: (val << amt )

(val >> amt )

Elements:

val — Expression for the value to be shifted.

amt — Expression for the amount to shift by.

Description:

This evaluates to the value of val logically shifted left or right as a 32-bit word,
by amt bit-positions.

* Pointer dereference expression.

Syntax: (* address)

Elements:

address — Expression that evaluates to a memory address.

Description:
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This evaluates to a copy of the contents of the memory location at the given
address. However, this expression may also be used as a place which may be modified
by any of the data-modification statements above, in which case the actual contents
of the location, not a copy, is modified.

It is an error for the contents of an address to be referred to by a subexpression
of a statement that modifies that same address; if this is done, behavior thenceforth
will be unpredictable.

*/ Fractional product expression.

Syntax: (integer */ fraction)

Elements:

integer — An expression whose value is taken as a signed integer.

fraction — An expression whose value is taken as fraction between -1 and 1.

Description:

This rather odd operator returns the signed 32-bit integer product of the two
values, taking one as a signed 32-bit integer and the other as a signed 32-bit fixed-
precision fraction between 0 and 1. Another way of saying this is that it is the product
of two integers, divided by 232. Or, it is the upper word of the 64-bit product of the
two integers, rather than the lower word.

This operation is useful for doing fixed-precision fractional arithmetic. It is used
by the single existing significant test program sch.r.

Since the Pendulum architecture naturally does not support this rather unusual
operation directly, the compiler transforms it into a call to the standard library routine
SMF (Signed Multiplication by Fraction). SMF is itself written in R, but for efficiency it
uses some optimized internal compiler constructs that are not yet intended for general
use.

_ (underscore) Array dereference expression.

Syntax: (array _ index)

Elements:

array — Expression for the address of element 0 of an array in memory.

index — Expression for the index of the array element to access.
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Description:

This type of expression evaluates to a copy of the contents of the element numbered
index in the sequential array of memory locations whose element number 0 is pointed
to by array. However, this expression may also be used as a place in any of the
data-modification statements, in which case it is the real array element that will be
modified, not just a copy of it.

It is an error for an array element or other memory location to be examined by a
subexpression of a statement that ends up modifying that location.

C.4.6 Static Data

Two constructs, defword and defarray, allow single words and regions of memory
to be named and initialized to definite values when the program is loaded.

defword Define a global variable.

Syntax: (defword name value)

Elements:

name — An alphanumeric symbol naming this variable. Must be distinct
from the names of routines and other static data items.

value — A 32-bit constant integer giving the initial value of the variable.

Description:

Defword is intended for use as a top-level form but actually it may appear any-
where a statement may appear. When executed as a statement it does nothing.

Defword defines the name name to globally refer to a particular unique memory
location, whose initial value when the program is loaded is value. This meaning of
name can be shadowed within subroutines that have name as a formal argument, or
within the body of a let statement that binds that name. The name can be used as
a place in data-modification statements.

Actually the name will only be recognized to refer to the memory location at
statements in the program that occur textually after the defword declaration.

defarray Define a global array.

Syntax: (defarray name

value0 value1 . . . )



308 APPENDIX C. THE R PROGRAMMING LANGUAGE

Elements:

name — Unique alphanumeric name for the array.

value0, value1, . . . — Integer constants giving the initial values of all the
array elements.

Description:

Defarray is intended for use as a top-level form, but actually it may appear
anywhere a statement may appear. When executed as a statement it does nothing.

Defarray sets aside a contiguous region of memory, containing a number of words
equal to the number of value arguments, and defines the name name to globally (that
is, after the defarray) refer to the address of the first word in the region. The words
are initialized to the given values when the program is first loaded. Name can be used
as an array in array-dereference operations. It is a compile-time error to attempt to
change the value of name. However, name can be shadowed by subroutine arguments
and local variable declarations.

C.4.7 Input/Output

Currently there are no input constructs in R. However, there are two user-level out-
put constructs, printword and println. These are rather ad-hoc. The set of I/O
constructs is a part of R that is particularly likely to change in later versions of the
language.

printword Output a representation of a word of data.

Syntax: (printword val )

Elements:

val — An expression for the word to print.

Description:

Printword sends to the output stream a representation of the value of the val
expression, as a 32-bit integer. Currently the representation consists of outputing the
value 0 followed by the given value, to distinguish the output from that produced by
println.

The val expression is evaluated twice, once to compute the value and again to
uncompute it.

println Output a representation of a line-break delimiter.
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Syntax: (println)

Elements:

None.

Description:

Println sends to the output stream a representation of a line-break delimiter.
Currently this consists of outputing the single word 1.

C.5 Example Programs

Figure 9.3, p. 238 showed a simple example of a multiplication subroutine written in
R.

As an additional example of R programming style and of many of the user-level
constructs described above, appendix E, §E.3 (p. 396) shows the first significant R
test program, sch.r, in its entirety. The character “;” indicates a comment that
runs to the end of the line.

This program simulates the quantum-mechanical behavior of an electron oscillat-
ing at near the speed of light in a 1-dimensional parabolic potential well about 1
Ångstrom (10−10 m) wide. It takes about 1 minute to complete each 5 × 10−22 sec-
ond long simulation step under the PendVM Pendulum virtual machine emulation
program, running on a Sun SPARCstation 20.

An interesting feature of this program is that although it is perfectly reversible,
its outer loop can run for indefinitely long periods, without either slowing down or
filling up the memory with garbage data.

The current version of the compiler successfully compiles this program to correct
(though not optimally efficient) Pendulum code, which is shown in §E.4 (p. 397).
When run, the compiled program produces exactly the correct output.

C.6 Compiler Internals

Appendix D describes the R compilation infrastructure and documents the low-level
R constructs that are not recommended for prime time.

C.7 Conclusions

R is a pretty cool little language, but it has a long way to go. It would be nice to have
support for floating-point arithmetic, strings, structures with named fields, dynamic
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memory allocation, various built-in abstract data types, type checking and other error
checking, exception handling, etc., etc. Not to mention object-oriented programming.
It would be nice to have the option to use high-level irreversible operations, and have
the compiler deal intelligently with the garbage data.

But anyway, the above describes revision 0.0 of the language, as a proof of concept
and a starting point for further development.



Appendix D

The R language compiler

This appendix gives the documentation and complete code for Rcomp, the compiler
for the R programming language.

D.1 R Compiler User’s Guide

Currently the R compiler does not have a very convenient user interface. But this
section describes the interface, such as it is.

The R compiler resides in the files ~mpf/rcomp/*.lisp at the MIT AI Lab. The
files are also listed in §D.4 below, and can be downloaded from the web via the
URL http://www.ai.mit.edu/~mpf/rc/rcomp. To use Rcomp, start a Common
Lisp interpreter, change to a directory containing the source files, and type (load

"loader"). This will load up the system.
Write your R program in a file such as program.r. Then type at Lisp, (rcompile-

file "program.r"). First, the source will be printed with comments stripped out,
and then, after a delay, the entire Pendulum assembly code for the compiled program
will be printed. The example program sch.r takes about 15 seconds to compile on a
Sparc 20.

Alternatively, one can type (rcompile-file "program.r" :debug t), and the
full program will be printed out after every tiny little step in the compilation process.
The output from this is voluminous, but by doing an incremental search (^S/^R) in
Emacs for the characters “==>” in this output, one can easily scroll through it to see
what is going on at each compilation step. However, it is not recommended to try
this option with very large programs.

When there are compilation problems, it is helpful to try compiling individual sub-
routines and statements in isolation, using the calls (rc source ) and (rcd source ),
where source is a Lisp expression that evaluates to the list representing the fragment
of source code to be compiled. Rc prints out the compiled assembly code, and rcd
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prints out the complete appearance of the program after each compilation step. For
example, (rc ’(a += b)) outputs the single Pendulum assembly language instruc-
tion “ADD $2 $3.”

D.2 Compilation technique

The Rcomp compiler was written in Common Lisp, which provides a portable and
well-defined language base that runs on many hardware platforms, and a comprehen-
sive standard set of built-in list-manipulation functions, that allow very easy manip-
ulation of program code fragments represented in a Lisp-like (s-expression) format.

The basic principle of Rcomp operation is essentially macro expansion. A high-
level language construct is interpreted like a macro; it is expanded in-place to a
sequence of compiler-internal constructs, which are in turn expanded to even lower-
level constructs until the whole process bottoms out with expressions representing
assembly language instructions in the target architecture.

In fact, the earlier versions of Rcomp, which were very limited in their capabilities,
actually used Common Lisp’s built-in macro expansion facility to do all the work. The
entire compiler was implemented as just a set of macro definitions.

However, this raw approach was not capable of performing important compiler
functions such as register assignment, since each statement was compiled separately
without knowledge of its context. So we replaced the reliance on built-in macro
expansion with our own custom macro-like facility which carried an environment
structure along through the code expansion process. The environment keeps track of
the current variable assignments, mapping the lexical variables to registers and stack
locations.

Unfortunately, the macro-expansion type of approach is also not capable of per-
forming certain types of code optimizations, in particular optimizations that might
operate across statement boundaries, such as peephole optimizations. So the code
produced by Rcomp is not particularly well-minimized. The situation could be im-
proved somewhat by adding a post-processing phase to the compilation in which the
sequence of assembly instructions is scanned for known patterns that can be simpli-
fied. But a more aggressive and thorough approach to optimization would probably
benefit from some higher-level knowledge, and this would probably require a different
overall compiler architecture than our macro-expansion-based approach.

However, Rcomp was not intended to be a study in advanced compiler techniques.
Rather, for us the imperative was to make the compiler particularly simple to modify
and extend, in order to easily handle new constructs, implement existing ones differ-
ently, or port the entire compiler to a different target reversible instruction set. All
these things are easy in our current design.
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The reason for having such flexibility is simply that reversible programming lan-
guages are still very much experimental and in flux. It is desirable at this point to
be able to very rapidly experiment with different high-level constructs and different
machine instructions.

Another advantage of the macro-based design is that it was very simple to pro-
gram, and the compiler code is fairly easy to read. The definition of most language
constructs is just a literal expression (using the backtick operator) showing exactly
what that construct expands into.

D.3 Internal compiler constructs

We now document a selection of most of the important internal language constructs
currently used internally in the R compiler. These constructs are not meant to be
used by the end-user in Rcomp programs. However, when testing and debugging the
compiler, or for understanding how it works, it may be useful to try compiling code
containing these lower-level constructs. Also, for writing standard libraries, direct
use of lower-level constructs may enable better-optimized code than the compiler is
currently capable of generating given only the highest-level constructs.

Generally, there is nothing in the current Rcomp architecture that actually pre-
vents user programs from being written using any desired mixture of user-level con-
structs, intermediate- to low-level internal constructs, and target assembly code. How-
ever, users should be aware that if they do not stick to the user-level constructs, then
their programs may not be portable across changes in the compiler internals and/or
the target architecture.

D.3.1 Intermediate-level internal constructs

Of the internal compiler constructs, the following are still relatively high-level.

D.3.1.1 Mid-level variable manipulation

<- Bind.

Syntax: (var <- val)

Elements:

var — Variable to bind.

val — Expression whose value to bind it to.
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Description:

Assuming the variable var is initially clear, bind the variable to the value obtained
by evaluating the expression val.

-> Unbind.

Syntax: (var -> val)

Elements:

var — Variable to unbind.

val — Expression whose value to unbind it to.

Description:

Assuming the variable var initially contains the value that the expression val
evaluates to, restore var to 0.

with-regvars Declare register variables.

Syntax: (with-regvars var-or-vars

statement1

statement2 . . . )

Elements:

var-or-vars — A variable or list of variables to declare.

statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

This mid-level construct declares a list of variables and forces them into registers,
for greater efficiency of the body statements that refer to those variables. The vari-
ables are ensured to be declared only within the lexical body of this statement. They
are not guaranteed to remain in registers throughout the entire body, only to be in
registers intially.

register Advise register allocation.

Syntax: (register var-or-vars)



D.3. INTERNAL COMPILER CONSTRUCTS 315

Elements:

var-or-vars — A variable or list of variables.

Description:

Advise the compiler to move the listed variables into registers now, rather than
later. This is considered to be advice to the compiler, intended to aid optimization.
The compiler need not obey the advice, although the current implementation always
does.

scope Declare a variable around a body.

Syntax: (scope var-or-vars

statement1

statement2 . . . )

Elements:

var-or-vars — A variable or list of variables to declare.

statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

Declares the given list of variables around a body. The variables are created at the
start of the body and destroyed at the end. Values of all variables are intially 0. The
body is assumed to restore the values of all variables to 0 before it completes. If it does
not, further program behavior will not obey the intended semantics! It is currently
an error if any of the named variables already exist in the environment (currently
there is no compiler support for multiple lexical nestings of scopes for variables with
the same name).

D.3.1.2 Mid-level environment manipulation

ensure-green Ensure that a body leaves the environment
unchanged.

Syntax: (ensure-green

statement1

statement2 . . . )
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Elements:

statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

Leaves the environment after executing the given body exactly the same as it was
before the body. (At least, with regards to its location map.) This may generate
code to move variables back to their original locations if they happened to be moved
during the course of the body.

with-location-map Enforce a location map around a body.

Syntax: (with-location-map locmapdesc

statement1

statement2 . . . )

Elements:

locmapdesc — Description of a location map.

statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

A declaration that ensures that the environment at the start and end of the body
maps variables to locations exactly as described by the given location map. This may
trigger relocating variables around to be in the appropriate locations. If the set of
variables in the current environment is not the same as that in the location map,
currently a compiler error is generated.

with-environment Enforce an environment around a body.

Syntax: (with-environment envdesc

statement1

statement2 . . . )

Elements:

envdesc — Description of an environment.
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statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

Just like with-location-map, except it takes an entire environment description
(currently this is the same as an environment object) as its input, rather than just a
location map description. Only affects the location map of the current environment,
and not other properties of the environment.

environment Enforce an environment.

Syntax: (environment envdesc)

Elements:

envdesc — Description of an environment.

Description:

Ensure that the environment immediately following this statement is equivalent
to the given environment—that is, has the same location map. This may involve
moving variables around to be in the appropriate locations. If the set of variables in
the current environment is not the same as the set in the given environment, currently
a compiler error is signaled.

locmap Enforce a location map.

Syntax: (locmap locamapdesc)

Elements:

locmapdesc — Description of a location map.

Description:

Just like environment, but takes a location map description instead of a full
environment.
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D.3.1.3 Mid-level control-flow constructs

infloop Infinite loop.

Syntax: (infloop

statement1

statement2 . . . )

Elements:

statement1, statement2, . . . — Statements to compile inside the loop.

Description:

Generates an “infinite loop” segment of code—if processing inside the loop runs
sequentially off the end, it comes back to the beginning. If the infinite loop is en-
countered from the outside, we skip over it.

Actually, the present compilation of this construct does not actually enforce that
the loop is infinite; entry/exit points could be inserted into the middle of the loop
body.

skip Unexecutable code segment.

Syntax: (skip

statement1

statement2 . . . )

Elements:

statement1, statement2, . . . — Statements to compile in the skipped sec-
tion.

Description:

Generates a segment of code that should be skipped over if encountered; it should
not be executed. This is primarily only useful for preventing static data objects
from being executed. Really this is implemented exactly like infloop. But the
connotation is different. In infloop we are trying to keep the PC on the inside, in
skip we are trying to keep it on the outside. But in both cases, the PC actually just
stays on whichever side it was originally. (Unless we cheat and construct brach-pairs
connecting inside and outside.)
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D.3.1.4 Mid-level branching constructs

bcs-branch-pair Pair of binary conditional switching branches.

Syntax: (bcs-branch-pair

toplabel (vara1 opa vara2)

botlabel (varb1 opb varb2)

statement1

statement2 . . . )

Elements:

toplabel — Label of the upper branch in the pair.

vara1, vara2 — Variables to compare at the top of the branch.

opa — Operation to compare with at the top of the branch.

botlabel — Label of the lower branch in the pair.

varb1, varb2 — Variables to compare at the bottom of the branch.

opb — Operation to compare with at the bottom of the branch.

statement1, statement2, . . . — Statements to compile in between the two
branches.

Description:

This construct implements the common low-level reversible control-flow situation
in which one has a pair of switching (that is, paired) conditional branches pointing
to each other, at the top and bottom of a block of code, and the condition being
tested is a binary (two-operand) function of two given variables. The operation may
be any of the relational operators =, <, >, <=, >=, != which have the expected C-like
meanings of signed integer comparison.

Depending on how bcs-branch-pair is used, it can be used to implement ei-
ther reversible if statements or loops. The code is potentially a loop if the second
condition can succeed even if the first condition does not.

An important feature of bcs-branch-pair is that it ensures that the environment
is conserved by the body, despite whatever juggling of registers is done inside the body.
This is important because otherwise, we could not at compile time predict what the
environment would be after the branch, because we would not know whether the
branch would be taken or not.

twin-us-branch Pair of unconditional switching branches.
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Syntax: (twin-us-branch toplabel botlabel

statement1

statement2 . . . )

Elements:

toplabel — Label of the upper branch in the pair.

botlabel — Label of the lower branch in the pair.

statement1, statement2, . . . — Statements to compile in between the two
branches.

Description:

This construct implements the common low-level reversible control-flow situation
in which one has a pair of switching (paired) unconditional branches pointing to each
other, at the top and bottom of a block of code. Such a structure may surround
a infinite loop, or the body of a subroutine whose entry/exit point is somewhere in
its middle. If the structure is encountered from outside, we just jump over it. This
construct knows that the environment after the branch pair is the same as the one
before it.

D.3.1.5 Miscellaneous mid-level constructs

with Execute body under some temporary condition.

Syntax: (with tmp-statement

statement1

statement2 . . . )

Elements:

tmp-statement — Temporary statement to do before the body and undo
after the body.

statement1, statement2, . . . — Statements to do after doing and before un-
doing the given statement.

Description:

Given any statement tmp-statement that the compiler knows how to invert, per-
forms that statement, then performs the body statements statementi, then performs
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the inverse operation of the statement to undo its effects. Does not yet handle all
possible varieties of tmp-statement.

undo Undo a given statement.

Syntax: (undo statement)

Elements:

statement — Statement to undo.

Description:

Execute a given statement in reverse, thereby undoing its effects.

D.3.2 Low-level constructs

D.3.2.1 Low-level manipulation of variables

relocate Relocate a variable in the environment.

Syntax: (relocate var loc)

Elements:

var — The variable to relocate.

loc — Specifier for the register or stack location to relocate to.

Description:

This construct relocates the given variable to a specific register or stack location.
The loc is currently represented as a list, with either the form (reg regno), where
regno is the register number, 0–31, or (stock offset), where offset is the stack offset,
which should be a negative integer specifying the location relative to the current value
of the stack pointer (which currently is register 1).

The relocation of a variable involves both changing its location assignment in the
environment, and generating code that actually moves the variable’s value from the
old location to the new location.

If a different variable is already assigned to the given location, relocate moves
it out of the way. (By exchanging it with the old location of var if there was one, or
by moving it to a fresh location.)

new-var-at Create a new variable at a given location.
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Syntax: (new-var-at varname location)

Elements:

varname — The name of the variable to create.

location — Location specifier to create the new variable at.

Description:

Create a new variable named varname in the current environment, and assign it
to location location. If another variable was assigned to location, move that variable
to some other location.

vacate Ensure that a given location is unassigned.

Syntax: (vacate loc)

Elements:

loc — Specifier of location to vacate.

Description:

If a variable is assigned to the given location, move it to somewhere else. If there
are any free registers, the variable is moved to one of them, otherwise it is moved to
the next available location on the stack.

get-in-register Force a variable into a register.

Syntax: (get-in-register var)

Elements:

var — The variable to registerify.

Description:

Force the given variable to relocate to a register if it isn’t in one already. Picks
an arbitrary free register for it to live in, or if no registers are free, boots the least-
recently-moved register variable back out to the stack, and moves our variable there.

add-to-env Add a variable to the environment.

Syntax: (add-to-env varname)
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Elements:

varname — Name of variable to create.

Description:

Explicitly creates a variable of the given name in the current environment, initially
unassigned to any particular location. It is currently an error if a variable with the
given name already exists.

tell-loc Set the raw location of a variable.

Syntax: (tell-loc var loc)

Elements:

var — The variable whose location to set.

loc — The location to set it to.

Description:

Explicitly sets the location of the given variable in the current environment to the
one given. Does not move the variable’s contents.

remove-var Remove a variable from the environment.

Syntax: (remove-var var)

Elements:

var — The variable to remove.

Description:

Explicitly removes a variable from the current environment. Dangerous to subse-
quent program correctness if the contents of var are non-zero.

D.3.2.2 Raw manipulation of environments

declare-green Explicitly restore the environment after a body.
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Syntax: (declare-green

statement1

statement2 . . . )

Elements:

statement1, statement2, . . . — Statements to compile within the context
of this declaration.

Description:

Explicitly set the environment after the body completes back to what it was before
the body. Does not move variables appropriately. This is a very low-level operation.

declare-locmap Explicitly set the current location map.

Syntax: (declare-locmap locmapdesc)

Elements:

locmapdesc — Location map description.

Description:

Explicitly set the entire variable-location map of the current environment to the
one given. Does not move contents of variables’ locations appropriately. This is a
very low-level operation.

declare-environment Explicitly set the current environment.

Syntax: (declare-environment envdesc)

Elements:

envdesc — Environment description.

Description:

Explicitly set the entire current environment to the one given. Does not move
contents of variables’ locations appropriately. This is a very low-level operation.
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D.3.2.3 Raw register/stack manipuation

This section describes constructs for direct manipulation (moving and exchanging
contents) of register and stack locations.

swaploc Swaps the contents of two register/stack
locations.

Syntax: (swaploc loc1 loc2)

Elements:

loc1 loc2 — Specifiers for the two locations to swap.

