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Abstract

A standard problem that arises in the study of energy-recovering cir-
cuits for digital logic is to analyze the relative energy efficiency of different
possible voltage waveforms for the power/clock signals that are used to
drive adiabatic charge transfers in the logic. To well characterize these
waveform efficiency issues provides an analytical tool that is helpful in
the design optimization of efficient power/clock signal generators. In this
memo, we define appropriate metrics for the comparison of the energy
efficiencies of different voltage waveforms in the context of fixed require-
ments on the energy transferred to the logic load or the energy supplied
by the power/clock resonator, and show how these efficiency metrics scale
as functions of frequency for a variety of simple wave shapes in a basic
lumped-element circuit model.

1 Introduction

[Need more citations throughout this section.]
The semiconductor industry is well aware that conventional irreversible digi-

tal logic technology, which dissipates the entire energy of a digital signal to heat
upon each manipulation of its digital value, cannot be pushed many orders of
magnitude beyond present levels of energy efficiency [?, ?]. Eventually, the only
way to make further progress in the energy efficiency of digital technologies will
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be to increasingly utilize energy-recovering, highly adiabatic techniques for mod-
ifying digital signal values in an asymptotically thermodynamically reversible
fashion. With continued refinement, such techniques can in principle eventually
offer energy efficiencies that are many orders of magnitude beyond the limits
of conventional irreversible technology, making possible systems having much
higher total digital throughput within realistic power dissipation constraints
than would otherwise be possible.

Today, a number of (hopefully temporary!) roadblocks still conspire to pre-
vent the widespread development of reversible, adiabatic logic concepts into a
practical, commercializable technology for high power-performance computing:

• Lack of a complete and correct understanding of the principles of adia-
batic switching and reversible logic among much of the low-power design
community;

• Presence