Description:

Swaps the contents of the two specified locations. See relocate for the format of
a location specifier. Note this function does not change variable location assignments,
only the values of the specified locations.

moveloc Move the contents of one location to another.

Syntax: (moveloc loc1 loc2)

Elements:

loc1 — Source location.

loc2 — Destination location.

Description:

Assuming loc2 is empty, moves the contents of loc1 to it, leaving loc1 empty. If
loc2 is not empty, the effect will be different.

exregstack Exchange register with stack location.

Syntax: (exregstack reg stackloc)

Elements:

reg — A register location specifier.

stackloc — A stack location specifier.
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Description:

Exchanges the contents of a given register location with those of a stack location.
Does not change the environment. The current implementation works fine but leads
to some suboptimization. (See the code comment.)

swapregs Exchange the contents of two registers.

Syntax: (swapregs r1 r2)

Elements:

r1, r2 — Specifiers of register locations to swap.

Description:

Swaps the contents of two registers. Despite the absence of direct hardware sup-
port for this operation in the current PISA spec, the current implementation cleverly
swaps the two registers in-place anyway by performing a sequence of three XOR’s of
one register into another. I learned this particular trick from Charles Isbell’s hand-
written assembly-language programs for early versions of Pendulum.

movereg Moves one register to another.

Syntax: (movereg r1 r2)

Elements:

r1 — Source register.

r2 — Destination register.

Description:

Assuming r2 is initially empty, moves r1 to r2, leaving r1 empty. Implemented
like swapregs, but takes advantage of the assumption that r2 is empty to eliminate
one of the 3 XORs. If r2 is not empty, the outcome will not fit the intended semantics.

with-stack-top Temporarily go to top of stack.

Syntax: (with-stack-top

statement1

statement2 . . . )
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Elements:

statement1, statement2, . . . — Statements to execute in the context of the
adjusted stack pointer.

Description:

Execute the given body within a context where the stack pointer is reset to the
top of the stack, that is, beyond all currently-allocated variables. This is used in the
implementation of subroutine calls. The environment is not adjusted, so any entries
in the environment that might have been referring to stack-allocated variables will
be present but invalid in the body. Higher-level constructs that use with-stack-top

need to cope with this.

with-SP-adjustment Temporarily adjust stack pointer.

Syntax: (with-SP-adjustment amt

statement1

statement2 . . . )

Elements:

amt — Literal amount by which to adjust stack pointer.

statement1, statement2, . . . — Statements to execute in the context of the
adjusted stack pointer.

Description:

Execute the body within a context where the stack pointer is temporarily adjusted
by the explicit amount amt. The stack grows downwards in memory, so negative
amounts correspond to moving towards the “top” (most short-lived) part of the stack.

D.3.2.4 Low-level control flow constructs

_if Specialized if statement.

Syntax: (_if (reg1 op reg2) then

statement1

statement2 . . . )

Elements:
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reg1, reg2 — Registers to compare.

op — Binary relation to use for comparison.

statement1, statement2, . . . — Statements to execute if the condition is
true.

Description:

Like if, but the condition must be a simple binary relation (with no nested
subexpressions) between two explicit registers reg1 and reg2.

_ifelse Specialized if/else statement.

Syntax: (_ifelse (reg1 op reg2) then

(if-statement1

if-statement2 . . . )

(else-statement1

else-statement2 . . . ))

Elements:

reg1, reg2 — Registers to compare.

op — Binary relation to use for comparison.

if-statement1, if-statement2, . . . — Statements to execute if the condi-
tion is true.

else-statement1, else-statement2, . . . — Statements to execute if the
condition is false.

Description:

Like _if, but there is a second “else” body that will be executed if the condition
fails.

gosub Low-level subroutine call.

Syntax: (gosub subname)

Elements:

subname — Name of subroutine to call.

Description:
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Calls the subroutine of the given name. This is a low-level operation that doesn’t
know anything about stacks, arguments, or calling conventions. It just transfers
control.

rgosub Low-level reverse subroutine call.

Syntax: (rgosub subname)

Elements:

subname — Name of subroutine to call.

Description:

Like gosub, but runs the subroutine in reverse.

portal Subroutine entry/exit point.

Syntax: (portal label)

Elements:

label — Name to give this portal.

Description:

Declares a subroutine entry/exit point to exist at this point in the program, with
the name label. A caller can call label and have control transferred to this point.
Then, if control loops back around to this point again, the portal will switch control
back to the caller.

The portal currently works by using register 2 to store the information needed to
return to the caller. So the value in this register needs to be preserved during the
body of the subroutine.

D.3.2.5 Low-level branching constructs

sbra-pair Low-level pair of switching unconditional
branches.

Syntax: (sbra-pair toplabel botlabel

statement1

statement2 . . . )
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Elements:

toplabel — Label of the upper branch in the pair.

botlabel — Label of the lower branch in the pair.

statement1, statement2, . . . — Statements to compile in between the two
branches.

Description:

Lower-level analogue of twin-us-branch that does not worry about maintaining
the environment across all the branching.

sbra Switching branch.

Syntax: (sbra thislabel otherlabel)

Elements:

thislabel — Label for this branch.

otherlabel — Label for the other branch that we switch to.

Description:

Unconditional switching branch labeled thislabel that exchanges control between
here and another such branch labeled otherlabel.

The semantics is: If we arrive at this statement from otherlabel, then continue in
normal sequential execution. If we arrive at this statement sequentially, then branch
to otherlabel. If we arrive at this statement some other way, the behavior is some
other, nonsensical thing. So you can see that these “switching” branches have to
come in pairs.

sbez Switching branch on equal to zero.

Syntax: (sbez thislabel var otherlabel)

Elements:

thislabel — Label for this branch.

var — Variable to test.

otherlabel — Label for the other branch that we switch to.
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Description:

This is an example of a conditional switching branch. It tests var and if it is zero,
it behaves like sbra, otherwise it is a no-op. If we branch into this statement but its
condition does not succeed, the resulting behavior will be nonsensical.

sbne Switching branch on not equal to zero.

Syntax: (sbne thislabel var otherlabel)

Elements:

thislabel — Label for this branch.

var — Variable to test.

otherlabel — Label for the other branch that we switch to.

Description:

This is an example of a conditional switching branch. It tests var and if it is
nonzero, it behaves like sbra, otherwise it is a no-op. If we branch into this statement
but its condition does not succeed, the resulting behavior will be nonsensical.

bcs-branch Binary conditional switching branch.

Syntax: (bcs-branch (var1 op var2) thislabel otherlabel)

Elements:

var1, var2 — Variables to compare.

op — Operation to compare with.

thislabel — Label for this branch.

otherlabel — Label for the other branch that we switch to.

Description:

This is a general two-operand conditional switching branch. It compares the two
variables using the operation op, which may be any of the relational operators =, <,
>, <=, >=, !=, which have the expected C-like meanings of signed integer comparison.
If the comparison succeeds, it behaves like sbra, otherwise it is a no-op. If we branch
into this statement but its condition does not succeed, the resulting behavior will be
nonsensical.

bc-branch Non-switching binary conditional branch.
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Syntax: (bc-branch (var1 op var2) destlabel)

Elements:

var1, var2 — Variables to compare.

op — Operation to compare with.

destlabel — Label of destination.

Description:

This is like bcs-branch except that it is not a switching branch; that is, it does
not branch to a location that explicitly refers back to it. Instead, the desination will
probably be a subroutine entry/exit point which will save away the branch register
to allow returning to this location later.

rbc-branch Register binary conditional branch.

Syntax: (rbc-branch (r1 op r2) destlabel)

Elements:

r1, r2 — Registers to compare.

op — Operation to compare with.

destlabel — Label of destination.

Description:

Like bc-branch except that its arguments must be explicit registers, not variables.

D.3.2.6 Miscellaneous low-level constructs

_with Specialized version of with.

Syntax: (_with (var <- val)

statement1

statement2 . . . )

Elements:

var — Variable name to bind.

val — Expression whose value to bind it to.
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statement1, statement2, . . . — Statements to do after doing and before un-
doing the given statement.

Description:

A version of with in which the “statement” to be done before the body (and
undone after it) must be a variable-binding. The _with construct is more efficient
than the general version of with for this case, because the val expression is not
evaluated as many times. However, _with may use an amount of temporary space
linear in the length of the val expression during the course of the body, whereas with
does not.

withargs Prepare arguments as for a subroutine call.

Syntax: (withargs arg-list

statement1

statement2 . . . )

Elements:

arg-list — List of expressions for the arguments.

statement1, statement2, . . . — Statements to do in the context of having
prepared the arguments.

Description:

Given a list of “argument” expressions, temporarily places the values of those
expressions in the canonical locations where the arguments to a subroutine should
go, and compiles the body in that context. This is part of the caller side of the current
subroutine calling convention.

D.4 Compiler LISP source code

In this section, we give a verbatim listing of the most recent version of the Rcomp
source. This is composed of the following files:

loader.lisp — §D.4.1, p. 335. This loads up all the parts of the Rcomp program
in an appropriate order.

util.lisp — §D.4.2, p. 335. Defines general-purpose utilty functions and macros
that we use.
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infrastructure.lisp — §D.4.3, p. 336. Defines our macro-expansion like facility
for defining how to compile language constructs.

location.lisp — §D.4.4, p. 341. Defines some functions for working with objects
that describe a variable’s location in the register file or stack.

environment.lisp — §D.4.5, p. 342. Defines the environment objects which map
variables to their locations.

Files defining construct-expansion “macros”:

regstack.lisp — §D.4.6, p. 346. Defines low-level constructs for direct ma-
nipulation of registers and the stack.

variables.lisp — §D.4.7, p. 347. Defines high- to low-level constructs for
manipulation of variables in variable assignments (environments).

branches.lisp — §D.4.8, p. 350. Constructs providing intermediate- and low-
level support for various kinds of branch structures for control-flow.

expression.lisp — §D.4.9, p. 354. Constructs and low-level functions for
expanding nested expressions.

clike.lisp — §D.4.10, p. 359. Defines constructs for various user-level user-
level C-like operators.

print.lisp — §D.4.11, p. 362. Defines a few very simple constructs for pro-
ducing output.

controlflow.lisp — §D.4.12, p. 362. Defines user-level to intermediate-level
control flow constructs such as conditionals and looping.

subroutines.lisp — §D.4.13, p. 364. Provides high and low level support
for subroutines.

staticdata.lisp — §D.4.14, p. 367. Defines constructs for defining static
data objects. Currently this is the only way to provide input to a program.

program.lisp — §D.4.15, p. 367. Defines very high-level constructs for wrap-
ping around the entire program.

library.lisp — §D.4.16, p. 368. Defines constructs that expand into code
for standard subroutine libraries. Currently the library is very minimal.

files.lisp — §D.4.17, p. 369. Provides support for reading the source code to
compile from a file.

test.lisp — §D.4.18, p. 370. Miscellaneous functions and R code fragments for
exercising the compiler. Some of these may be obsolete.
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Let us now present the code.

D.4.1 loader.lisp

This very simple file just loads up all the Common Lisp files that make up Rcomp.
It is completely devoid of any sophisticated options. Perhaps someday we should use
one of the popular CL system-definition facilities instead.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; This is the loader for the reversible compiler system. Currently all

;;; files are just in the USER package.

;; Load up the system.

(load "util") ; General-purpose utilities.

(load "infrastructure") ; Mechanism for defining and compiling constructs.

(load "location") ; Describing locations where variables are stored.

(load "environment") ; Mapping variables to their locations.

(load "regstack") ; Direct manipulation of registers and the stack.

(load "variables") ; Creating, destroying, moving variables.

(load "branches") ; Branches, branch pairs, labels.

(load "expression") ; Binding variables to multiply-nested expressions.

(load "clike") ; C-like assignment-operator statements.

(load "print") ; Data output.

(load "controlflow") ; High-level conditionals & loops.

(load "subroutines") ; Support for subroutine calls.

(load "staticdata") ; Static data definitions.

(load "program") ; Highest-level constructs.

(load "library") ; Standard library of R routines.

(load "files") ; File compiler.

(load "test") ; Example programs.

;; Command to reload the system.

(defun l () (load "loader"))

D.4.2 util.lisp

Defines some completely non-application-specific Lisp functions and macros that we
use in Rcomp.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; General utilities.

;;;----------------------------------------------------------------------

;;; Some abbreviations for Common Lisp entities.
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;; Don’t you agree that MULTIPLE-VALUE-BIND’s name is too long?

(defmacro mvbind (&rest args)

‘(multiple-value-bind . ,args))

;; Same here.

(defmacro dbind (&rest args)

‘(destructuring-bind . ,args))

;;;----------------------------------------------------------------------

;;; Boolean shtuff. Silly, but hey.

(defconstant true t)

(defconstant false nil)

(defmacro true! (&rest places)

‘(setf . ,(mapcan #’(lambda (place) (list place true)) places)))

(defmacro false! (&rest places)

‘(setf . ,(mapcan #’(lambda (place) (list place false)) places)))

;; Convert an arbitrary object to a true-false value.

(defun true? (obj) (if obj true false))

(defun false? (obj) (eq obj false))

;;;----------------------------------------------------------------------

;;; List manipulation.

;; REPL - Replace first occurrence. FUNC is called on each item of LIST in

;; succession until it returns non-NIL, at which point a new list is

;; returned in which the guilty item is replaced by the value which was

;; returned by FUNC. The new list shares its tail with the old. If FUNC

;; never returns non-nil then a copy of LIST is returned.

(defun repl (list func)

(if list

(let ((v (funcall func (car list))))

(if v (cons v (cdr list))

(cons (car list) (repl (cdr list) func))))))

;; In this version of REPL, FUNC is passed not only each item of LIST,

;; but also the item’s index (as per NTH or ELT).

(defun repl2 (list func &optional (firstindex 0))

(labels

((helper (list index func)

(if list

(let ((v (funcall func (car list) index)))

(if v (cons v (cdr list))

(cons (car list) (helper (cdr list) (1+ index) func)))))))

(helper list firstindex func)))

D.4.3 infrastructure.lisp

This file is the core of our macro-style compilation architecture. The expansion of any
given language construct is defined using the defconstruct macro, defined below.

The core function that does the work of compilation is rcomp. It recursively
expands the macro definitions, while keeping track of the environment, until the
process bottoms out in statements that cannot be further expanded.

;;; -*- Package: user -*-
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(in-package "USER")

;;;----------------------------------------------------------------------

;;; Compilation infrastructure.

;; Given an object, return non-nil IFF it could possibly be an

;; infix-operator statement.

(defun infix-form? (form)

(and (listp form)

(>= (length form) 2)

(symbolp (second form))

(get (second form) ’is-infix)))

;; Given a form, get it into the canonical form where the operator is

;; first.

(defun canonicalize (form)

(if (infix-form? form)

‘(,(second form) ,(first form) . ,(cddr form))

form))

;; Given an object, if it’s an operator (construct) symbol, return

;; its definition.

(defun definition (operator)

(and (symbolp operator)

(get operator ’construct-definition)))

;; Given an operator (construct symbol), return the opposite operator.

;; (Which will undo the effect of the given operator.)

(defun opposite (operator)

(get operator ’opposite))

;; Given an object, return non-NIL iff it may potentially be a

;; single form statement (not a label atom) with a definition.

(defun statement? (form)

(and (listp form)

(not (null form))

(or (definition (car form))

(infix-form? form))))

;; Guess whether an object may be a list of statements/primitives.

(defun list-of-statements? (obj)

(and (listp obj)

(not (statement? obj))

(not (null obj))

(statement? (car obj))))

;; DEFCONSTRUCT - Define how a particular construct is to be compiled.

;; Given a construct name symbol CNAME, lambda list LAMBDA-LIST, and body

;; statements BODY, define CNAME to be a reversible language construct with

;; structure given by LAMBDA-LIST and compilation generated by the BODY.

;; During compilation the BODY gets executed with the variables mentioned

;; in the LAMBDA-LIST bound to corresponding parts of the item to be

;; compiled, and with the variable ENV bound to the variable-location

;; environment in effect at the start of the statement. The body should

;; return 2 values: the first is a list of statements to which this

;; statement is equivalent. The second value indicates the environment in

;; effect after the given statement(s). It may be NIL meaning that the

;; source as a high-level statement does not affect the environment after

;; the statement, although the compiled lower-level statements might.

(defmacro defconstruct (cname lambda-list &body body)

(let ((opposite



338 APPENDIX D. THE R LANGUAGE COMPILER

(if (eq (car body) :opposite)

(prog1

(cadr body)

(setf body (cddr body)))

cname)))

‘(setf (get ’,cname ’opposite) ’,opposite

(get ’,cname ’construct-definition)

#’(lambda (args env)

(let ((form (cons ’,cname args)))

(destructuring-bind ,lambda-list args

. ,body))))))

(defmacro definfix ((leftarg opname &rest rightargs) &body body)

‘(progn

(defconstruct ,opname (,leftarg . ,rightargs)

. ,body)

(true! (get ’,opname ’is-infix))))

;; Given a statement or a list of statements to compile and an optional

;; initial environment (which defaults to the empty environment), return an

;; equivalent list of compiled statements and the environment in effect

;; after them.

(defun rcomp (source &optional startenv)

(when (null startenv) (setf startenv (empty-env)))

(setf source (canonicalize source))

(cond

((null source)

(values source startenv))

((statement? source)

;; Source is a single non-label statement with a definition.

(let ((def (definition (first source))))

(mvbind (compiled endenv)

;; Compile it once.

(funcall def (cdr source) startenv)

(mvbind (recomp reenv)

;; Try compiling it further.

(rcomp compiled startenv)

(values recomp

(or endenv reenv))))))

((form-list? source)

;; Source is a list of statements.

(mvbind (firstcomp firstendenv)

;; Compile first statement.

(rcomp (first source) startenv)

(mvbind (restcomp restendenv)

;; Compile remaining statements in environment from

;; first statement.

(rcomp (rest source) firstendenv)

(values (if (listp firstcomp)

(append firstcomp restcomp)

(cons firstcomp restcomp))

restendenv))))

(t

;; In all other cases just compile the source to itself

;; and leave the environment unchanged.

(values (list source) startenv))))

;;

;; This version of RCOMP, for debugging purposes, prints out the entire

;; state of the partially-compiled program after each individual code

;; transformation.
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;;

;; WHOLE represents the entire current state of the compilation,

;; represented as a cons cell whose CDR is the current partially-compiled

;; source, which MUST be a LIST of statements, not a single statement.

;; POINTER is a pointer to the cons cell whose CDR is the part of the

;; source that remains to be compiled. In general, the CAR of this CDR

;; will be an ENV statement giving the current environment.

;;

(defun rcomp-repl (whole &optional (pointer whole))

(myprint (cdr whole)

(if (eq (caadr pointer) ’env)

(cddr pointer)

(cdr pointer))) ;Print thuh whole shebang.

(format t "~&Ready: ")

;; (clear-input) (finish-output) ;These don’t seem to work right.

;; (read-line)

(let ((source (cdr pointer)) ;Remaining source to compile.

startenv)

(if (and (listp source) ;List of statements.

(listp (car source)) ;Non-label statement.

(eq (caar source) ’env)) ;Special (ENV <env>) statement.

(setf startenv (cadar source)) ;Get the <env>.

(progn

;; Invent an ENV statement and insert it.

(format t "~&Default environment.~%")

(setf startenv (empty-env))

(setf (cdr pointer) ;Alter our object as follows.

‘((env ,startenv)

. ,source))

(myprint (cdr whole) (cddr pointer))))

;; Now STARTENV is the current env, and current source obj is just

;; after the initial env statement.

(setf source (cddr pointer))

;; If no statements left to compile, we’re done.

(when (null source)

(return-from rcomp-repl whole))

(let ((form (car source)))

;; From here on we approximately mirror structure of RCOMP.

;; If first form is an infix form, canonicalize it.

(when (infix-form? form)

;(format t "~&Canonicalize.~%")

(setf form (canonicalize form)

(car source) form)

;(myprint (cdr whole))

)

(cond

;; If first item is label: do nothing with it.

((atom form)

(format t "~&Label.~%")

(setf (cdr pointer) ‘(,form

(env ,startenv)

. ,(cdr source)))

(rcomp-repl whole (cdr pointer)))

(t ;; Else first item is a non-label STATEMENT.

(let ((first (first form)))

(if (symbolp first)

;; Assume source code is a single statement, FIRST is the symbol

;; naming the statement type, for dispatching.

(if (eq first ’env)

(progn

(format t "~&Environment override.~%")
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(setf (cdr pointer) source)

(rcomp-repl whole pointer))

(let ((def (definition first)))

(if (null def)

;; No definition for this. Assume it’s a final

;; assembly instruction and doesn’t change the

;; environment.

(progn

(format t "~&Final.~%")

(setf (cdr pointer) ‘(,form

(env ,startenv)

. ,(cdr source)))

(rcomp-repl whole (cdr pointer)))

;; OK, we do have a definition for it.

(mvbind (compiled endenv)

;; Call the transformer function.

(funcall def (cdr form) startenv)

;; Insert result.

(format t "~&Expand ~s.~%" first)

(if (and endenv (null compiled))

(setf (cdr pointer)

‘((env ,endenv)

. ,(cdr source)))

(setf (cddr pointer)

(if endenv

‘(,@(if compiled

(if (not (form-list? compiled))

(list compiled)

compiled))

(env ,endenv)

. ,(cdr source))

‘(,@(if compiled

(if (not (form-list? compiled))

(list compiled)

compiled))

. ,(cdr source)))))

;; Try compiling same thing again.

(rcomp-repl whole pointer)))))

;; The first item isn’t a symbol so assume it’s a statement

;; and treat the form as a list of statements.

(progn

(setf source (append form (cdr source))

(cddr pointer) source)

(format t "~&Insert statement list.~%")

(rcomp-repl whole pointer)))))))))

;; The user-level compiler-debugging routine.

(defun rcomp-debug (source)

(rcomp-repl (cons nil (list source))))

(defun rcd (source)

(rcomp-debug source))

;; non-nil iff obj could be a list of forms (not incl. label syms)

(defun form-list? (obj)

(and (listp obj)

(not (and (car obj) (symbolp (car obj))))

(not (and (cadr obj) (symbolp (cadr obj))))))

;; Expand the source code to its compilation once, but not

;; recursively. This is for debugging.
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(defun expand1 (source &optional env)

(let ((def (get (first source) ’construct-definition)))

(if (null def)

(values (list source) env)

(funcall def (cdr source) env))))

;; For testing.

(defun myprint (code &optional pointer)

#|(format t "~&~@

--------~@

Program:~@

--------~%")|#

(format t "~&~%")

(if (list (car code))

(dolist (s code)

(if (eq s (car pointer)) (format t "==>"))

(cond

((atom s) ;Interpret atoms as labels.

(format t "~s:~15T" s))

((and (symbolp (car s))

(not (get (car s) ’construct-definition))

(not (eq (car s) ’env))

(not (and (symbolp (cadr s))

(get (cadr s) ’construct-definition))))

(format t "~16T")

(dolist (w s)

(if (register? w)

(format t "$~s " (cadr w))

(format t "~:w " w)))

(format t "~%"))

(t

(format t "~16T~:w~%" s))))

(pprint code))

(format t "~&~%")

(values))

(defun rc (source &optional startenv)

(mvbind (prog env)

(rcomp source startenv)

(myprint prog)

(format t "~&~%Final environment:")

(print env))

(values))

D.4.4 location.lisp

Functions for working with “location” objects which give the locations of variables.
Currently these are just implemented as simple list structures.

;;; -*- Package: user -*-

(in-package "USER")

;;; ---------------------------------------------------------------------

;;; A LOCATION object indicates where a variable is stored.

;;;

;;; The current implementation uses list structures. If a <LOCATION> is

;;; NIL, then the variable exists in the environment but has no storage

;;; location (and is therefore also unbound). If a <LOCATION> is (REG

;;; <regno>) then the variable is located in register number <REGNO>. If
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;;; <LOCATION> is (STACK <offset>) then the variable is located on the

;;; stack at the address SP+<OFFSET>, where SP is the current value of the

;;; stack pointer register.

;;; ----------------------------------------------------------------------

;; Return non-nil iff the object OBJ is a register location.

(defun register? (obj)

(and (listp obj) (cdr obj) (null (cddr obj))

(eq (car obj) ’reg)))

(defun stackloc? (obj)

(and (listp obj) (cdr obj) (null (cddr obj))

(eq (car obj) ’stack)))

;; Return non-nil iff the object OBJ is a null location (meaning the

;; location of a variable that is not located anywhere).

(defun null-loc? (obj)

(null obj))

;; Return the given stack location’s offset from the current stack

;; pointer.

(defun offset (stackloc)

(cadr stackloc))

(defun location? (obj)

(or (register? obj) (stackloc? obj)))

D.4.5 environment.lisp

Defines environment objects, which keep track of variables’ location assignments.
This is currently implemented as a full-fleged CLOS object.

;;; -*- Package: user -*-

(in-package "USER")

;;; ======================================================================

;;; This file defines the interface to and implementation of ENVIRONMENT

;;; objects. An environment object determines what variables are present

;;; in the R environment at a given point in the program, and where they

;;; are stored. The environment also maintains identifiers for static

;;; objects. This file provides the programmer’s interface to environment

;;; objects, and should be used in lieu of manipulating the underlying

;;; structures directly. This is intended to reduce errors and allow

;;; environments to be reimplemented at a later time.

;;; ======================================================================

(defun empty-locmap () ’())

(defclass environment ()

((variable-locations

:type list ;More specifically an ALIST from identifiers to locations.

:initform (empty-locmap)

:initarg :locmap

:accessor locmap

:documentation "An ALIST of the form ((<var1> . <location1>) ...).

Each VAR is a symbol, and only appears once in the alist. The

variables that have most recently been created or moved appear at

the front of the alist.")

(static-value-identifiers

:type list
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:initform nil

:initarg :staticvals

:accessor staticvals

:documentation "A list of identifier symbols that denote static

data values permanently located in memory.")

(static-array-identifiers

:type list

:initform nil

:initarg :staticarrays

:accessor staticarrays

:documentation "A list of identifier symbols denoting static arrays.")

)

(:documentation "An environment specifies the meanings of identifiers at

a given point during the compilation of a program."))

(defmacro make-environment (&rest args)

‘(make-instance ’environment . ,args))

(defun empty-env ()

(make-environment))

(defun copy-environment (env)

(make-environment :locmap (copy-alist (locmap env))

:staticvals (copy-list (staticvals env))

:staticarrays (copy-list (staticarrays env))))

(defmethod env-to-list ((env environment))

‘(:locmap ,(locmap env)

:staticvals ,(staticvals env)

:staticarrays ,(staticarrays env)))

(defmethod print-object ((env environment) stream)

(write (env-to-list env) :stream stream))

;; Return an environment like ENV, but with VAR bound to location LOC

;; in the location map.

(defmethod set-loc (var loc (env environment))

(setf env (copy-environment env)

(locmap env) ‘((,var .,loc).,(remove (assoc var (locmap env))

(locmap env))))

env)

;; Return an environment that is just like the given environment ENV but

;; with the variable VAR removed from the location map.

(defmethod remove-var (var (env environment))

(setf env (copy-environment env)

(locmap env) (remove (assoc var (locmap env)) (locmap env)))

env)

;; Return non-nil iff the variable VAR exists in the environment ENV.

(defmethod defined-in-env? (var (env environment))

(assoc var (locmap env)))

;; Return the location of variable VAR in environment ENV, or nil if VAR

;; does not exist in the environment. This is not guaranteed to be

;; distinct from the null location. (The DEFINED-IN-ENV function can be

;; used to distinguish the two cases.)

(defmethod location (var (env environment))

(cdr (assoc var (locmap env))))

;; Return the variable stored at the given location in the given
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;; environment, or nil if none.

(defmethod var-at-loc (loc (env environment))

(car (rassoc loc (locmap env) :test #’equal)))

;; Return non-nil iff the two environments E1 and E2 contain the exact same

;; set of variables.

(defmethod equal-vars? ((e1 environment) (e2 environment))

(let ((answer t))

(dolist (v (append (mapcar #’car (locmap e1)) (mapcar #’car (locmap e2))))

(if (not (and (assoc v (locmap e1)) (assoc v (locmap e2))))

(setf answer nil)))

answer))

;; Return non-nil iff the two environments E1 and E2 are equivalent, in the

;; sense that they have the same variables and assign them to the same

;; locations.

(defmethod equal-env? ((e1 environment) (e2 environment))

(let ((answer t))

(dolist (v (append (mapcar #’car (locmap e1)) (mapcar #’car (locmap e2))))

(if (not (equal (assoc v (locmap e1)) (assoc v (locmap e2))))

(setf answer nil)))

answer))

;; Return the first variable in environment E1 that is not located in the

;; same place in environment E2.

(defmethod first-misloc ((e1 environment) (e2 environment))

(dolist (v (mapcar #’car (locmap e1)))

(if (not (equal (cdr (assoc v (locmap e1))) (cdr (assoc v (locmap e2)))))

(return v))))

;; Return the lowest-numbered available register location in the given

;; environment. Available means not containing any variable. Registers 0

;; and 1 are never available because 0 is reserved to contain 0 and 1 is

;; reserved to be the stack pointer. Returns nil if no registers are

;; available.

(defmethod next-avail-reg ((env environment))

(let ((i 2))

(loop

(if (not (rassoc ‘(reg ,i) (locmap env) :test #’equal))

(return ‘(reg ,i)))

(incf i)

(if (= i 32) (return)))))

;; Return the first stack location ABOVE THE CURRENT STACK

;; POINTER that is available (doesn’t contain a variable) in the given

;; environment. The stack grows down, so ABOVE means MORE NEGATIVE THAN.

(defmethod next-avail-stack ((env environment))

(let ((i -1))

(loop

(if (not (rassoc ‘(stack ,i) (locmap env) :test #’equal))

(return ‘(stack ,i)))

(decf i))))

;; Return a variable in the given environment that was least recently

;; created or moved.

(defmethod least-recently-moved ((env environment))

;; Currently this information is maintained by putting newly-created or

;; moved variables on the front of the alist, so we just return the last

;; variable on the list.

(car (nth (1- (length (locmap env))) (locmap env))))
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;; Return non-nil if VAR is located in a register in environment ENV.

(defmethod in-register? (var (env environment))

(register? (location var env)))

;; Return the index of the topmost stack location at SP or below that

;; has a variable in it. In other words, where is

;; the top of the stack in relation to the current stack pointer.

(defmethod top-of-stack ((env environment))

(let ((h 0))

(dolist (loc (locmap env))

(if (eq (cadr loc) ’stack)

(if (< (caddr loc) h)

(setf h (caddr loc)))))

h))

(defmethod add-staticval (name (env environment))

(setf env (copy-environment env)

(staticvals env) (cons name (staticvals env)))

env)

(defmethod add-staticarray (name (env environment))

(setf env (copy-environment env)

(staticarrays env) (cons name (staticarrays env)))

env)

(defmethod static-id? (obj (env environment))

(and (symbolp obj)

(or (member obj (staticvals env))

(member obj (staticarrays env)))))

(defmethod dynamic-var? (obj (env environment))

(and (symbolp obj)

(not (static-id? obj env))))

(defmethod static-array? (obj (env environment))

(member obj (staticarrays env)))

(defun negated-sym? (obj)

(and (symbolp obj)

(eq #\- (elt (symbol-name obj) 0))))

(defun positive-of (negsym)

(intern (subseq (symbol-name negsym) 1)))

(defmethod literal? (obj (env environment))

(or (numberp obj)

;; Static array identifiers are literals because they stand for their

;; addresses, and are left in the form of symbols which are processed

;; directly by the assembler.

(static-array? obj env)

;; If FOO is a static array, -FOO is a literal also.

(and (negated-sym? obj)

(static-array? (positive-of obj) env))

;; Expression is the address of a static-val.

(static-val-addr? obj env)))

(defmethod static-val? (obj (env environment))

(member obj (staticvals env)))

(defmethod static-val-addr? (obj (env environment))

(and (listp obj)
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(eq (car obj) ’&)

(null (cddr obj))

(static-val? (second obj) env)))

D.4.6 regstack.lisp

This file defines low-level constructs for directly manipulating registers and the stack.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; Register/stack manipulation.

(defconstruct relocate (var loc)

(let ((oldloc (location var env)))

(if (not (equal oldloc loc)) ;If not already there.

(if (null oldloc)

‘((vacate ,loc)

(tell-loc ,var ,loc))

(if (null loc)

‘(tell-loc ,var ,loc)

(let ((oldv (var-at-loc loc env)))

(if oldv

;; If new location occupied, swap.

‘((swaploc ,oldloc ,loc)

(tell-loc ,var ,loc)

(tell-loc ,oldv ,oldloc))

;; Not occupied, just move.

(if (null-loc? oldloc)

‘(tell-loc ,var ,loc)

‘((moveloc ,oldloc ,loc)

(tell-loc ,var ,loc))))))))))

;;; loc1 and loc2 should be register or stack locations.

(defconstruct swaploc (loc1 loc2)

(if (and (register? loc1)

(register? loc2))

‘(swapregs ,loc1 ,loc2)

(if (register? loc1)

‘(exregstack ,loc1 ,loc2)

(if (register? loc2)

‘(exregstack ,loc2 ,loc1)

;; We need a temporary register to facilitate the stack exchange;

;; we choose reg. 31 for no particular reason. The net change to

;; it is nil. This all works but could probably be made

;; considerably more efficient.

‘((exregstack (reg 31) ,loc1)

(exregstack (reg 31) ,loc2)

(exregstack (reg 31) ,loc1))))))

;; Assuming loc2 is clear, move loc1 to it.

(defconstruct moveloc (loc1 loc2)

(if (and (register? loc1)

(register? loc2))

‘(movereg ,loc1 ,loc2)

(if (register? loc1)

‘(exregstack ,loc1 ,loc2)

(if (register? loc2)
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‘(exregstack ,loc2 ,loc1)

;; We need a temporary register to facilitate the stack exchange;

;; we choose reg. 31 for no particular reason. The net change to

;; it is nil. This all works but could probably be made

;; considerably more efficient.

‘((exregstack (reg 31) ,loc1)

(exregstack (reg 31) ,loc2)

(exregstack (reg 31) ,loc1))))))

;; Would save a lot of ADDI instructions if I changed this to modify the

;; stack pointer before but not after; and instead change the environment

;; to reflect correct new variable locations and amount of stack adjustment

;; from original. But perhaps it would be better to leave the stack

;; pointer alone and get rid of adjacent ADDIs via a later peephole

;; optimization or something.

(defconstruct exregstack (reg stackloc)

‘(with-SP-adjustment ,(offset stackloc)

(exch ,reg (reg 1))))

;; Given a register, push its contents onto the stack. Not currently used.

(defconstruct push (reg)

‘((exch ,reg (reg 1)) ;; <-- Convention: r1 is stack pointer.

(++ (reg 1)))

;;;----------------------------------------------------------------------

;;; Pure register manipulation.

;; swapregs R1 R2 - Given two registers, swap their contents.

(defconstruct swapregs (r1 r2)

;; Implementation for architectures that support XOR’ing regs, but not

;; swapping regs directly. Another way uses +=, -=, and NEG but takes 4

;; instructions.

‘((,r1 ^= ,r2)

(,r2 ^= ,r1)

(,r1 ^= ,r2)))

;; Fast way to move r1 to r2 when r2 is known to be empty! Otherwise

;; behavior is "undefined" (actually in this implementation r1 gets r2, but

;; r2 ends up with r2^r1).

(defconstruct movereg (r1 r2)

‘((,r2 ^= ,r1)

(,r1 ^= ,r2)))

D.4.7 variables.lisp

Defines high- to low-level constructs for manipulation of variables in variable assign-
ments (environments).

;;; -*- Package: user -*-

(in-package "USER")

;;; ----------------------------------------------------------------------

;;; Constructs for variable-environment manipulation (creating/destroying

;;; variables, changing their locations, etc.)

;;; ----------------------------------------------------------------------

;;;----------------------------------------------------------------------

;;; User-level constructs.

;; Create a new variable VAR, bind it to VAL, execute the BODY, and then
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;; unbind it from VAL and get rid of it. VAL may be an expression, but it

;; must evaluate to whatever value VAR actually has at the end of the BODY,

;; or else all bets are off!

;;

;; 6/3/97 - Now LET is slightly more general---VAR can be put into a

;; relationship with VAL in any of a number of ways... <-, <->, ^=, +=...

;; <-, ^=, += are all equivalent given that SCOPE forces VAR to initially

;; be zero, but <-> is different... It sets VAR by swapping it with VAL,

;; which obviously must be a location of some sort. Afterwards VAR is

;; restored to zero by swapping it back. Note that in this case, if VAR is

;; not left at zero by the BODY, this is fine and results in VAL being

;; side-effected. In other words, this kind of LET is effectively

;; temporarily giving VAL a new name which pulls it into a register if say

;; it was originally an array entry. Another kind of operation (not yet

;; defined) would have VAL be a variable and assign VAR to be truly a

;; synonym for that exact same variable.

(defconstruct let ((var ~ val) &body body)

(if (eq ~ ’<-)

‘(scope ,var

(_with (,var <- ,val)

. ,body))

‘(scope ,var

(with (,var ,~ ,val)

. ,body))))

;; Declare some vars that should be allocated register locations as soon

;; as they are created.

(defconstruct with-regvars (var-or-vars &body body)

‘(scope ,var-or-vars

(register ,var-or-vars)

. ,body))

;; User-level hint to compiler: put the following variables in registers

;; now rather than later.

(defconstruct register (var-or-vars)

(let ((varlist (if (listp var-or-vars) var-or-vars (list var-or-vars))))

(mapcar #’(lambda (var) ‘(get-in-register ,var)) varlist)))

;;;----------------------------------------------------------------------

;;; Intermediate-level constructs. Not recommended for casual users.

(defconstruct with-location-map (locmapdesc &body body)

‘((locmap ,locmapdesc)

,@body

(locmap ,locmapdesc)))

;; WITH-ENVIRONMENT envdesc body - Ensure that the environment, as far as

;; location maps go, is equivalent to the one specified by environment

;; description ENVDESC, both at the beginning and at the end of the body.

(defconstruct with-environment (envdesc &body body)

‘((environment ,envdesc)

,@body

(environment ,envdesc)))

;; ENVIRONMENT envdesc - Ensure that the environment is equivalent to the

;; one specified by environment description ENVDESC. ENVDESC must describe

;; an environment object. Currently the only supported kind of description

;; is an environment object itself. Environments are equivalent if they

;; have the same variables in the same locations. ENVIRONMENT will move

;; variables around as necessary to make the environments match, but it
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;; will not create or destroy any variables. If the environments cannot be

;; made to match, currently a compiler error is generated.

(defconstruct environment (envdesc)

(if (equal-env? env envdesc)

(values ’() envdesc) ;Tell RCOMP the requested form of the description.

(if (equal-vars? env envdesc) ;Do the envs have the same variables?

;; Relocate the first mis-located variable, and try again.

(let ((v (first-misloc env envdesc)))

(if (null (location v envdesc))

‘(environment ,(set-loc v (location v env) envdesc))

‘((relocate ,v ,(location v envdesc))

(environment ,envdesc))))

(error "Environments ~s and ~s don’t match." env envdesc))))

(defconstruct locmap (locmapdesc)

(setf env2 (copy-environment env)

(locmap env2) locmapdesc)

‘(environment ,env2))

(defconstruct declare-locmap (locmapdesc)

(setf env (copy-environment env)

(locmap env) locmapdesc)

(values nil env))

(defconstruct declare-environment (envdesc)

(setf env (copy-environment envdesc))

(values nil env))

;; The given variable should exist throughout the body of the scope, no

;; more, no less. The body must leave the variable clear, or else!

(defconstruct scope (var &body body)

(let ((vlist (if (listp var) var (list var))))

‘(with ,(mapcar #’(lambda (var) ‘(add-to-env ,var)) vlist)

,@body))

;; Note danger if var is not actually clear at end of BODY!

)

;; ENSURE-GREEN enforces environmental correctness -- it leaves the

;; environment just the way it found it. (With regards to its location map.)

(defconstruct ensure-green (&body body)

‘(,@body

(locmap ,(locmap env))))

;; DECLARE-GREEN declares that the environment in effect when the body

;; is entered will necessarily be in effect when it ends. Don’t use this

;; when it isn’t true!

(defconstruct declare-green (&body body)

(values body env))

;; Make the LOCATION be clear, and associate it with a new variable VARNAME.

(defconstruct new-var-at (varname location)

(if (defined-in-env? varname env)

(error "Variable ~s is already in the environment!" varname)

‘((vacate ,location)

(tell-loc ,varname ,location))))

;; Make a particular location LOC become available (empty, and no variable

;; assigned to it).

(defconstruct vacate (loc)

(let ((v (var-at-loc loc env)))

(if v
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;; Location is occupied by variable V.

(let ((reg (next-avail-reg env)))

;; If any registers are available, move V there.

(if reg ‘(relocate ,v ,reg)

;; Else move V to the next available stack location.

(let ((s (next-avail-stack env)))

(if s ‘(relocate ,v ,s))))))))

;; Arrange for the given variable, which should already be present in the

;; environment, to be located in a register (instead of on the stack).

(defconstruct get-in-register (var)

(if (symbolp var)

(let ((l (location var env)))

(if (not (register? l)) ;If it’s not already in a register,

(let ((reg (next-avail-reg env)))

(if reg ;If there is a register avaiable, put it there.

(if (null-loc? l)

‘(tell-loc ,var ,reg)

‘(relocate ,var ,reg))

;; Else boot out the least-recently moved variable.

(let* ((victim (least-recently-moved env))

(loc (location victim env)))

(if (null-loc? l)

‘((vacate ,loc)

(tell-loc ,var ,loc))

‘(relocate ,var ,loc)))))))))

;;;----------------------------------------------------------------------

;;; Primitive environment-manipulation constructs.

;; Create the given variable in the environment, but don’t give it a

;; location quite yet.

(defconstruct add-to-env (var) :opposite remove-var

(if (defined-in-env? var env)

(error "Variable ~s already exists!" var)

(values ’() (set-loc var nil env))))

;; Change the current environment to have the location of variable VAR as

;; being LOC. Generates no code. This construct is dangerous if the old

;; location of VAR has a non-zero runtime value, and is not associated with

;; any other variable.

(defconstruct tell-loc (var loc)

(values ’() (set-loc var loc env)))

;; Assuming that a variable is empty, remove it from the environment!

;; (Danger, Will Robinson!) This causes grave problems if the runtime

;; value of the variable is not zero. But currently we generate no runtime

;; code to notice that condition, so watch out!

(defconstruct remove-var (varname) :opposite add-to-env

(values ’() (remove-var varname env)))

D.4.8 branches.lisp

Constructs providing intermediate- and low-level support for various kinds of branch
structures for control-flow.

;;; -*- Package: user -*-

(in-package "USER")
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;;;----------------------------------------------------------------------

;;; Support for various kinds of branches.

;;; These constructs are not intended to appear in source code,

;;; but are rather used to implement higher-level control-flow

;;; constructs.

;;;----------------------------------------------------------------------

;;;----------------------------------------------------------------------

;;; Relatively high-level branch constructs.

;; paired binary conditional switching branches. The body in between the

;; two branches must conserve the environment or else we won’t have a

;; definite compile-time idea of the environment after the branch pair

;; because we don’t know whether the branch succeeds or fails at run-time

;; or not. Note the vars must really be variables and not literals or

;; registers.

(defconstruct bcs-branch-pair (toplab (vara1 ~a vara2)

botlab (varb1 ~b varb2)

&body body)

‘(;; All the variables involved need to be in registers before we start.

(get-in-register ,vara1)

(get-in-register ,vara2)

(get-in-register ,varb1)

(get-in-register ,varb2)

(bcs-branch (,vara1 ,~a ,vara2) ,toplab ,botlab)

;; Since the vars were already in registers, BCS-BRANCH will not have

;; modified the environment after the branch point.

(ensure-green ;Complain if the body doesn’t clean up after itself.

,@body)

;; Due to the above GET-IN-REGISTERs and the ENSURE-GREEN, the b

;; variables will already be in registers here, so this BCS-BRANCH will

;; not need to modify the environment at all from the current one,

;; which is identical to the one just before the branch point.

(bcs-branch (,varb1 ,~b ,varb2) ,botlab ,toplab)))

;; (The following construct is currently not used.) Twin (meaning with

;; identical tests and variables) binary-operator conditional switching

;; branches. The body in between the two branches must conserve the

;; environment or else we won’t have a definite compile-time idea of the

;; environment after the branch pair because we don’t know whether the

;; branch succeeds or fails at run-time or not.

(defconstruct twin-bcs-branch ((var1 ~ var2) toplab botlab &body body)

‘((get-in-register ,var1)

(get-in-register ,var2)

(bcs-branch (,var1 ,~ ,var2) ,toplab ,botlab)

;; bcs-branch had better not itself change the environment

;; after it branches!

(ensure-green

,@body)

(bcs-branch (,var1 ,~ ,var2) ,botlab ,toplab)))

;; Twin unconditional switching branches.

;; Now that the environment contains information other than

;; the locations of run-time variables, does it make

;; sense for it to be completely green? Declaring static variables

;; inside the body might be expected to be able to affect the

;; outside world. Or, maybe it shouldn’t. Haven’t decided yet.

(defconstruct twin-us-branch (toplab botlab &body body)

;; TWIN-US-BRANCH is GREEN on the outside because encountering it from

;; the outside you just jump over it, and the environment doesn’t change.

‘(declare-green
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(sbra-pair ,toplab ,botlab . ,body))

;; We have no idea what the environment is inside the first bra, though

;; (cuz we might slip into the middle as a subroutine call), so we can’t

;; put an ensure-green or anything in there. The environment in effect

;; at this point, which just leeches in from above, is usually wrong.

;; Still, the body needs to be careful that whatever environment is in

;; effect at its end is the same as the one it assumes at its top. But

;; this is a job for a higher level to worry about.

)

;;;----------------------------------------------------------------------

;;; lower-level branch constructs.

;;; Note to self: I think that the way branches and environments

;;; interact may be incorrect. If the variables mentioned in the

;;; branch are not in registers, then the environment needs to change

;;; to allow the branch to be done---so the environment declared

;;; at the place we’re branching to may be wrong. Need to go thru

;;; and fix carefully. Really, need a more sophisticated approach

;;; to how environments are kept track of during compilation of

;;; complex control-flow structures.

;; This low-level thing doesn’t worry about environments at all.

;; That’s a job for higher-level dudes that use it.

(defconstruct sbra-pair (toplab botlab &body body)

‘((sbra ,toplab ,botlab)

,@body

(sbra ,botlab ,toplab)))

;;

;; SBRA: Switching branch (unconditional). Branch is

;; from label thislab to otherlab.

;;

;; Semantics is: if we branch to this statement from

;; otherlab, then continue forwards normally. If we

;; arrive at this statement normally, then branch to

;; otherlab. If we arrive at this statement some other

;; way, results are undefined.

;;

(defconstruct sbra (thislab otherlab)

‘((label ,thislab) ;Convention: label precedes labeled statement.

(bra ,otherlab))) ;Assume that the hardware gives the semantics we want.

(defconstruct sbez (thislab var lab)

;; There’s no built-in BEZ, so we reserve reg $0 to be zero

;; so we can just use BEQ instead.

‘(bcs-branch (,var = (reg 0)) ,thislab ,lab))

(defconstruct sbnz (thislab var lab)

;; There’s no built-in BNZ, so we reserve reg $0 to be zero

;; so we can just use BNE instead.

‘(bcs-branch (,var != (reg 0)) ,thislab ,lab))

(defconstruct bcs-branch ((var1 ~ var2) thislab otherlab)

(cond

;; If the variables aren’t in registers, get them there. The only thing

;; is, I’m not sure it makes sense to do any environment manipulation at

;; this level because it makes it difficult for the higher level stuff

;; to ensure thtat the environment is consistent at both ends of the

;; actual branch point.

((and (member ~ ’(= !=)) (numberp var2) (zerop var2))
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;; To compare for equality with zero, compare with $0 (reserved for 0).

‘(bcs-branch (,var1 ,~ (reg 0)) ,thislab ,otherlab))

((and (or (register? var1)

(in-register? var1 env)

(eql var1 0))

(or (register? var2)

(in-register? var2 env)

(eql var2 0)))

‘((label ,thislab)

;; This assumes that BC-BRANCH has the right switching sort of

;; semantics, and that it doesn’t insert any instructions before the

;; actual branch.

(bc-branch (,var1 ,~ ,var2) ,otherlab)))

;; Does this make sense?

((and (symbolp var1) (defined-in-env? var1 env)

(not (in-register? var1 env)))

‘((get-in-register ,var1)

(bcs-branch (,var1 ,~ ,var2) ,thislab ,otherlab)))

((and (symbolp var2) (defined-in-env? var2 env)

(not (in-register? var2 env)))

‘((get-in-register ,var2)

(bcs-branch (,var1 ,~ ,var2) ,thislab ,otherlab)))

((and (symbolp var1) (not (defined-in-env? var1 env)))

‘((add-to-env ,var1)

(bcs-branch (,var1 ,~ ,var2) ,thislab ,otherlab)))

((and (symbolp var2) (not (defined-in-env? var2 env)))

‘((add-to-env ,var2)

(bcs-branch (,var1 ,~ ,var2) ,thislab ,otherlab)))

;; I could go on and handle expressions and literals as well, but again

;; I’m concerned that this isn’t the right level.

))

;; binary conditional branch

(defconstruct bc-branch ((var1 ~ var2) destlab)

(cond

((and (or (register? var1) (eql var1 0))

(or (register? var2) (eql var2 0)))

‘(rbc-branch (,var1 ,~ ,var2) ,destlab))

;; If the variables are in registers, just look at the registers.

((and (symbolp var1) (in-register? var1 env))

‘(bc-branch (,(location var1 env) ,~ ,var2) ,destlab))

((and (symbolp var2) (in-register? var2 env))

‘(bc-branch (,var1 ,~ ,(location var2 env)) ,destlab))

;; We can’t really do any environment manipulation at this level

;; because the instructions manipulated will come between us and the

;; label inserted by BCS-BRANCH.

(t

(error "BC-BRANCH can only cope with variables residing in registers!")

)))

;;;----------------------------------------------------------------------

;;; Branching primitives.

;; A label is a tag that gives an address in code that is a target

;; for branching.

(defconstruct label (labname)

labname)

(defconstruct bez (reg lab)

;; There’s no built-in BEZ, so we reserve reg $0 to be zero

;; so we can just use BEQ instead.
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‘(rbc-branch (,reg = (reg 0)) ,lab))

(defconstruct bnz (reg lab)

;; Similar, use BNE.

‘(rbc-branch (,reg != (reg 0)) ,lab))

(defparameter *bc-branch-instructions*

’((!= . bne) (= . beq)))

(defparameter *zerocmp-branch-instructions*

’((>= . bgez) (<= . blez) (> . bgtz) (< . bltz)))

;; "register binary conditional branch"

;; tests whether two registers satisfy some relation ~ and if so

;; branch to DESTLAB.

(defconstruct rbc-branch ((reg1 ~ reg2) destlab)

(cond

((assoc ~ *bc-branch-instructions*)

‘(,(cdr (assoc ~ *bc-branch-instructions*))

,reg1 ,reg2 ,destlab))

((and (eql reg2 0)

(assoc ~ *zerocmp-branch-instructions*))

‘(,(cdr (assoc ~ *zerocmp-branch-instructions*))

,reg1 ,destlab))))

D.4.9 expression.lisp

Constructs and low-level functions for expanding nested expressions.

;;; -*- Package: user -*-

(in-package "USER")

;; This version of WITH allows any temporary effect, not just

;; variable binding, to be done and undone around the body.

(defconstruct with (statement &body body)

‘(,statement

,@body

(undo ,statement)))

;; Given any statements, do their reverse (undoing their effects). Don’t

;; depend too much on this always working yet.

(defconstruct undo (&rest statements)

(unless (null statements)

(dbind (first . rest) statements

(if (list-of-statements? first)

‘(undo ,@first . ,rest)

(let ((statement (canonicalize first)))

‘((undo . ,rest)

(,(opposite (first statement)) . ,(rest statement))))))))

;; Maps "expanding" binary operators to their do/undo statements.

(defparameter *expanding*

’((& ^=&) (<< ^=<<) (>> ^=>>) (* +=* -=*) (*/ +=*/ -=*/) (_ <-_ ->_)))

(defun forw (binop)

(cadr (assoc binop *expanding*)))

(defun revers (binop)

(or (caddr (assoc binop *expanding*))

(cadr (assoc binop *expanding*))))
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(defun expression? (obj)

(and (listp obj)

(not (location? obj))

(not (statement? obj))))

;; This version of with doesn’t evaluate expressions as many times.

;; but uses up linear space during body. It only handles <- (bind) type

;; statements though.

(defconstruct _with ((var <- val) &body body)

(cond

((or (not (expression? val))

(literal? val env))

‘(with (,var <- ,val)

. ,body))

((null (cddr val)) ; No more than 2 words in value expression.

(cond

((eq (first val) ’*)

;; These expansions are a bit questionable because what if the body

;; tries to look at the dereferenced value also? It will see 0 (or

;; whatever was in VAR) instead. But the alternative, of introducing

;; yet another temporary and swapping the contents back before doing

;; the body, seems too inefficient.

(if (or (register? (second val))

(dynamic-var? (second val) env))

‘((,var <->* ,(second val))

,@body

(,var <->* ,(second val)))

(let ((tv (gentemp)))

‘(_with (,tv <- ,(second val))

‘((,var <->* ,tv)

,@body

(,var <->* ,tv))))))))

(t

(dbind (a1 ~ a2) val ;But what about other expressions?

(let ((rb (revers ~))

(fb (forw ~)))

(cond

((and (numberp a1) (numberp a2))

‘((,var <- ,(funcall ~ a1 a2)) ;Warning: this is too simplistic.

,@body

(,var -> ,(funcall ~ a1 a2))))

((eq ~ ’+)

‘(with ((,var += ,a1)

(,var += ,a2))

,@body))

((and (eq ~ ’+) (not (expression? a1)))

‘(_with (,var <- ,a2)

(with (,var += a1)

,@body)))

((and (eq ~ ’+) (not (expression? a2)))

‘(_with (,var <- ,a1)

(with (,var += ,a2)

,@body)))

((and (eq ~ ’-) (not (expression? a2)))

‘(_with (,var <- ,a1)

(with (,var -= ,a2)

,@body)))

((and (expression? a1) (expression? a2))

(let ((tv1 (gentemp))

(tv2 (gentemp)))

‘(let (,tv1 <- ,a1)
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(let (,tv2 <- ,a2)

(,var ,fb ,tv1 ,tv2)

,@body

(,var ,rb ,tv1 ,tv2)))))

((expression? a1)

(let ((tv (gentemp)))

‘(let (,tv <- ,a1)

(,var ,fb ,tv ,a2)

,@body

(,var ,rb ,tv ,a2))))

((expression? a2)

(let ((tv (gentemp)))

‘(let (,tv <- ,a2)

(,var ,fb ,a1 ,tv)

,@body

(,var ,rb ,a1 ,tv))))

(t

‘((,var ,fb ,a1 ,a2)

,@body

(,var ,rb ,a1 ,a2)))))))))

;;;----------------------------------------------------------------------

;;; Variable binding and unbinding. For most purposes this takes the

;;; place of assignment.

;; Semantics of BIND: assuming that VAR is already clear,

;; set it to VAL.

(definfix (var <- val) :opposite ->

;; Implemented using +=, but ^= would also work.

(cond

((or (symbolp val) (numberp val) (register? val) (literal? val env))

‘(,var += ,val))

((expression? val)

;; Binary expression.

(destructuring-bind (a1 ~ a2) val ;What about other syntaxes?

(cond

((and (numberp a1) (numberp a2))

‘(,var += ,(funcall ~ a1 a2))) ; Really too simplistic.

((eq ~ ’+)

‘((,var += ,a1)

(,var += ,a2)))

((eq ~ ’-)

‘((,var += ,a1)

(,var -= ,a2)))

((eq ~ ’^)

‘((,var ^= ,a1)

(,var ^= ,a2)))

((eq ~ ’*)

‘(,var +=* ,a1 ,a2))

((assoc ~ *expanding*)

‘(,var ,(forw ~) ,a1 ,a2))

((extract form env :lvalues 1))

(t

(error "Don’t know how to compile ~s." form)))))))

;; Assuming that VAR=VAL, restore it to zero.

(definfix (var -> val) :opposite <-

(cond

((or (symbolp val) (numberp val) (register? val) (literal? val env))

‘(,var -= ,val))

((expression? val)
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;; Binary expression.

(destructuring-bind (a1 ~ a2) val

(cond

((and (numberp a1) (numberp a2))

‘(,var -= ,(funcall ~ a1 a2))) ; Really too simplistic.

((eq ~ ’+)

‘((,var -= ,a1)

(,var -= ,a2)))

((eq ~ ’-)

‘((,var -= ,a1)

(,var += ,a2)))

((eq ~ ’^)

‘((,var ^= ,a1)

(,var ^= ,a2)))

((eq ~ ’*)

‘(,var -=* ,a1 ,a2))

((assoc ~ *expanding*)

;; Use the appropriate reverse op if different from forward one.

‘(,(revers ~) ,var ,a1 ,a2))

((extract form env :lvalues 1))

(t

(error "Don’t know how to compile ~s." form)))))))

;;; ----------------------------------------------------------------------

;;; New thingy. constructs all use this same function EXTRACT to

;;; automatically replace located variables with their locations, move

;;; stack variables into registers before operating on them, create

;;; temporary variables for subexpressions and compute their values.

;; EXTRACT - you give it a form, and it returns code that

;; creates appropriate temporary stuff around it and gets variables

;; in registers together with a reduced version of the original

;; form.

;; RELEVANT-TERMS is a list of the indices (as per NTH or ELT) of those

;; terms that are candidates for expanding. If not provided, all terms are

;; considered fair game.

;; LVALUES is similarly the index of or a list of the indices of

;; a term or terms that are considered to be "lvalues", that is,

;; "destinations" where the value of the term is changed by the

;; statement. Anything in LVALUES is automatically also a candidate

;; for expanding.

;; The indices in both RELEVANT-TERMS and LVALUES refer to the

;; indices the terms have *after* any canonicalization.

;; NIL is returned if EXTRACT can’t do anything.

(defun extract (form env &key lvalues (relevant-terms

(labels ((countlist (n)

(if (>= n 0)

(cons n

(countlist

(1- n))))))

(countlist (length form)))))

(setf form (canonicalize form));So we can forget about infix.

(labels ((lvalue? (index)

"Return non-NIL if the given index is the index of

a term that is an LVALUE (modifiable term)."

(or (eql index lvalues)

(and (listp lvalues)

(member index lvalues))))

(candidate? (index)
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"Return non-NIL if the given index is the index of a

term that is a candidate for expansion."

(or (member index relevant-terms)

(lvalue? index))))

;; First we locate the first term that is an expression or

;; a literal, and convert it into a temporary variable.

(let (before)

(setf (cdr form)

(repl2 (cdr form)

#’(lambda (term index)

(if (and (candidate? index)

(or (expression? term)

(literal? term env)))

(let ((tv (gentemp)))

(if (lvalue? index)

(setf before ‘(,tv <-> ,term))

(setf before ‘(,tv <- ,term)))

tv)))

1))

(when before

(return-from extract ‘(let ,before ,form))))

;; If any term is a static value identifier, wrap the statement in

;; a binding of a temporary to the value’s address and replace the

;; term with a dereferencing expression.

(let (before)

(setf (cdr form)

(repl2 (cdr form)

#’(lambda (term index)

(if (and (candidate? index)

(static-val? term env))

(let ((tv (gentemp)))

(setf before ‘(,tv <- (& ,term)))

‘(* ,tv))))

1))

(when before

(return-from extract ‘(let ,before ,form))))

;; Now look for variables and make sure they are in the environment.

;; If not, add them, but don’t remove them afterwards. This lets

;; user refrain from explicitly adding variables although he will

;; still have to get rid of them manually.

(let ((index 1))

(dolist (term (cdr form))

(when (and (dynamic-var? term env)

(candidate? index)

(not (defined-in-env? term env)))

(return-from extract

‘((add-to-env ,term)

,form)))

(incf index)))

;; Next, get any mentioned variables into registers.

(let ((index 1))

(dolist (term (cdr form))

(when (and (dynamic-var? term env)

(candidate? index)

(not (in-register? term env)))

(return-from extract

‘((get-in-register ,term)

,form)))

(incf index)))

;; Finally, replace variables with the registers they’re in.

(let (found?)
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(setf (cdr form)

(repl2 (cdr form)

#’(lambda (term index)

(when (and (dynamic-var? term env)

(candidate? index)

(in-register? term env))

(true! found?)

(location term env)))

1))

(if found? form)))) ;End function EXTRACT.

D.4.10 clike.lisp

Defines constructs for various user-level user-level C-like operators.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; C-like assignment statements.

(definfix (var ++)

‘(,var += +1))

;; "-" statement: negate the given lvalue in place.

(defconstruct - (var)

(cond

((register? var)

‘(neg ,var))

(t

(extract form env :lvalues 1))))

(definfix (var <=< val)

(cond

((and (numberp val) (zerop val))

’())

((and (register? var) (static-val-addr? val env))

‘(rl ,var ,(second val)))

((and (register? var) (literal? val env))

‘(rl ,var ,val))

((and (register? var) (register? val))

‘(rlv ,var ,val))

(t

(extract form env

:relevant-terms (if (not (literal? val env)) ’(2))

:lvalues 1))))

(definfix (var >=> val)

(cond

((and (numberp val) (zerop val))

’())

((and (register? var) (static-val-addr? val env))

‘(rr ,var ,(second val)))

((and (register? var) (literal? val env))

‘(rr ,var ,val))

((and (register? var) (register? val))

‘(rrv ,var ,val))

(t
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(extract form env

:relevant-terms (if (not (literal? val env)) ’(2))

:lvalues 1))))

(definfix (var += val) :opposite -=

(cond

((and (numberp val) (zerop val))

’()) ;Optimization: don’t add 0

((and (register? var) (static-val-addr? val env))

‘(addi ,var ,(second val)))

((and (register? var) (literal? val env))

‘(addi ,var ,val))

((and (register? var) (register? val))

‘(add ,var ,val))

(t

(extract form env

:relevant-terms (if (not (literal? val env)) ’(2))

:lvalues 1))))

(definfix (var -= val) :opposite +=

(cond

((and (register? var) (numberp val))

‘(,var += ,(- val))) ;No SUBI instruction.

((and (register? var) (static-array? val env))

‘(,var += ,(intern (concatenate ’string "-" (symbol-name val)))))

((and (register? var) (static-val-addr? val env))

‘(addi ,var ,(intern (concatenate ’string "-"

(symbol-name (second val))))))

((and (register? var)

(literal? val env)

(negated-sym? val))

‘(,var += ,(positive-of val)))

((and (register? var) (register? val))

‘(sub ,var ,val))

(t

(extract form env

:relevant-terms (if (not (literal? val env)) ’(2))

:lvalues 1))))

;; Very much like +=. More abstraction?

(definfix (var ^= val)

(cond

((and (numberp val) (zerop val))

’()) ;Optimization: don’t add 0

((and (register? var) (numberp val))

‘(xori ,var ,val))

((and (register? var) (register? val))

‘(xor ,var ,val))

(t

(extract form env

:relevant-terms (if (not (numberp val)) ’(2))

:lvalues 1))))

(definfix (dest ^=& src1 src2)

(cond

((and (register? dest) (register? src1) (register? src2))

‘(andx ,dest ,src1 ,src2))

(t

(extract form env :lvalues 1))))

(definfix (dest ^=<< src1 src2)
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(cond

((and (register? dest) (register? src1) (register? src2))

‘(sllvx ,dest ,src1 ,src2))

(t

(extract form env :lvalues 1))))

;; This is a logical shift right.

(definfix (dest ^=>> src1 src2)

(cond

((and (register? dest) (register? src1) (register? src2))

‘(srlvx ,dest ,src1 ,src2))

(t

(extract form env :lvalues 1))))

;; (base _ offset) gets transformed into this, where dest is

;; some temporary register.

(definfix (dest <->_ base offset)

;; THIS IS WRONG! Extracting before expanding runs the danger

;; that the variable assignments used during the extraction

;; could be invalidated during the body of the WITH, I think 6/3/97

(or (extract form env :lvalues 1)

‘(with (,base += ,offset)

(,dest <->* ,base))))

(definfix (dest <-_ base offset) :opposite ->_

‘(,dest <-* (,base + ,offset)))

(definfix (dest ->_ base offset) :opposite <-_

‘(,dest ->* (,base + ,offset)))

(definfix (dest <-* ptr)

;; THIS IS WRONG! Extracting before expanding runs the danger

;; that the variable assignments used during the extraction

;; could be invalidated during the header of the LET.

(or

(extract form env :lvalues 1)

(let ((tv (gentemp)))

‘(let (,tv <->* ,ptr)

(,dest <- ,tv)))))

(definfix (dest ->* ptr)

(or

(extract form env :lvalues 1)

(let ((tv (gentemp)))

‘(let (,tv <->* ,ptr)

(,dest -> ,tv)))))

(definfix (left <->* rightptr)

(cond

((extract form env :lvalues 1))

((and (register? left) (register? rightptr))

‘(exch ,left ,rightptr))))

(definfix (var +=* val1 val2) :opposite -=*

‘(call mult ,var ,val1 ,val2))

(definfix (var -=* val1 val2) :opposite +=*

‘(rcall mult ,var ,val1 ,val2))

(definfix (var +=*/ val1 val2) :opposite -=*/

‘(call _smf ,val1 ,val2 ,var)) ;Note dest is last.



362 APPENDIX D. THE R LANGUAGE COMPILER

(definfix (var -=*/ val1 val2) :opposite +=*/

‘(rcall _smf ,val1 ,val2 ,var))

(definfix (left <-> right)

(cond

((and (location? left) (location? right))

‘(swaploc ,left ,right))

((and (listp right)

(>= (length right) 3)

(dbind (base ~ offset) right

(if (eq ~ ’_)

‘(,left <->_ ,base ,offset)))))

((and (listp left)

(>= (length left) 3)

(dbind (base ~ offset) left

(if (eq ~ ’_)

‘(,right <->_ ,base ,offset)))))

((extract form env :lvalues ’(1 2)))))

(defun << (a b)

(ash a b))

D.4.11 print.lisp

Defines a few very simple constructs for producing output.

;;; -*- Package: user -*-

(in-package "USER")

(defconstruct printword (val)

‘((rawprint 0)

(rawprint ,val)))

(defconstruct println ()

‘((rawprint 1)))

(defconstruct rawprint (val)

(cond

((register? val)

‘(output ,val))

(t

(extract form env))))

D.4.12 controlflow.lisp

Defines user-level to intermediate-level control flow constructs such as conditionals
and looping.

;;; -*- Package: user -*-

(in-package "USER")

;;; ----------------------------------------------------------------------

;;; High-level control flow constructs suitable for user use.

;; if CONDEXPR then
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;; BODY...

;; [else BODY2...]

;;

;; CONDEXPR is evaluated; if result is nonzero body is executed. In either

;; case, CONDEXPR is then evaluated in reverse. The value should be the

;; same whether or not BODY was executed, or else behavior undefined.

;; NOTE 6/26/97: IF and all its subsidiary branching constructs need to be

;; completely cleaned up and reorganized. One big thing is that code for

;; computing EXPR in a condition expression of a form like (EXPR > 0) needs

;; to be wrapped around the entire IF. And things like (EXPR1 > EXPR2)

;; need to be transformed into ((EXPR1 - EXPR2) > 0).

(defconstruct if (condexpr then &body body)

(cond

((member ’else body)

(let ((ifpart (subseq body 0 (position ’else body)))

(elsepart (subseq body (1+ (position ’else body)))))

‘(ifelse ,condexpr ,ifpart ,elsepart)))

((and (listp condexpr)

(null (cdddr condexpr))

(member (second condexpr) ’(= != > <= < >=)))

‘(_if ,condexpr then . ,body))

(t

;; The current version is appropriate only for testing an arbitrary

;; value to see if it is non-zero. For other kinds of conditions,

;; other implementations would be more appropriate.

(if (symbolp condexpr)

‘(_if (,condexpr != 0) then . ,body)

(let ((tv (gentemp)))

‘(let (,tv <- ,condexpr)

(_if (,tv != 0) then . ,body)))))))

;; for VAR = START to END

;; BODY...

;;

;; Semantics: START and END are expressions. They are each evaluated once

;; forwards at the beginning of the loop, and once in reverse at the end of

;; the loop. They should return the same value both times.

;;

;; VAR is a fresh variable whose scope is the BODY. It is set to START,

;; and then the BODY is executed. If VAR is ever END after executing the

;; body, then the construct immediately terminates. Otherwise, VAR is

;; incremented by 1 and the BODY is executed again. START may be equal to

;; END, in which case the BODY is executed exactly once. If the values of

;; START and END ever change during evaluation, or if BODY ever sets VAR to

;; START-1, the behavior of the entire program becomes undefined.

(defconstruct for (var = start wordto end &body body)

(let ((top (gentemp "_FORTOP")) ;Loop entry point.

(bot (gentemp "_FORBOT")) ;Bottom of loop.

(stvar (gentemp "_FORSTART"))

(endvar (gentemp "_FOREND"))) ;Loop boundary values.

‘(let (,stvar <- ,start)

(let (,endvar <- (,end + 1))

(scope ,var

(,var <- ,stvar)

;; The loop itself.

(bcs-branch-pair ,top (,var != ,stvar)

,bot (,var != ,endvar)

,@body
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(,var ++))

(,var -> ,endvar))))))

;;;----------------------------------------------------------------------

;;; Medium-level control flow constructs not intended

;;; for direct user use.

;; InfLoop: Unconditional branch from bottom of body back to top.

;; Also, if we hit it from outside we jump over it.

(defconstruct infloop (&body body)

‘(twin-us-branch ,(gentemp "_LOOPTOP") ,(gentemp "_LOOPBOT")

. ,body))

(setf (get ’= ’opposite) ’!=

(get ’!= ’opposite) ’=

(get ’> ’opposite) ’<=

(get ’<= ’opposite) ’>

(get ’< ’opposite) ’>=

(get ’>= ’opposite) ’<

)

;;; _if (VAR ~ VAL) then BODY

(defconstruct _if ((reg1 ~ reg2) then &body body)

(let ((l1 (gentemp "_IFTOP"))

(l2 (gentemp "_IFBOT")))

‘(twin-bcs-branch (,reg1 ,(opposite ~) ,reg2) ,l1 ,l2

;; The body sure better not change whether var=0.

,@body)))

(defconstruct _ifelse ((reg1 ~ reg2) ifstuff elsestuff)

(let ((iftop (gentemp "_IFTOP"))

(ifbot (gentemp "_IFBOT"))

(elsetop (gentemp "_ELSETOP"))

(elsetop (gentemp "_ELSEBOT")))

‘((bcs-branch (,reg1 ,(opposite ~) ,reg2) ,iftop ,elsetop)

(ensure-green . ,ifstuff)

(sbra ,ifbot ,elsebot)

(sbra ,elsetop ,iftop)

(ensure-green . ,elsestuff)

(bcs-branch (,reg1 ,~ ,reg2) ,elsebot ,ifbot))

))

D.4.13 subroutines.lisp

Provides high and low level support for subroutines.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; Subroutine calling support.

;;;----------------------------------------------------------------------

;;;----------------------------------------------------------------------

;;; User-level constructs.

;; Defsub: Implements subroutine entry/return conventions.

(defconstruct defsub (subname arglist &body body)
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(let ((bodyenv (entryenv arglist env)))

;; We wrap it in a branch pair so that if we encounter it from the

;; outside we jump over it, and if it runs off its end it comes back to

;; the beginning. This latter behavior facilitates calling a subroutine

;; with a single switching-branch to its entry/exit point.

‘((twin-us-branch ,(gentemp "_SUBTOP") ,(gentemp "_SUBBOT")

;; At start and end of body, environment is as according

;; to subroutine calling convention.

(declare-environment ,bodyenv)

(portal ,subname) ;Entry/exit point.

,@body

(environment ,bodyenv)))))

;;;----------------------------------------------------------------------

;;; Subroutine calling convention support.

;; NOTE: Currently this does not work right for more than 29 arguments

;; (i.e. when some args need to go on the top of the stack instead of

;; in registers!).

(defconstruct call (subname &rest actualargs)

‘(withargs ,actualargs

(with-stack-top

(gosub ,subname))))

(defconstruct rcall (subname &rest actualargs)

‘(withargs ,actualargs

(with-stack-top

(rgosub ,subname))))

(defconstruct with-stack-top (&body body)

(let ((offset (top-of-stack env)))

‘(with-sp-adjustment ,offset

. ,body)))

(defconstruct with-SP-adjustment (amt &body body)

;; AMT must be a literal number.

‘(((reg 1) += ,amt)

,@body

((reg 1) -= ,amt)))

;; Call a subroutine at a low level with no mention of arguments.

(defconstruct gosub (subname) :opposite rgosub

;; A switching branch to the SWAPBRN in the portal should do the trick.

‘(bra ,subname))

(defconstruct rgosub (subname) :opposite gosub

‘(rbra ,subname))

;; Portal: Entry/exit point of a subroutine.

(defconstruct portal (label)

‘((label ,label)

;; We always use register $2 for storing our subroutine offsets, by

;; convention.

(swapbr (reg 2)) ;retvar<->BR

(neg (reg 2)) ;retvar = -retvar

))

;;; WITHARGS below needs some work. It currently can only prepare the 29

;;; arguments that we can fit into registers. I was intending that if

;;; there are more arguments they should be passed on the stack. This is

;;; not too hard, but I’m not sure it’s worth it.
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;; Prepare arguments in conventional locations as for a subroutine call.

(defconstruct withargs (actualargs &body body)

(let ((result ‘((vacate (reg 2))

. ,body))

(r 1))

(dolist (a actualargs)

(if (and (symbolp a) (not (static-id? a env)))

(if (defined-in-env? a env)

(push ‘(relocate ,a ,(argno-to-location r)) result)

(setf result

‘((new-var-at ,a ,(argno-to-location r))

,@result

(remove-var ,a))))

(setf result

(let ((tv (gentemp)))

‘((new-var-at ,tv ,(argno-to-location r))

;; This prevents evaluating A from causing

;; earlier-placed registers to change their locations.

;; 6/3/97- But ENSURE-GREEN really enforces more than

;; just this, unfortunately.

(ensure-green

(,tv <- ,a))

,@result

(,tv -> ,a)

;;^-DANGER! Assumes subroutine didn’t change value of A.

(remove-var ,tv)))))

(incf r))

result))

;; On subroutine entry/exit, the environment contains:

;; A return-address variable located in register 2.

;; All the arguments in registers 3,4,... until we run out,

;; and then stack locations -1,-2,... (below top of stack).

;; If not all the registers were used for arguments, then

;; there is a variable for each unused one (above 2), used

;; to ensure that all these other registers are restored to

;; their original state upon exit.

(defun entryenv (arglist origenv)

(let (locmap (r 0))

(dolist (a (cons ’_RET arglist))

(push

‘(,a . ,(argno-to-location r))

locmap)

(incf r))

(setf r (+ r 2))

(if (<= r 31)

(loop

(push ‘(,(intern (concatenate ’string "_R" (princ-to-string r)))

reg ,r) locmap)

(incf r)

(if (> r 31) (return))))

(setf locmap (reverse locmap))

(let ((env (copy-environment origenv)))

(labels

((is-arg? (name) (member name arglist)))

(setf (locmap env) locmap

(staticvals env) (remove-if #’is-arg? (staticvals env))

(staticarrays env) (remove-if #’is-arg? (staticarrays env))))

env)))
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;; Convert an argument number (0 and up) to a location (reg <regno>)

;; or (stack <offset>). Argument 0 is the return address.

(defun argno-to-location (argno)

(if (<= argno 29)

‘(reg ,(+ argno 2))

‘(stack ,(- 29 argno))))

D.4.14 staticdata.lisp

Defines constructs for defining static data objects. Currently this is the only way to
provide input to a program.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; Constructs for declaring static data.

;; Define NAME to refer to a static word of data in memory

;; of value VALUE.

(defconstruct defword (name value)

‘(skip

(staticval ,name)

(label ,name)

(dataword ,value)))

(defconstruct defarray (name &rest elements)

‘(skip

(staticarray ,name)

(label ,name)

. ,(mapcar #’(lambda (elem) ‘(dataword ,elem)) elements)))

;;;----------------------------------------------------------------------

;; VALUE is a word of data that should be included at

;; this point in the program in literal form.

(defconstruct dataword (value)

‘(data ,value))

(defconstruct staticval (name)

(values nil (add-staticval name env)))

(defconstruct staticarray (name)

(values nil (add-staticarray name env)))

;; If the flow of control gets to code surrounded by SKIP it will skip over

;; the contents without executing them.

(defconstruct skip (&body body)

;; Implemented by an unconditional branch pair around the body.

‘(sbra-pair ,(gentemp "_PRESKIP") ,(gentemp "_POSTSKIP")

. ,body))

D.4.15 program.lisp

Defines very high-level constructs for wrapping around the entire program.
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;;; -*- Package: user -*-

(in-package "USER")

;;----------------------------------------------------------------------

;;; Highest-level constructs.

(defconstruct defmain (progname &body body)

‘(;; Always include the standard library of subroutines.

(standard-library)

;; We surround the whole program with a branch pair because I don’t

;; think that our current idea of START/FINISH boundary instructions

;; can be non-noops on the real machine without dissipation. This

;; also skips over main if control somehow comes down from above.

(twin-us-branch _MAINTOP _MAINBOT

;; Execution starts and ends with exactly 0 dynamic variables.

(with-location-map ,(empty-locmap)

(declare-startpoint ,progname)

;; To begin execution, the PC should initally be set to this label.

(label ,progname)

(start)

,@body

(finish)))))

;;----------------------------------------------------------------------

;; Defprog: a whole program with subroutines and a main routine.

;; Now deprecated in favor of defsub + defmain (6/26/97).

(defconstruct defprog (progname subs &body main)

‘(;; Always include the standard library of subroutines.

(standard-library)

;; Include user subroutines.

,@subs

;; We surround the whole program with a branch pair because I don’t

;; think that our current idea of START/FINISH boundary instructions

;; can be implemented without dissipation.

(twin-us-branch _MAINTOP _MAINBOT

;; Execution starts and ends with exactly nothing in the environment.

(with-location-map ,(empty-locmap)

(declare-startpoint ,progname)

;; To begin execution, the PC should initally be set to this label.

(label ,progname)

(start)

,@main

(finish)))))

;;----------------------------------------------------------------------

(defconstruct declare-startpoint (labname)

‘(.start ,labname))

D.4.16 library.lisp

Defines constructs that expand into code for standard subroutine libraries. Currently
the library is very minimal.

;;; -*- Package: user -*-

(in-package "USER")

(defconstruct standard-library ()
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;; List of standardly available subroutines.

’((def-smf)))

;; Define the simplest normal integer multiplication function.

;; This adds the low word of the product of unsigned integers

;; M1 and M2 into PROD.

(defconstruct def-mult ()

’(defsub mult (m1 m2 prod)

;; Use grade-school algorithm.

(for pos = 0 to 31 ; For each of the 32 bit-positions,

(if (m1 & (1 << pos)) then ; if that bit of m1 is 1, then

(prod += (m2 << pos)))))) ; add m2, shifted over to that

; position, into p.

;; Define the signed multiplication-by-fraction function, which takes

;; two signed integers M1 and M2, and adds the high word of their true

;; integer product into PROD. This is like multiplying M1 by M2 when

;; M2 is considered to represent a fraction with numerator explicit and

;; denominator 2^31.

;;

;; This version of the function was tested in C and seemed to work

;; satisfactorily, although more testing is needed. Need to compare

;; with upper bits of true (64-bit-wide) product. 6/26/97

(defconstruct def-smf ()

’(defsub _smf (m1 m2 prod)

(with-regvars (m1p m2p mask shifted bit p)

(with ((mask <- 1)

(m1p <- m1) (if (m1 < 0) then (- m1p))

(m2p <- m2) (if (m2 < 0) then (- m2p)))

(mask <=< 31)

(for position = 1 to 31

(mask >=> 1)

(with (bit <- (m1p & mask))

(if bit then

(with (shifted <- (m2p >> position))

(p += shifted)))))

(if (m1 < 0) then (- p))

(if (m2 < 0) then (- p))

(prod += p)))))

D.4.17 files.lisp

Provides support for reading the source code to compile from a file.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; File compilation code.

(defun rcompile-file (filename &key debug)

(let (source)

(with-open-file (stream filename)

(loop

(let ((next-form

(read stream nil :eof)))
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(cond

((eq next-form :eof)

(setf source (reverse source))

(return))

(t

(push next-form source))))))

(format t "~&Source:~%")

(myprint source)

(if debug

(rcomp-debug source)

(rc source))))

D.4.18 test.lisp

Miscellaneous functions and program fragments for exercising the compiler. Some of
these may be obsolete.

;;; -*- Package: user -*-

(in-package "USER")

;;;----------------------------------------------------------------------

;;; Testing code.

(defun test-sch ()

(rcompile-file "sch.r"))

(defun test-sch-debug ()

(rcompile-file "sch.r" :debug t))

(defparameter *test*

’(defprog example1

()

(let p = (3 * 5))))

(defparameter *test2*

’(defprog example-program-2 ()

(call mult 3 5 p)))

(defun test ()

(rc *test*))

;; My original very simple MULT routine.

(defparameter *mult-orig*

’(defsub mult (m1 m2 prod)

;; Use grade-school algorithm.

(for pos = 0 to 31 ; For each of the 32 bit-positions,

(if (m1 & (1 << pos)) then ; if that bit of m1 is 1, then

(prod += (m2 << pos)))))) ; add m2, shifted over to that

; position, into p.

;; I’d like this code to compile to produce exactly my hand-compiled-

;; and -optimized version of the MULT routine. Currently, it won’t though.

(defparameter *mult-opt*

’(defsub mult-opt (m1 m2 product)

(with-register-vars ((limit = 32) (mask = 1) shifted bit position)

(for position = 0 until limit

(with (bit <- (m1 & mask))

(if bit then

(with (shifted <- (m2 << position))

(product += shifted))))
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(mask <=< 1))))

)

;; Hand-compiled, optimized multiply routine. We could actually

;; include this in programs if we want.

(defparameter *mult-hand*

’(alloctop

(bra allocbot)

alloc4

(swbrn $2) ; This sub-subroutine frees

(addi $1 +1) ; 4 registers for use in the

(exch $31 $1) ; MULT subroutine. It leaves

(addi $1 +1) ; the stack pointer pushed

(exch $30 $1) ; above, but we don’t mind.

(addi $1 +1)

(exch $29 $1)

(addi $1 +1)

(exch $28 $1)

allocbot

(bra alloctop)

;; This subroutine’s arguments are in registers $3, $4, and $5.

subtop

(bra subbot) ; MULT top.

mult

(swbrn $2) ; Subroutine entry/exit point.

(exch $2 $1) ; Push return address.

(bra alloc4) ; Allocate 4 registers ($28-$31).

(addi $31 32) ; limit <- 32

(addi $2 1) ; mask <- 1

fortop

(bne $30 $0 forbot) ; unless (position != 0) do

(andx $28 $3 $2) ; bit <- m1&mask

iftop

(beq $28 $0 ifbot) ; if (bit != 0) then

(sllvx $29 $4 $30) ; shifted <- m2<<position

(add $5 $29) ; product += shifted

(sllvx $29 $4 $30) ; shifted -> m2<<position

ifbot

(beq $28 $0 iftop) ; end if

(andx $28 $3 $2) ; bit -> m1&mask

(rl $2 1) ; mask <=< 1 (rotate left by 1)

(addi $30 +1) ; i++

forbot

(bne $30 $31 fortop) ; and repeat while (position != limit).

(sub $30 $31) ; position -> limit

(addi $2 -1) ; mask -> 1

(addi $31 -32) ; limit -> 32

(rbra alloc4) ; Deallocate 4 registers ($28-$31).

(exch $2 $1) ; Pop return address.

subbot

(bra subtop) ; MULT bottom.

))

(defparameter *mult-frac*

;; Like mult, but interprets the multiplier (1st arg) to be a

;; number between 1 and -1, on a scale where 2^31 = 1, -2^31 = -1.

’(defsub mult-frac (m1 m2 prod)

(for pos = 0 to 31

(if (m1 & (1 << pos)) then

(prod += (m2 >> (31 - pos)))))))
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;;; Interesting question: does MULT-FRAC yield the same result

;;; independently of the order of m1 and m2? I know the original

;;; MULT did. I think it does.

;; This optimized version the same number of instructions as mult-opt.

;; Put this in the standard library?

(defparameter *mult-frac-opt*

’(defsub mult-frac-opt (m1 m2 product)

(with-registers ((limit = 32) (mask = 1) shifted bit position)

(for position = 0 until limit

(mask >=> 1)

(with (bit <- (m1 & mask))

(if bit then

(with (shifted <- (m2 >> position))

(product += shifted))))

)))

)

;;; Now, what to do if integers are signed?

;;; What to do: for actual multiplication, only look at bits

;;; 30-0 of multiplier. Branch on bit 31. If 1, then

;;; subtract shifted multiplicand from product instead of

;;; adding it.

(defparameter *signed-mult-frac-opt*

’(defsub signed-mult-frac-opt (m1 m2 product)

(with-registers ((limit = 32) mask shifted bit position)

(mask <- (1 << 31))

(for position = 1 until limit

(mask >=> 1)

(with (bit = (m1 & mask))

(if bit then

(with (shifted = (m2 >> position))

(if (m2 > 0)

(product += shifted)

else

(product -= shifted))))))

(mask -> 1))))

;; This will be the first version of SIGNED-MULT-FRAC to actually

;; be compilable. (NOT. -6/26)

(defparameter *smf-first*

’(defsub smf-first (m1 m2 prod)

(with-regvars (mask shifted bit)

(with (mask <- 1)

(mask <=< 31)

(for position = 1 to 31

(mask >=> 1) ;Rotate right by 1 bit

(with (bit <- (m1 & mask))

(if bit then

(with (shifted <- (m2 >> position))

(if (m2 > 0)

(prod += shifted)

else

(prod -= shifted))))))))))

;; OK, now THIS version is the new target. 6/26

(defparameter *smf-new*

’(defsub smf-new (m1 m2 prod)

(with-regvars (m1p m2p mask shifted bit p)
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(with ((mask <- 1)

(m1p <- m1) (if (m1 < 0) then (- m1p))

(m2p <- m2) (if (m2 < 0) then (- m2p)))

(mask <=< 31)

(for position = 1 to 31

(mask >=> 1) ;Rotate right by 1 bit

(with (bit <- (m1 & mask))

(if bit then

(with (shifted <- (m2 >> position))

(p += shifted)))))

(if (m1 < 0) then (- p))

(if (m2 < 0) then (- p))

(prod += p)))))

;;; Stuff for Schroedinger program.

;; Point function.

(defparameter *pfunc*

’(defsub pfunc (dest src i alphas epsilon)

((dest _ i) += (((alphas _ i) << 1) */ (src _ i)))

((dest _ i) -= (epsilon */ (src _ ((i + 1) & 127))))

((dest _ i) -= (epsilon */ (src _ ((i - 1) & 127)))))

)

;; Wavefunction step.

(defparameter *schstep*

’(defsub schstep (psiR psiI alphas epsilon)

(for i = 0 until 128 ;For each point i,

(call pfunc psiR psiI i)) ; psiR[i] += func(psiI,i)

(for i = 0 until 128 ;For each point i,

(rcall pfunc psiI psiR i))) ; psiI[i] -= func(psiR,i)

)

;; Data for the schroedinger simulation:

;; Epsilon, alphas, and psis.

(defparameter *schdata*

’((array epsilon 203667001)

(array alphas

458243442 456664951 455111319 453582544 452078627 450599569

449145369 447716027 446311542 444931917 443577149 442247239

440942188 439661994 438406659 437176182 435970563 434789802

433633899 432502854 431396668 430315339 429258869 428227257

427220503 426238607 425281569 424349389 423442068 422559605

421701999 420869252 420061363 419278332 418520159 417786845

417078388 416394790 415736049 415102167 414493143 413908977

413349669 412815220 412305628 411820895 411361019 410926002

410515843 410130542 409770099 409434515 409123788 408837920

408576909 408340757 408129463 407943027 407781450 407644730

407532868 407445865 407383720 407346432 407334003 407346432

407383720 407445865 407532868 407644730 407781450 407943027

408129463 408340757 408576909 408837920 409123788 409434515

409770099 410130542 410515843 410926002 411361019 411820895

412305628 412815220 413349669 413908977 414493143 415102167

415736049 416394790 417078388 417786845 418520159 419278332

420061363 420869252 421701999 422559605 423442068 424349389

425281569 426238607 427220503 428227257 429258869 430315339

431396668 432502854 433633899 434789802 435970563 437176182

438406659 439661994 440942188 442247239 443577149 444931917

446311542 447716027 449145369 450599569 452078627 453582544

455111319 456664951)

;; This is the shape of the initial wavefunction.

(array psis
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2072809 3044772 4418237 6333469 8968770 12546502 17338479

23669980 31921503 42527251 55969298 72766411 93456735 118573819

148615999 184009768 225068513 271948808 324607187 382760978

445857149 513053161 583213481 654924586 726530060 796185813

861933650 921789572 973841548 1016350163 1047844835 1067208183

1073741824 1067208183 1047844835 1016350163 973841548 921789572

861933650 796185813 726530060 654924586 583213481 513053161

445857149 382760978 324607187 271948808 225068513 184009768

148615999 118573819 93456735 72766411 55969298 42527251 31921503

23669980 17338479 12546502 8968770 6333469 4418237 3044772

2072809 1393998 926112 607804 394060 252382 159681 99804 61622

37586 22647 13480 7926 4604 2642 1497 838 463 253 136 73 38 20

10 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0))

)

(defparameter *sch*

’((DEFWORD EPSILON 203667001)

(DEFARRAY ALPHAS 458243442 456664951 455111319 453582544

452078627 450599569 449145369 447716027 446311542 444931917

443577149 442247239 440942188 439661994 438406659 437176182

435970563 434789802 433633899 432502854 431396668 430315339

429258869 428227257 427220503 426238607 425281569 424349389

423442068 422559605 421701999 420869252 420061363 419278332

418520159 417786845 417078388 416394790 415736049 415102167

414493143 413908977 413349669 412815220 412305628 411820895

411361019 410926002 410515843 410130542 409770099 409434515

409123788 408837920 408576909 408340757 408129463 407943027

407781450 407644730 407532868 407445865 407383720 407346432

407334003 407346432 407383720 407445865 407532868 407644730

407781450 407943027 408129463 408340757 408576909 408837920

409123788 409434515 409770099 410130542 410515843 410926002

411361019 411820895 412305628 412815220 413349669 413908977

414493143 415102167 415736049 416394790 417078388 417786845

418520159 419278332 420061363 420869252 421701999 422559605

423442068 424349389 425281569 426238607 427220503 428227257

429258869 430315339 431396668 432502854 433633899 434789802

435970563 437176182 438406659 439661994 440942188 442247239

443577149 444931917 446311542 447716027 449145369 450599569

452078627 453582544 455111319 456664951)

(DEFARRAY PSIR 2072809 3044772 4418237 6333469 8968770 12546502

17338479 23669980 31921503 42527251 55969298 72766411 93456735

118573819 148615999 184009768 225068513 271948808 324607187

382760978 445857149 513053161 583213481 654924586 726530060

796185813 861933650 921789572 973841548 1016350163 1047844835

1067208183 1073741824 1067208183 1047844835 1016350163

973841548 921789572 861933650 796185813 726530060 654924586

583213481 513053161 445857149 382760978 324607187 271948808

225068513 184009768 148615999 118573819 93456735 72766411

55969298 42527251 31921503 23669980 17338479 12546502 8968770

6333469 4418237 3044772 2072809 1393998 926112 607804 394060

252382 159681 99804 61622 37586 22647 13480 7926 4604 2642

1497 838 463 253 136 73 38 20 10 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(DEFARRAY PSII 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0)

(DEFSUB PFUNC (DEST SRC I ALPHAS EPSILON)
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((DEST _ I) += ((ALPHAS _ I) */ (SRC _ I)))

((DEST _ I) -= (EPSILON */ (SRC _ ((I + 1) & 127))))

((DEST _ I) -= (EPSILON */ (SRC _ ((I - 1) & 127)))))

(DEFSUB SCHSTEP (PSIR PSII ALPHAS EPSILON)

(FOR I = 0 TO 127 (CALL PFUNC PSIR PSII I))

(FOR I = 0 TO 127 (RCALL PFUNC PSII PSIR I)))

(DEFSUB PRINTWAVE (WAVE)

(FOR I = 0 TO 127 (PRINTWORD (WAVE _ I))) (PRINTLN))

(DEFMAIN SCHROED

(FOR I = 1 TO 50

(FOR J = 1 TO 20 (CALL SCHSTEP PSIR PSII ALPHAS EPSILON))

(CALL PRINTWAVE PSIR) (CALL PRINTWAVE PSII)))))

(defparameter *sch-frag1*

’((DEFWORD EPSILON 203667001)

(DEFARRAY ALPHAS 458243442 456664951)

(DEFARRAY PSIR 2072809 3044772)

(DEFARRAY PSII 0 0)

(DEFSUB PFUNC (DEST SRC I ALPHAS EPSILON)

((DEST _ I) += ((ALPHAS _ I) */ (SRC _ I)))

((DEST _ I) -= (EPSILON */ (SRC _ ((I + 1) & 127))))

((DEST _ I) -= (EPSILON */ (SRC _ ((I - 1) & 127)))))

(DEFSUB SCHSTEP (PSIR PSII ALPHAS EPSILON)

(FOR I = 0 TO 127 (CALL PFUNC PSIR PSII I))

(FOR I = 0 TO 127 (RCALL PFUNC PSII PSIR I)))

(DEFSUB PRINTWAVE (WAVE)

(FOR I = 0 TO 127 (PRINTWORD (WAVE _ I))) (PRINTLN))

(DEFMAIN SCHROED

(FOR I = 1 TO 50

(FOR J = 1 TO 20 (CALL SCHSTEP PSIR PSII ALPHAS EPSILON))

(CALL PRINTWAVE PSIR) (CALL PRINTWAVE PSII)))))

(defparameter *sch-frag2*

’((DEFWORD EPSILON 203667001)

(DEFARRAY ALPHAS 458243442)

(DEFARRAY PSIR 2072809)

(DEFARRAY PSII 0)

(CALL SCHSTEP PSIR PSII ALPHAS EPSILON)))

(defparameter *sch-frag3*

’((DEFWORD EPSILON 203667001)

(DEFARRAY ALPHAS 458243442)

(CALL SCHSTEP ALPHAS EPSILON)))
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Appendix E

Reversible Schrödinger wave
simulation

This appendix gives the complete code for sch, the reversible simulator of the Schrö-
dinger wave equation that was mentioned in §9.5.6 (p. 241), and in §C.5 (p. 309). We
give the C, R, and pisa versions of the program.

E.1 Derivation of discrete update rule

Here we derive a naive approximate method for simulating Schrödinger’s equation in
discrete, reversible fashion. Later we will derive some alternatives.

A bit of history. Most of the following is original work, except that the final key
idea, for making the simulation exactly reversible, is something that I learned about
from Margolus in personal discussions. This trick apparently originated with Fredkin
and Barton in 1975, in the context of their own work (in collaboration with Richard
Feynman) on a discrete reversible Schrödinger equation update rule. (I was not aware
of this work when I reinvented part of it in the early versions of my own simulation.)
The story of the serendipitous discovery of this trick is told in Fredkin 1999 [75],
which also describes their version of the discrete rule in some detail.

Now, let us begin our derivation. We start with the full general form of the wave
equation when expressed in a state space in which the eigenstates correspond to
particle positions. It is possible to describe a system’s state space in many other
ways, but this way seems most straightforward and natural to those not immersed
in quantum physics. It also lends itself to visualization of the wave function on a
graphics display.

377
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Here is the Schrödinger equation in its full glory:

−~
2

2

N−1∑
j=0

1

mj

∂2

∂x2
j

Ψ(~x, t) + V(~x, t)Ψ(~x, t) = i~
∂

∂t
Ψ(~x, t).

It requires some explanation for the general reader. ~ is Planck’s constant over 2π,
1.055×10−34J · s. N is the number of positional degrees of freedom, 3n for n particles
in 3 dimensions. mj is the mass associated with the jth degree of freedom, e.g. in 3
dimensions the mass of particle bj/3c. ~x is a vector of all particle position coordinates,
and xj is particular position coordinate. t is time. V is a potential energy function
which is a function of the positions of all particles and optionally (if representing a
time-dependent potential) the time. Ψ is the wave function itself, a function of the
positions of all particles and of time; its value is generally a complex number with
both real and imaginary parts, Ψ = <Ψ+ i=Ψ. The imaginary unit i =

√−1 appears
on the right-hand side of the equation. The magnitude of Ψ(~x, t), that is, <2Ψ+=2Ψ,
is, when normalized, thought of as the probability density of finding the system in
state ~x at time t.

The important point to note, from the perspective of a dynamical simulation, is
that the equation describes how the wave function evolves over time, via the partial
derivative with respect to time that appears on the right side of the equation.

Now that we’ve seen the full form of the equation, let’s proceed to strip it down
to a slightly simpler form. First, we’ll get rid of the summation over the ~x vector;
since we are restricting ourselves for the moment to one particle in one dimension,
there is only one coordinate x, and only one mass m.

− ~
2

2m

∂2

∂x2
Ψ(x, t) + V(x, t)Ψ(x, t) = i~

∂

∂t
Ψ(x, t).

Next, rather than writing the (x, t) arguments to Ψ and V repeatedly, let them be
understood.

− ~
2

2m

∂2Ψ

∂x2
+ VΨ = i~

∂Ψ

∂t
.

Next, we rewrite partial derivative operators ∂/∂v as dv/dv where dv is a differen-
tial operator meaning “the infinitesimal change in the given quantity when variable
v changes by an infinitesimal amount dv and everything else is held constant”.

− ~
2

2m

d2
xΨ

dx2
+ VΨ = i~

dtΨ

dt
.

This notational change will allow us to extricate the differentials in the numerator
and denominator of a partial derivative operator from each other.
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Now, we solve for dtΨ, the t subscript reminding us that this is the dΨ that is
associated with dt in the original expression ∂Ψ/∂t.

dtΨ =
dt

i~

(
− ~

2

2m

d2
xΨ

dx2
+ VΨ

)
. (E.1)

This equation gives us the infinitesimal change in Ψ(x, t) at a point x as time increases
by an infinitesimal amount dt and the point x is held constant. This is the most direct
statement of how Ψ evolves over time.

Now we come to our first approximation. So far we have treated time and space
as continuous: dt means an infinitesimally small amount of time, and dx an infinites-
imally small distance in space. However, in our simulation we will discretize time and
space into points with a minimum, non-infinitesimal distance between them, so that
we only have to represent the state of the wave function at a finite number of points,
and so that when we advance to the “next” time, there will be a non-infinitesimal
change in the wave function state. We indicate this conceptual change by replacing
d with ∆, ∆x meaning the distance between our discrete points, ∆t the distance
between our discrete times, and ∆tΨ the change in Ψ(x) in a time ∆t.

∆tΨ ≈ ∆t

i~

(
− ~

2

2m

∆2
xΨ

∆x2
+ VΨ

)
. (E.2)

The earlier equation with the differentials (equation E.1) expresses the fact that the
two sides of this equation with the deltas approach equality in the limit, as ∆x and
∆t approach zero. But hereafter in our derivation, we will treat the two sides as being
equal even though the deltas are not zero; that is our approximation.

We believe we can prove that this approximation is correct to second order, i.e.,
that as long as the real rate of change of Ψ is small during the entire interval ∆t,
and if the minimum wavelength in the represented wave is significantly longer than
∆x, then the difference between our computed ∆Ψ and the actual ∆Ψ will improve
quadratically, proportionately to the square of ∆t/∆x2, as this ratio is decreased.

Now, before we can make further progress, we need to decide how to evaluate
the expression ∆2

xΨ at particular points x. In general, by ∆vq we mean the change
in quantity q, a function of v, when v changes by ∆v. However, how are we to
define ∆vq(vk) for a particular point vk? One symmetrical answer is that it is simply
q(vk + ∆v/2)− q(vk −∆v/2).

Applying this to our particular case, we find (omitting still the ever-present t
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argument):

∆2
xΨ(x) = ∆xΨ(x +

∆x

2
)−∆xΨ(x− ∆x

2
)

= (Ψ(x + ∆x)−Ψ(x))− (Ψ(x)−Ψ(x−∆x))

= Ψ(x + ∆x) + Ψ(x−∆x)− 2Ψ(x)

= 2

(
Ψ(x + ∆x) + Ψ(x−∆x)

2
−Ψ(x)

)
.

And plugging this into the equation E.2 (considered as an equality) we get:

∆tΨ(x) =

∆t

i~

( −~2

∆x2m

(
Ψ(x + ∆x) + Ψ(x−∆x)

2
−Ψ(x)

)
+ V(x)Ψ(x)

)
.

However, rather than sprinkling things like x + ∆x throughout our equations from
here on, let us take it as given that Ψ is always evaluated at points that are separated
by integer multiples of ∆x, and so we can treat Ψ as a vector with elements indexed
by integers k. So hereafter we will replace Ψ(x) by Ψk, Ψ(x + ∆x) by Ψk+1, etc., and
similarly for V(x) as well.

∆tΨk =
∆t

i~

(
− ~2

∆x2m

(
Ψk+1 + Ψk−1

2
−Ψk

)
+ VkΨk

)
.

Now, let’s play around with this expression algebraically, and collect together the
terms involving Ψk:

∆tΨk = − ∆t~2

i~∆x2m

(
Ψk+1 + Ψk−1

2
−Ψk

)
+

∆tVk

i~
Ψk

= − ∆t~
i∆x2m

(
Ψk+1 + Ψk−1

2

)
+

∆t~
i∆x2m

Ψk +
∆tVk

i~
Ψk

= − ∆t~
2i∆x2m

(Ψk+1 + Ψk−1) +
∆t

i

(
~

∆x2m
+
Vk

~

)
Ψk

=
i∆t~
∆x2m

(Ψk+1 + Ψk−1)− i∆t

(
~

∆x2m
+
Vk

~

)
Ψk.

Next, to make the expression more concise, we introduce the following new quan-
tities to use as abbreviations:

ε =
~∆t

m∆x2
, ωk =

Vk

~
, αk = ε + ωk∆t,
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and rewrite our formula in terms of them:

∆tΨk =
iε

2
(Ψk+1 + Ψk−1)− iαkΨk.

But now, this is all just giving us ∆tΨ—the change in Ψ over a time ∆t. How
exactly will this let us calculate Ψ at some future time given Ψ at the current time?

Well, using our earlier definition for ∆, we can expand the left hand side of the
equation as follows (reintroducing t as an explicit argument):

Ψk(t +
∆t

2
)−Ψk(t− ∆t

2
) =

iε

2
(Ψk+1(t) + Ψk−1(t))− iαkΨk(t).

If we solve this for Ψk(t + ∆t/2), we get

Ψk(t +
∆t

2
) = Ψk(t− ∆t

2
) +

iε

2
(Ψk+1(t) + Ψk−1(t))− iαkΨk(t),

and if we now replace ∆t everywhere with 2∆t (a change which does not matter since
∆t was an arbitrarily chosen value already), including within the definitions of ε and
αk, we get

Ψk(t + ∆t) = Ψk(t−∆t) + iε(Ψk+1(t) + Ψk−1(t))− 2iαkΨk(t).

Now for conciseness we replace (t + ∆t) as an argument with s + 1 as a subscript,
similarly to what we did earlier when we replaced (x + ∆x) with k + 1, and obtain

Ψk,s+1 = Ψk,s−1 + i (ε(Ψk+1,s + Ψk−1,s)− 2αkΨk,s) .

Well, there are a couple of important things to note about this equation. First
rather than deriving the state of the wave at the next time step s + 1 from the state
at step s, the equation requires using the states at the two previous steps s and s−1.
It’s a second order difference equation, and it’s of the form that Fredkin has shown to
always be totally reversible, given a numeric representation that supports a reversible
addition operation.

The second important point is that although the equation is complex, the real
part of Ψs+1 depends only on the real part of Ψs−1 and the imaginary part of Ψs.
Specifically:

<Ψk,s+1 = <Ψk,s−1 + = (2αkΨk,s − ε(Ψk+1,s + Ψk−1,s)) (E.3)

and similarly, the imaginary part of Ψs+1 depends only on the imaginary part of Ψs−1

and the real part of Ψs:

=Ψk,s+1 = =Ψk,s−1 −< (2αkΨk,s − ε(Ψk+1,s + Ψk−1,s)) (E.4)
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Therefore, if we consider the real components of Ψ at all the even-numbered steps
s = 2n (for n an integer), and the imaginary components of Ψ at all odd-numbered
steps s = 2n + 1, we see that the evolution of those components is totally self-
contained, and we can ignore the real components at odd times, and the imaginary
components at even times, and thus work with only a single real number at each time
step. Let us do so, and define, for integers n, the real quantities

Xk,n ≡ <Ψk,2n

Yk,n ≡ =Ψk,2n+1.

Then we can rewrite the equations (E.3 and E.4) above as two equations:

Xk,n+1 = Xk,n + fk(~Yn) (E.5)

Yk,n+1 = Yk,n − fk( ~Xn+1),

where (for Q being either X or Y) by ~Qn we mean the vector of all values Qk,n, and
where (now omitting the n subscript):

fk( ~Q) = 2αkQk − ε(Qk+1 +Qk−1).

The update rule (E.5) lends itself to a particularly simple pseudo-code implementation
given reversible addition/subtraction instructions, as are the C language’s += and -=

operators when performed on integers:

~X + = bf(~Y)c
~Y − = bf( ~X )c,

where the absence of the k subscript is intended to suggest application of each op-
eration to every element of the given vector. The n is implicit, and is no longer
needed; each value of ~X that is computed will implicitly represent the value of ~X two
time steps beyond the previous value that was computed, and each value of ~Y that is
computed will implicitly represent the value of ~Y one time step beyond the previous
value of ~X , and two time steps beyond the previously computed ~Y .

This process of updating ~X and ~Y , can then be exactly undone by:

~Y + = bf( ~X )c
~X − = bf(~Y)c.

So the above analysis gives us a method of reversibly updating two arrays, repre-
senting the real and imaginary parts of Ψ at successive times. Note that this does not
tell us both components of Ψ at either particular time, but if Ψ is changing gradually,
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as it will be if ∆t is sufficiently small, then the two components taken together will
be a fairly accurate representation of Ψ’s complex value at either of the times.

We note that if there is actually only one spatial point k = 0, so that the “neigh-
boring” points k + 1 and k− 1, are actually, in modulus 1 arithmetic, the same point
as k itself, then the above algorithm actually reduces to (letting X = X0, Y = Y0):

X + = b2ω0∆tY c
Y − = b2ω0∆tXc,

which is an approximate circle-drawing algorithm, with the X’s and Y ’s giving the
coordinates of points on (or near) a circle. It is essentially the same algorithm as that
described by Margolus in [115], §2.8.2, pp. 82–84, with our energy-based quantity
2ω0∆t = 2V0∆t/~ representing a quantity which can be thought of as being approx-
imately the amount of change in the (X, Y ) vector per 2∆t time, as a fraction of its
length. This quantity takes the place of the 2 sin(ω) quantity which plays the same
role in Margolus’s equation, determining there the angular change (in radians) of the
point (xt, yt) across a span of 2 time steps. Note that if ∆t = 1 and ω ≈ 0, then
2ω∆t ≈ 2 sin(ω).

Improved algorithms. The above algorithm has the flaw that if ∆t is too large,
so that ε and all αks do not all remain small numbers, then the resulting evolution
will be far from the sort of unitary, norm-preserving operation that we would like to
have.

The dynamical system that Margolus originally described did not suffer from this
problem, since his was based on an iteration zt+1 = eiωzt that was exact even if ω
was large. We would really prefer to have a way of stepping through the Schrödinger
equation that benefited from a similar property.

I have produced other, slightly more sophisticated versions of the above algorithm,
which attempt to do a better job of preserving unitarity, at least, even when ∆t is
large.

Actually I think no algorithm based on discrete spatial simulation will work in
the case where the potential energy function that is imposed on the system leads
to a particle acquiring a momentum that corresponds to a wavelength that is small
compared to the separation between points. However, as long as the separation
between points is much smaller than the shortest wavelength that ever appears, it
should be possible to construct a simulation that is reasonably accurate even when
fairly large amounts of time are jumped over in a single step.

I could at this point go on and discuss in much more detail all my different
variations of this simulation, and their pros and cons, but at this point it seems to
be a low priority. For now, suffice it to say that I have a 100 percent reversible
technique for simulating the evolution of the Schrödinger wave function in this simple
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system, it is accurate as a first order approximation (although I have not here taken
the space to formalize and prove that assertion), and empirical demonstrations (on a
normal computer) verify that the simulation behaves quite well in a variety of simple
test cases involving different initial position distributions, velocities, and potential
energy functions. Phenomena such as tunneling and interference have been observed.
Total probability is nearly conserved. And total reversibility has been experimentally
validated.

For Fredkin and Barton’s update rule, which is essentially the same as ours,
Richard Feynman apparently discovered that there is is a definition of total probabil-
ity that is exactly conserved by the update rule [75]. In the context of our discussion,
the corresponding definition of the exactly conserved probability over time steps n
would be: Pn = ~X 2

n − ~Yn−1 · ~Yn+1. We just recently learned of Feynman’s invariant,
and we have not yet checked our own update rule to make sure that it works.

We now show how to port the above algorithm to a reversible processor. Up-
dating the state need involve only integer addition and multiplication. (Pendulum
does not currently support a built-in multiplication operation, so I had to implement
multiplication as a subroutine, which was easy to write in my high-level language.)

I believe this program, as it stands, constitutes an interesting demonstration of a
significant reversible program in our reversible language, and also demonstrates the
ability of a totally reversible program written in our language to simulate physics
without incurring an asymptotically increasing need for storage.

E.2 Reversible C implementation

I have several different versions of my C program for simulating the Schrödinger
equation. The following version, schii.c, is an exactly-reversible version that uses
only integer arithmetic, and thus was the basis for the version of the program to run
on Pendulum, since we have not created any floating-point support for Pendulum as
of yet.

Large parts of this program are simply concerned with drawing the graphics dis-
play using the X window system, and are therefore uninteresting from the point of
view of the simulation technique itself. We have tried to isolate most of the graphics
code into a section at the bottom of the program.

The user interface to the program is currently very minimal. Any key press prints
out current statistics about the wave function. Any mouse button press exits the
program. To change any parameters of the simulation, one must edit the appropriate
constant and recompile the program. Fortunately, the program is short enough so
that this does not take very long.

The key functions in the program are: signed_mult_frac(), which is the integer
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multiplication routine for integers taken as representing fractions between -1 and 1,
function(), which computes the appropriate function at a given point that gives the
amount by which a component of the wave vector should be changed at that point,
and step_forwards() and step_back(), which perform a state update in the given
time direction. These functions contain the core functionality which we ported to R
and Pendulum assembly.

/* SCHII: Like SCHI2 except uses only integer multiplication in the main loop.

SCHI2 kept its state in integers but calculating amounts to add

using floating-point math.

This will be the model for my Pendulum implementation.

*/

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include <string.h>

/* Physical constants. We’ll use MKS (m,kg,s,nt,J,coul...) units. */

#define planck_h (6.626e-34) /* Planck’s constant, in Joule-seconds */

#define light_c (2.998e8) /* Speed of light in meters/second */

static const double

hbar = planck_h/(2*M_PI),/* h/2*pi, also in J-sec */

elec_m = 9.109e-31,/* Electron rest mass, in kg */

elec_q = 1.602e-19,/* Electron charge (abs.value) in Coulombs */

coul_const = 8.988e9; /* 1/4*pi*epsilon_0 (Coulomb’s law constant)

in nt-m^2/coul^2. */

/* Parameters of simulation. o */

#define space_width (1e-10) /* Width of sim space in meters: 1 A. */

#define num_pts (128) /* Number of discrete space points in sim. */

static const double

sim_dx = space_width/num_pts, /* delta btw. pts, in meters. */

sim_dt = 5e-22,/* Simulated time per step, in secs. */

init_vel = light_c*0.0,/* Initial velocity in m/s */

initial_mu = -space_width/4,/* initial mean electron pos, rel. to ctr. */

initial_sigma = space_width/20; /* width of initial hump. */

/* For holding some arrays of size num_pts, in real/imaginary pairs. */

static double

*energies,/* Real potential energies at points. */

*on_real,*on_imag,

*off_real,*off_imag,/* On/off diagonal matrix elements, real/imag */

*Psi_real,*Psi_imag; /* Real at t, imag at t+1/2. */

/* Now, we will use Psi_real and Psi_imag only for translation between

the internal, integer form, and how it is used externally. Here is

the real wave function: */

static int *psiR,*psiI; /* Real and imaginary integer wave function. */

static double scaleFactor; /* The value, in the integer range, that a real

value of 1.0 translates to. */

static int n_steps = 0; /* Number of iterations done so far. */

static double total_t = 0; /* Total simulated time so far. */
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static int max_steps = 10000; /* go a million iterations before reversing */

static int direction = 0; /* forwards */

#define STEPS_PER_SHOT 20

typedef enum energ_funcs {

neg_gaus=0, pos_gaus, inv_cutoff, parabolic, const_nonzero, const_zero,

step_barrier

} energ_func_id;

static energ_func_id which_potential = parabolic;

static const char *energ_func_strs[] = {

"Negative Gaussian potential well",

"Positive Gaussian potential bump",

"Inverse distance well with cutoff",

"Parabolic well for harmonic oscillator",

"Constant, non-zero energy level",

"Constant, zero energy",

"A step barrier to tunnel through"

};

void print_sim_params() {

printf("\n");

printf("SCHROEDINGER SIMULATOR PARAMETERS\n");

printf("---------------------------------\n");

printf("\n");

printf("Width of simulated space is %g meters (%g light-seconds).\n",

space_width, space_width/light_c);

printf("Simulating %d discrete points in space.\n", num_pts);

printf("Distance between points: %g m (%g ls).\n",sim_dx,

sim_dx/light_c);

printf("Time per simulation step: %g secs (light dist: %g m)\n",

sim_dt, sim_dt*light_c);

printf("Initial electron position: mu=%g m, sigma=%g m.\n",

initial_mu, initial_sigma);

printf("Using potential energy function %d: %s.\n", which_potential,

energ_func_strs[which_potential]);

printf("Initial electron velocity = %g m/s (%g c).\n",

init_vel, init_vel/light_c);

printf("Number of steps to go before reversing: %d.\n",max_steps);

printf("\n");

}

static double *init_real,*init_imag;

void print_stats() {

/* Calculate and print some stats of the wavefunction. */

int this = n_steps&1;

int i;

double total_p = 0;

double mom_real = 0, mom_imag = 0,

potential = 0,

kin_real = 0, kin_imag = 0,

energ_real = 0, energ_imag = 0;

double dPsi2_real, dPsi2_imag;

double diff=0;

for(i=0;i<num_pts;i++){

int next = (i+1)%num_pts,



E.2. REVERSIBLE C IMPLEMENTATION 387

prev = (i-1+num_pts)%num_pts;

double real = Psi_real[i],

imag = Psi_imag[i];

double pd = real*real+imag*imag;

total_p += pd;

dPsi2_real = Psi_real[next] - Psi_real[prev];

dPsi2_imag = Psi_imag[next] - Psi_imag[prev];

mom_real += real*dPsi2_imag - imag*dPsi2_real;

mom_imag -= real*dPsi2_real + imag*dPsi2_imag;

potential += pd*energies[i];

}

mom_real *= hbar/(2*sim_dx);

mom_imag *= hbar/(2*sim_dx);

for(i=0;i<num_pts;i++){

double dr = Psi_real[i] - init_real[i];

double di = Psi_imag[i] - init_imag[i];

diff += dr*dr + di*di;

}

diff /= num_pts;

printf("Cycle = %d, t = %g. Total P = %g.\n",n_steps,total_t,total_p);

printf(" Mean squared diff. from init. state = %g. (RMS = %g)\n",

diff, sqrt(diff));

printf(" Momentum = (%g + i %g) kg m/s.\n",mom_real,mom_imag);

printf(" Velocity = (%g + i %g) m/s.\n",

mom_real/elec_m,mom_imag/elec_m);

printf(" = (%g + i %g) c.\n",

mom_real/(elec_m*light_c),mom_imag/(elec_m*light_c));

printf(" Potential = %g J (%g eV)\n", potential, potential/1.602e-19);

}

/* Gaussian (normal) distribution, non-normalized. */

double normal(double x,double mu,double sigma)

{

double d = (x-mu)/sigma;

return exp(-0.5*d*d);

}

double *malloc_doubles(){

return (double *)calloc(num_pts,sizeof(double));

}

int *malloc_ints(){

return (int *)calloc(num_pts,sizeof(int));

}

/* x should now be a real position in space */

double energy(double x){

switch(which_potential){

case neg_gaus:

/* Negative Gaussian potential well. */

return - 3e-15 * normal(x,0,space_width/10);

case pos_gaus:

/* Positive Gaussian potential bump. */

return 5e-15 * normal(x,0,space_width/10);

case inv_cutoff:

/* Well where energy drops with inverse distance from center, down

to a cutoff threshold. */
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{

double ax = (x<0?-x:x);

double p;

p = - (coul_const*(elec_q*elec_q)/ax);

if (p > -4e-14) {

return p;

} else {

return -4e-14;

}

}

case parabolic:

/* Parabolic well for harmonic oscillator. */

return x*x*1e+6;

case const_nonzero:

/* Constant, nonzero energy. Apparent wave rotation rate differs

from zero-energy case.*/

return -24e-15;

case const_zero:

/* Constant, zero energy. */

return 0;

case step_barrier:

/* A step barrier through which to tunnel. */

if (x < space_width * 0.15) {

return 0;

} else if (x < space_width * 0.18) {

return 1e-15;

} else {

return 0;

}

}

return 0;

}

static double epsilon;

static double *alphas;

static int *alphasi;

static int epsiloni;

void cache_energies() {

int i;

/* epsilon: an angle that roughly indicates how much of a

point’s amplitude gets spread to its neighboring points per time

step. A function of sim dt and dx parameters only. */

epsilon = hbar*sim_dt/(elec_m*sim_dx*sim_dx);

epsiloni = (int)((unsigned)(0x80000000) * epsilon);

printf("Sim epsilon angle: %g radians (%g of a circle).\n",

epsilon, epsilon/(2*M_PI));

printf("Integer epsilon: %d\n",epsiloni);

energies = malloc_doubles();

on_real = malloc_doubles();

on_imag = malloc_doubles();

off_real = malloc_doubles();

off_imag = malloc_doubles();

alphas = malloc_doubles();

alphasi = malloc_ints();

printf("Integer alphas:\n");

for(i=0;i<num_pts;i++){

double x = (i - num_pts/2.0)*sim_dx; /* Position in space. */

double alpha;

energies[i] = energy(x);

/* alpha: at this particular point, what’s the absolute phase rotation
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angle for on-diagonal. Energy makes a contribution. */

alpha = epsilon + energies[i]*sim_dt/hbar;

/* A = exp(i*Atheta) */

on_real[i] = cos(epsilon) * cos(-alpha);

on_imag[i] = cos(epsilon) * sin(-alpha);

/* What’s the phase rotation for off-diag (neighbors). */

off_real[i] = sin(epsilon) * cos(M_PI/2 - alpha);

off_imag[i] = sin(epsilon) * sin(M_PI/2 - alpha);

alphas[i] = alpha;

alphasi[i] = (int)((unsigned)(0x80000000)*alphas[i]*2);

printf("%d ",alphasi[i]);

}

printf("\n");

}

void init_wave() {

double *probs = malloc_doubles();

int i;

double tprob;

double lambda;

Psi_real = malloc_doubles();

Psi_imag = malloc_doubles();

psiR = malloc_ints();

psiI = malloc_ints();

init_real = malloc_doubles();

init_imag = malloc_doubles();

tprob = 0;

for(i=0;i<num_pts;i++){

double x = (i - num_pts/2.0)*sim_dx;

/* Unnormalized initial probability of finding electron here. */

double p = normal(x,initial_mu,initial_sigma);

probs[i] = p;

tprob += p;

}

for(i=0;i<num_pts;i++){

probs[i] /= tprob;

}

lambda = planck_h/(elec_m*init_vel);

printf("Initial de Broglie wavelength is %g m (%g ls).\n",

lambda,lambda/light_c);

for(i=0;i<num_pts;i++){

double x = (i - num_pts/2.0)*sim_dx;

Psi_real[i] = sqrt(probs[i]) * cos(x/lambda*2*M_PI);

Psi_imag[i] = sqrt(probs[i]) * sin(x/lambda*2*M_PI);

}

{

double maxval = 0;

double absval;

for(i=0;i<num_pts;i++){

absval = Psi_real[i];

absval = (absval<0)?-absval:absval;

if (absval>maxval) maxval=absval;

absval = Psi_imag[i];

absval = (absval<0)?-absval:absval;

if (absval>maxval) maxval=absval;

}

printf("The maximum absolute value initially is: %g.\n",maxval);

/* We’ll scale our integers so that they can hold values up to

almost twice the largest initial value before they incur

an overflow. */
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scaleFactor = (1<<30)/maxval;

printf("Therefore the scale factor will be: %g.\n",scaleFactor);

}

/* Convert to integers. */

printf("Integer psis:\n");

for(i=0;i<num_pts;i++){

psiR[i] = Psi_real[i]*scaleFactor;

psiI[i] = Psi_imag[i]*scaleFactor;

printf("%d+%di ",psiR[i],psiI[i]);

}

printf("\n");

/* Convert back to doubles for convenience. */

for(i=0;i<num_pts;i++){

Psi_real[i] = init_real[i] = psiR[i]/scaleFactor;

Psi_imag[i] = init_imag[i] = psiI[i]/scaleFactor;

}

}

void sim_init () {

print_sim_params();

cache_energies();

init_wave();

print_stats();

}

int signed_mult_frac(int m1,int m2)

{

int pos,prod=0;

unsigned int mask = 1<<31;

int m1p=m1,m2p=m2;

if (m1<0) m1p = -m1p;

if (m2<0) m2p = -m2p;

for(pos=1;pos<32;pos++){

mask >>= 1;

if (m1p&mask)

prod += m2p>>pos;

}

if (m1<0) prod = -prod;

if (m2<0) prod = -prod;

return prod;

}

double function(int *vec,int i){

int j,k;

j = i+1; if (j==-1) j=num_pts-1; else if (j==num_pts) j=0;

k = i-1; if (k==-1) k=num_pts-1; else if (k==num_pts) k=0;

return

signed_mult_frac(alphasi[i],vec[i])

- signed_mult_frac(epsiloni,vec[j])

- signed_mult_frac(epsiloni,vec[k]);

}

void step_forwards() {

int i;

for(i=0;i<num_pts;i++)

psiR[i] += (int)(function(psiI,i));

for(i=0;i<num_pts;i++)

psiI[i] -= (int)(function(psiR,i));

for(i=0;i<num_pts;i++){

Psi_real[i] = psiR[i]/scaleFactor;

Psi_imag[i] = psiI[i]/scaleFactor;
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}

n_steps++;

total_t+=sim_dt;

}

void step_back() {

int i;

n_steps--;

for(i=0;i<num_pts;i++)

psiI[i] += (int)(function(psiR,i));

for(i=0;i<num_pts;i++)

psiR[i] -= (int)(function(psiI,i));

for(i=0;i<num_pts;i++){

Psi_real[i] = psiR[i]/scaleFactor;

Psi_imag[i] = psiI[i]/scaleFactor;

}

total_t-=sim_dt;

}

void sim_step() {

if (direction == 0) {

step_forwards();

} else {

step_back();

}

if (direction == 1 && n_steps == 0) {

printf("\nPresumably back to initial state.\n");

print_stats();

printf("Now turning and going forwards.\n");

direction = 0;

} else if (direction == 0 && n_steps == max_steps) {

printf("\nCompleted %d steps.\n", max_steps);

print_stats();

direction = 1;

printf("Now turning around and going backwards.\n");

}

}

/*----------------------------------------------------------------------*/

/* Graphics. */

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Xos.h>

#include "icon.bitmap"

#define BITMAPDEPTH 1

static Display *display;

static int screen;

static double *prev_real, *prev_imag;

static double maxv;

static double maxp;

void init_graphics() {

int i;

int this = n_steps&1;

prev_real = malloc_doubles();

prev_imag = malloc_doubles();

maxv = 0;

maxp = 0;
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for(i=0;i<num_pts;i++){

double absv;

absv = Psi_real[i];

absv = (absv<0)?-absv:absv;

if (absv > maxv) maxv = absv;

absv = Psi_imag[i];

absv = (absv<0)?-absv:absv;

if (absv > maxv) maxv = absv;

absv = Psi_real[i]*Psi_real[i]

+ Psi_imag[i]*Psi_imag[i];

if (absv > maxp) maxp = absv;

}

}

void draw_graphics(win,gc,window_width,window_height,gce,gcreal,gcimag)

Window win;

GC gc;

unsigned window_width, window_height;

GC gce,gcreal,gcimag;

{

double ght = window_height/2; /* How much Y space per graph */

unsigned c1 = ght/2; /* origin y for top graph */

unsigned c2 = window_height; /* origin y for bottom graph */

int this = n_steps&1; /* which Psi is current */

int i;

for(i=0;i<num_pts;i++){

unsigned x = i*window_width/num_pts;

double prevReal = prev_real[i],

prevImag = prev_imag[i],

thisReal = Psi_real[i],

thisImag = Psi_imag[i];

double prevProb = prevReal*prevReal + prevImag*prevImag,

thisProb = thisReal*thisReal + thisImag*thisImag;

int prY = (int)((prevReal/maxv)*ght*0.5);

int piY = (int)((prevImag/maxv)*ght*0.5);

int ppY = (int)((prevProb/maxp)*ght);

int trY = (int)((thisReal/maxv)*ght*0.5);

int tiY = (int)((thisImag/maxv)*ght*0.5);

int tpY = (int)((thisProb/maxp)*ght);

/* Similar to above calculation, but for point next to us on the right.*/

unsigned j = (i+1)%num_pts;

unsigned xj = (i+1)*window_width/num_pts;

double RprevReal = prev_real[j],

RprevImag = prev_imag[j],

RthisReal = Psi_real[j],

RthisImag = Psi_imag[j];

double RprevProb = RprevReal*RprevReal + RprevImag*RprevImag,

RthisProb = RthisReal*RthisReal + RthisImag*RthisImag;

int RprY = (int)((RprevReal/maxv)*ght*0.5);

int RpiY = (int)((RprevImag/maxv)*ght*0.5);

int RppY = (int)((RprevProb/maxp)*ght);

int RtrY = (int)((RthisReal/maxv)*ght*0.5);

int RtiY = (int)((RthisImag/maxv)*ght*0.5);

int RtpY = (int)((RthisProb/maxp)*ght);

/* Erase old Psi at this pos. */

XDrawLine(display,win,gce,x,c1-prY,xj,c1-RprY);

XDrawLine(display,win,gce,x,c1-piY,xj,c1-RpiY);

/* Draw new Psi. */
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XDrawLine(display,win,gcreal,x,c1-trY,xj,c1-RtrY);

XDrawLine(display,win,gcimag,x,c1-tiY,xj,c1-RtiY);

/* Erase old prob and draw new. */

XDrawLine(display,win,gce,x,c2-ppY,xj,c2-RppY);

XDrawLine(display,win,gc,x,c2-tpY,xj,c2-RtpY);

/* Draw energy function. */

XDrawPoint(display,win,gc,x,(int)(c2-(ght*0.5)-ght*energies[i]*1e14));

}

for(i=0;i<num_pts;i++){

prev_real[i] = Psi_real[i];

prev_imag[i] = Psi_imag[i];

}

XFlush(display);

}

/*----------------------------------------------------------------------*/

/* Pretty much everything below here is uninteresting X interfacing

stuff. */

get_GC(Window win, GC *gc, XFontStruct *font_info, int foo) {

unsigned long valuemask = 0; /* ignore XGCvalues and use defaults */

XGCValues values;

unsigned int line_width = 1;

int line_style = LineSolid;

int cap_style = CapButt;

int join_style = JoinRound;

int dash_offset = 0;

static char dash_list[] = {

12, 24 };

int list_length = 2;

/* Create default graphics context */

*gc = XCreateGC(display,win,valuemask,&values);

/* specify font */

XSetFont(display,*gc,font_info->fid);

{

XColor sdr,edr;

if (foo == 1) {

XSetForeground(display,*gc,WhitePixel(display,screen));

} else if (foo == 0) {

XSetForeground(display,*gc,BlackPixel(display,screen));

} else if (foo == 2) {

XAllocNamedColor(display,DefaultColormap(display,screen),"cyan",

&sdr,&edr);

XSetForeground(display,*gc,edr.pixel);

} else if (foo == 3) {

XAllocNamedColor(display,DefaultColormap(display,screen),"yellow",

&sdr,&edr);

XSetForeground(display,*gc,edr.pixel);

}}

/* set line attributes */

XSetLineAttributes(display,*gc,line_width,line_style,cap_style,

join_style);

/* set dashes to be line_width in length */

XSetDashes(display,*gc,dash_offset,dash_list,list_length);

}
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load_font(XFontStruct **font_info) {

char *fontname = "9x15";

/* Access font */

if ((*font_info = XLoadQueryFont(display,fontname)) == NULL) {

fprintf(stderr,"Basic: Cannot open 9x15 font\n");

exit(-1);

}

}

int main(argc,argv)

int argc;

char **argv;

{

Window win;

unsigned width, height; /* window size */

int x = 0, y = 0; /* window position */

unsigned border_width = 4; /* border four pixels wide */

unsigned display_width, display_height;

char *window_name = "Schroedinger Wave Simulator";

char *icon_name = "schroed";

Pixmap icon_pixmap;

XSizeHints size_hints;

XEvent report;

GC gc,gce,gcreal,gcimag;

XFontStruct *font_info;

char *display_name = NULL;

int i;

/* connect to X server */

if ( (display=XOpenDisplay(display_name)) == NULL ) {

fprintf(stderr,

"cannot connect to X server %s\n",

XDisplayName(display_name));

exit(-1);

}

sim_init();

init_graphics();

/* get screen size from display structure macro */

screen = DefaultScreen(display);

display_width = DisplayWidth(display,screen);

display_height = DisplayHeight(display,screen);

/* size window with enough room for text */

width = display_width/3, height = display_height/3;

/* create opaque window */

win = XCreateSimpleWindow(display,RootWindow(display,screen),

x,y,width,height,border_width,

WhitePixel(display,screen),

BlackPixel(display,screen));

/* Create pixmap of depth 1 (bitmap) for icon */

icon_pixmap = XCreateBitmapFromData(display, win, icon_bitmap_bits,

icon_bitmap_width,

icon_bitmap_height);

/* initialize size hint property for window manager */
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size_hints.flags = PPosition | PSize | PMinSize;

size_hints.x = x;

size_hints.y = y;

size_hints.width = width;

size_hints.height = height;

size_hints.min_width = 175;

size_hints.min_height = 125;

/* set properties for window manager (always before mapping) */

XSetStandardProperties(display,win,window_name,icon_name,

icon_pixmap,argv,argc,&size_hints);

/* Select event types wanted */

XSelectInput(display,win, ExposureMask | KeyPressMask |

ButtonPressMask | StructureNotifyMask);

load_font(&font_info);

/* create GC for text and drawing */

get_GC(win, &gc, font_info, 1);

get_GC(win, &gce, font_info, 0);

get_GC(win, &gcreal, font_info, 2);

get_GC(win, &gcimag, font_info, 3);

/* Display window */

XMapWindow(display,win);

while (1) { /* Event loop. */

int i;

XNextEvent(display,&report);

switch(report.type) {

case Expose:

/* get rid of all other Expose events on the queue */

while (XCheckTypedEvent(display, Expose, &report));

draw_graphics(win, gc, width, height, gce, gcreal, gcimag);

for(i=0;i<STEPS_PER_SHOT;i++)

sim_step();

/*print_stats();

sleep(1);*/

XClearArea(display,win,0,0,1,1,1);

break;

case ConfigureNotify:

width = report.xconfigure.width;

height = report.xconfigure.height;

XClearArea(display,win,0,0,width,height,1);

break;

case KeyPress:

print_stats();

break;

case ButtonPress:

XUnloadFont(display,font_info->fid);

XFreeGC(display,gc);

XFreeGC(display,gce);

XFreeGC(display,gcreal);

XFreeGC(display,gcimag);

XCloseDisplay(display);

exit(1);

default:

break;

}

}
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return 0;

}

E.3 Source code in R language

The following is the complete source code for the Schrödinger simulation as ported
into the R programming language, except for the multiplication routine, which the
compiler provides as a standard library function. See the def-smf construct in §D.4.16
(p. 368) for the R source for the multiplication subroutine.

Note that the initial wavefunction state is provided in the form of a static data
array, so that we do not have to port the trigonometric functions that were used to
generate the initial state in the C version of the program. Also note that we did not
bother to port the graphics code. Output is instead provided in a raw form which is
parsed, displayed, and compared with the original C program’s output by a separate
program which is wrapped around the Pendulum simulator.

;;;----------------------------------------------------------------------

;;;

;;; Schroedinger Wave Equation simulation program.

;;; The first major test of R (the reversible language)!

;;;

;;; Current status: More compiler work needed. 6/12/97.

;;;

;;;----------------------------------------------------------------------

;;; Currently all data must come before the code that uses it, so that the

;;; compiler will recognize these identifiers as names of static data items

;;; rather than as dynamic variables.

;; epsilon = hbar*dt/m*dx^2. DX=7.8125e-13m, DT=5e-22s

(defword epsilon 203667001) ; 0.0948398 radians.

;; Parabolic potential well with 128 points.

(defarray alphas

458243442 456664951 455111319 453582544 452078627 450599569 449145369

447716027 446311542 444931917 443577149 442247239 440942188 439661994

438406659 437176182 435970563 434789802 433633899 432502854 431396668

430315339 429258869 428227257 427220503 426238607 425281569 424349389

423442068 422559605 421701999 420869252 420061363 419278332 418520159

417786845 417078388 416394790 415736049 415102167 414493143 413908977

413349669 412815220 412305628 411820895 411361019 410926002 410515843

410130542 409770099 409434515 409123788 408837920 408576909 408340757

408129463 407943027 407781450 407644730 407532868 407445865 407383720

407346432 407334003 407346432 407383720 407445865 407532868 407644730

407781450 407943027 408129463 408340757 408576909 408837920 409123788

409434515 409770099 410130542 410515843 410926002 411361019 411820895

412305628 412815220 413349669 413908977 414493143 415102167 415736049

416394790 417078388 417786845 418520159 419278332 420061363 420869252

421701999 422559605 423442068 424349389 425281569 426238607 427220503

428227257 429258869 430315339 431396668 432502854 433633899 434789802

435970563 437176182 438406659 439661994 440942188 442247239 443577149
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444931917 446311542 447716027 449145369 450599569 452078627 453582544

455111319 456664951)

;; This is the shape of the initial wavefunction; amplitude doesn’t matter.

;; Real part.

(defarray psiR 2072809 3044772 4418237 6333469 8968770 12546502 17338479

23669980 31921503 42527251 55969298 72766411 93456735 118573819 148615999

184009768 225068513 271948808 324607187 382760978 445857149 513053161

583213481 654924586 726530060 796185813 861933650 921789572 973841548

1016350163 1047844835 1067208183 1073741824 1067208183 1047844835

1016350163 973841548 921789572 861933650 796185813 726530060 654924586

583213481 513053161 445857149 382760978 324607187 271948808 225068513

184009768 148615999 118573819 93456735 72766411 55969298 42527251

31921503 23669980 17338479 12546502 8968770 6333469 4418237 3044772

2072809 1393998 926112 607804 394060 252382 159681 99804 61622 37586

22647 13480 7926 4604 2642 1497 838 463 253 136 73 38 20 10 5 2 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

;;Imaginary part.

(defarray psiI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

;; This subroutine updates one of the two waves, using the other.

(defsub halfstep (dest src)

(let (e <- epsilon)

(for i = 0 to 127

(let (d <-> (dest _ i))

(d += ((alphas _ i) */ (src _ i)))

(d -= (e */ (src _ ((i + 1) & 127))))

(d -= (e */ (src _ ((i - 1) & 127))))))))

;; Print the current wave to the output stream.

(defsub printwave (wave)

(for i = 0 to 127

(printword (wave _ i)))

(println))

;; Main program, goes by the name of SCHROED.

(defmain schroed

(for i = 1 to 1000 ;Enough time for electron to fall to well bottom.

;; Take turns updating the two components of the wave.

(call halfstep psiR psiI)

(rcall halfstep psiI psiR)

;; Print both wave components.

(call printwave psiR)

(call printwave psiI)))

E.4 Compiled PISA code

The following is the exact PISA assembly code output that was produced from the
above input file by the R compiler Rcomp we listed in ch. D. It consists of 830
machine words (395 of data, 435 of program). We will not review this code in detail
here. However, when it was executed under our Pendulum virtual machine PendVM
(a C program written by Matt DeBergalis), it was found to produce exactly identical
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output, on every step, to that of the original C version of the program, listed earlier,
thus validating the correctness of Rcomp and PendVM (at least for this program).
And when execution was stopped and reversed at any point, the processor state re-
turned exactly to the orignal state at the start of the program (validating PendVM’s
guarantee of reversibility).

;; pendulum pal file

_PRESKIP395: BRA _POSTSKIP396

EPSILON: DATA 203667001

_POSTSKIP396: BRA _PRESKIP395

_PRESKIP397: BRA _POSTSKIP398

ALPHAS: DATA 458243442

DATA 456664951

DATA 455111319

..

. (122 intervening data statements elided)

DATA 453582544

DATA 455111319

DATA 456664951

_POSTSKIP398: BRA _PRESKIP397

_PRESKIP399: BRA _POSTSKIP400

PSIR: DATA 2072809

DATA 3044772

DATA 4418237

..

. (122 intervening data statements elided)

DATA 0

DATA 0

DATA 0

_POSTSKIP400: BRA _PRESKIP399

_PRESKIP401: BRA _POSTSKIP402

PSII: DATA 0

DATA 0

DATA 0

.

.. (122 intervening data statements elided)

DATA 0

DATA 0

DATA 0

_POSTSKIP402: BRA _PRESKIP401

_SUBTOP403: BRA _SUBBOT404

HALFSTEP: SWAPBR $2

NEG $2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

ADDI $31 EPSILON

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

EXCH $30 $31

ADDI $1 -3
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EXCH $29 $1

ADDI $1 3

ADD $29 $30

EXCH $30 $31

ADDI $31 -EPSILON

ADDI $30 128

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

ADD $31 $28

_FORTOP407: BNE $31 $28 _FORBOT408

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADD $3 $31

EXCH $27 $3

SUB $3 $31

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

ADDI $26 ALPHAS

ADD $26 $31

ADDI $1 -7

EXCH $25 $1

ADDI $1 7

ADDI $1 -8

EXCH $24 $1

ADDI $1 8

EXCH $24 $26

ADD $25 $24

EXCH $24 $26

SUB $26 $31

ADDI $26 -ALPHAS

ADD $24 $4

ADD $24 $31

ADDI $1 -9

EXCH $23 $1

ADDI $1 9

EXCH $23 $24

ADD $26 $23

EXCH $23 $24

SUB $24 $31

SUB $24 $4

XOR $23 $5

XOR $5 $23

XOR $26 $4

XOR $4 $26

XOR $26 $4

XOR $25 $3

XOR $3 $25

XOR $25 $3

XOR $24 $2

XOR $2 $24

ADDI $1 -9

BRA SMF

ADDI $1 9

ADD $27 $5

ADDI $1 -9

RBRA SMF

ADDI $1 9

ADD $2 $26
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ADD $2 $31

ADDI $1 -10

EXCH $22 $1

ADDI $1 10

EXCH $22 $2

SUB $4 $22

EXCH $22 $2

SUB $2 $31

SUB $2 $26

ADDI $2 ALPHAS

ADD $2 $31

EXCH $4 $2

SUB $3 $4

EXCH $4 $2

SUB $2 $31

ADDI $2 -ALPHAS

ADD $2 $31

ADDI $2 1

ADDI $3 127

ANDX $4 $2 $3

ADDI $3 -127

ADD $3 $26

ADD $3 $4

EXCH $22 $3

ADD $5 $22

EXCH $22 $3

SUB $3 $4

SUB $3 $26

XOR $3 $5

XOR $5 $3

XOR $3 $4

XOR $4 $3

XOR $3 $4

XOR $29 $3

XOR $3 $29

XOR $29 $3

XOR $22 $2

XOR $2 $22

ADDI $1 -10

BRA SMF

ADDI $1 10

SUB $27 $5

ADDI $1 -10

RBRA SMF

ADDI $1 10

ADD $2 $26

ADD $2 $29

ADDI $1 -11

EXCH $21 $1

ADDI $1 11

EXCH $21 $2

SUB $4 $21

EXCH $21 $2

SUB $2 $29

SUB $2 $26

ADDI $2 127

ANDX $29 $22 $2

ADDI $2 -127

ADDI $22 -1

SUB $22 $31

ADD $2 $31
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ADDI $2 -1

ADDI $4 127

ANDX $5 $2 $4

ADDI $4 -127

ADD $4 $26

ADD $4 $5

EXCH $22 $4

ADD $21 $22

EXCH $22 $4

SUB $4 $5

SUB $4 $26

XOR $4 $5

XOR $5 $4

XOR $21 $4

XOR $4 $21

XOR $21 $4

XOR $22 $2

XOR $2 $22

ADDI $1 -11

BRA SMF

ADDI $1 11

SUB $27 $5

ADDI $1 -11

RBRA SMF

ADDI $1 11

ADD $2 $26

ADD $2 $21

EXCH $29 $2

SUB $4 $29

EXCH $29 $2

SUB $2 $21

SUB $2 $26

ADDI $2 127

ANDX $21 $22 $2

ADDI $2 -127

ADDI $22 1

SUB $22 $31

ADD $25 $31

EXCH $27 $25

SUB $25 $31

ADDI $31 1

ADDI $1 -11

EXCH $21 $1

ADDI $1 11

XOR $29 $3

XOR $3 $29

ADDI $1 -10

EXCH $22 $1

ADDI $1 10

XOR $2 $24

XOR $24 $2

XOR $3 $25

XOR $25 $3

XOR $4 $26

XOR $26 $4

XOR $5 $23

XOR $23 $5

ADDI $1 -9

EXCH $23 $1

ADDI $1 9

ADDI $1 -8
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EXCH $24 $1

ADDI $1 8

ADDI $1 -7

EXCH $25 $1

ADDI $1 7

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

_FORBOT408: BNE $31 $30 _FORTOP407

SUB $31 $30

ADDI $30 -128

ADDI $28 EPSILON

EXCH $30 $28

SUB $29 $30

EXCH $30 $28

ADDI $28 -EPSILON

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

ADDI $1 -3

EXCH $29 $1

ADDI $1 3

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

_SUBBOT404: BRA _SUBTOP403

_SUBTOP444: BRA _SUBBOT445

PRINTWAVE: SWAPBR $2

NEG $2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

ADDI $31 128

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

ADDI $1 -3

EXCH $29 $1

ADDI $1 3

ADD $30 $29

_FORTOP446: BNE $30 $29 _FORBOT447

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

OUTPUT $28

ADD $28 $3

ADD $28 $30

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

EXCH $26 $28

ADD $27 $26
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EXCH $26 $28

SUB $28 $30

SUB $28 $3

OUTPUT $27

ADD $26 $3

ADD $26 $30

EXCH $28 $26

SUB $27 $28

EXCH $28 $26

SUB $26 $30

SUB $26 $3

ADDI $30 1

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

_FORBOT447: BNE $30 $31 _FORTOP446

SUB $30 $31

ADDI $31 -128

ADDI $29 1

OUTPUT $29

ADDI $29 -1

ADDI $1 -3

EXCH $29 $1

ADDI $1 3

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

_SUBBOT445: BRA _SUBTOP444

_SUBTOP457: BRA _SUBBOT458

SMF: SWAPBR $2

NEG $2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

ADDI $1 -3

EXCH $29 $1

ADDI $1 3

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

ADDI $29 1

ADD $31 $3

_IFTOP459: BGEZ $3 _IFBOT460
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NEG $31

_IFBOT460: BGEZ $3 _IFTOP459

ADD $30 $4

_IFTOP461: BGEZ $4 _IFBOT462

NEG $30

_IFBOT462: BGEZ $4 _IFTOP461

RL $29 31

ADDI $1 -7

EXCH $25 $1

ADDI $1 7

ADDI $25 1

ADDI $1 -8

EXCH $24 $1

ADDI $1 8

ADDI $24 32

ADDI $1 -9

EXCH $23 $1

ADDI $1 9

ADD $23 $25

_FORTOP463: BNE $23 $25 _FORBOT464

RR $29 1

ANDX $27 $31 $29

_IFTOP467: BEQ $27 $0 _IFBOT468

SRLVX $28 $30 $23

ADD $26 $28

SRLVX $28 $30 $23

_IFBOT468: BEQ $27 $0 _IFTOP467

ANDX $27 $31 $29

ADDI $23 1

_FORBOT464: BNE $23 $24 _FORTOP463

SUB $23 $24

ADDI $24 -32

ADDI $25 -1

_IFTOP469: BGEZ $3 _IFBOT470

NEG $26

_IFBOT470: BGEZ $3 _IFTOP469

_IFTOP471: BGEZ $4 _IFBOT472

NEG $26

_IFBOT472: BGEZ $4 _IFTOP471

ADD $5 $26

_IFTOP473: BGEZ $4 _IFBOT474

NEG $30

_IFBOT474: BGEZ $4 _IFTOP473

SUB $30 $4

_IFTOP475: BGEZ $3 _IFBOT476

NEG $31

_IFBOT476: BGEZ $3 _IFTOP475

SUB $31 $3

ADDI $29 -1

ADDI $1 -9

EXCH $23 $1

ADDI $1 9

ADDI $1 -8

EXCH $24 $1

ADDI $1 8

ADDI $1 -7

EXCH $25 $1

ADDI $1 7

ADDI $1 -6

EXCH $26 $1

ADDI $1 6
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ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADDI $1 -4

EXCH $28 $1

ADDI $1 4

ADDI $1 -3

EXCH $29 $1

ADDI $1 3

ADDI $1 -2

EXCH $30 $1

ADDI $1 2

ADDI $1 -1

EXCH $31 $1

ADDI $1 1

_SUBBOT458: BRA _SUBTOP457

_MAINTOP: BRA _MAINBOT

.START SCHROED

SCHROED: START

ADDI $2 1

ADDI $3 1001

ADD $4 $2

_FORTOP477: BNE $4 $2 _FORBOT478

XOR $5 $4

XOR $4 $5

ADDI $4 PSII

XOR $6 $3

XOR $3 $6

ADDI $3 PSIR

XOR $7 $2

XOR $2 $7

BRA HALFSTEP

ADDI $3 -PSIR

ADDI $4 -PSII

ADDI $4 PSIR

ADDI $3 PSII

RBRA HALFSTEP

ADDI $3 -PSII

ADDI $4 -PSIR

ADDI $3 PSIR

BRA PRINTWAVE

ADDI $3 -PSIR

ADDI $3 PSII

BRA PRINTWAVE

ADDI $3 -PSII

ADDI $5 1

XOR $2 $7

XOR $7 $2

XOR $3 $6

XOR $6 $3

XOR $4 $5

XOR $5 $4

_FORBOT478: BNE $4 $3 _FORTOP477

SUB $4 $3

ADDI $3 -1001

ADDI $2 -1

FINISH

_MAINBOT: BRA _MAINTOP
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Appendix F

Units, Constants, and Notations

This appendix simply lists various fundamental units, physical constants, and nota-
tions used throughout the text, for easy reference.

Table F.1 shows the names, abbreviations, and values of the standard order-of-
magnitude prefixes for units of measurement.

Table F.2 shows the various base units of measurement referred to in this thesis.
Any of these of course may also appear together with any of the prefixes listed in
table F.1.

Table F.3 shows the fundamental physical constants we use. The Planck length
LP is listed in the units table (table F.2), but it may also be considered to be a
fundamental physical constant. It is sometimes hypothesized to be some sort of
minimum length scale for physics.

Table F.4 gives our preferred, more mnemonic notation for comparing the asymp-
totic order of growth of functions.

Name Sym Val Name Sym Val

deka- D 101 deci- d 10−1

hecto- h 102 centi- c 10−2

kilo- k 103 milli- m 10−3

mega- M 106 micro- µ 10−6

giga- G 109 nano- n 10−9

tera- T 1012 pico- p 10−12

peta- P 1015 femto- f 10−15

exa- E 1018 atto- a 10−18

Table F.1: Unit magnitude prefixes.
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Symbol Name Measures Some equivalences

Å Ångstrom length 10−10 m
B byte information 8 b
b bit information, entropy (ln 2) nat
C Coulomb electric charge
eV electron Volt energy 1.60217733×10−19 J
g gram mass

Hz Hertz frequency 1/s
J Joule energy 1 N m
K Kelvin temperature ∼ 1.38×10−23 J/nat
kg kilogram mass 1000 g
m meter length
N Newton force 1 kg m/s2

nat nat entropy kB, 1 b/ln 2

LP Planck length length
√

G~/c3 ≈ 1.616×10−35 m
s second time
V Volt electric potential 1 J/C

Table F.2: Some basic units of measurement used in this document.

Symbol Meaning Some equivalences Approximate value
c Speed of light 299792458 m/s
ε0 Permittivity of 1/µ0c

2 8.85418782×10−12 F/m
free space

h Planck’s constant 6.6260755×10−34 J · s
~ Reduced Planck’s h/2π 1.05457267×10−34 J · s

constant
G Gravitational 6.67259×10−11 N m2/kg

constant
kB Boltzmann’s constant 1 nat 1.3806513×10−23 J/K
σSB Stefan-Boltzmann π2k4

B/60c2~3 5.6704×10−8 J/s-K4-m2

constant
qe Electron charge 1.60217733×10−19 C

magnitude

Table F.3: Fundamental physical constants used in this document.
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Cryptic Our own
standard mnemonic Mathematical definition;
notation notation English explanation

f = Θ(g) f ∼ g
∃c1, c2, n0 > 0: ∀n ≥ n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n);
f is asymptotically proportional to g

f = O(g) f - g
∃c, n0 > 0: ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n);
f is asymptotically no more than proportional to g

f = Ω(g) f % g
∃c, n0 > 0: ∀n ≥ n0 : 0 ≤ cg(n) ≤ f(n);
f is asymptotically no less than proportional to g

f = o(g) f ≺ g
∀c > 0: ∃n0 > 0: ∀n ≥ n0 : 0 ≤ f(n) < cg(n);
f is asymptotically strictly less than proportional to g

f = ω(g) f Â g
∀c > 0: ∃n0 > 0: ∀n ≥ n0 : 0 ≤ cg(n) < f(n);
f is asymptotically strictly more than proportional to g

Table F.4: Asymptotic order-of-growth notation. In addition to reviewing the stan-
dard notation, we introduce a simplified notation that will be useful in some contexts.
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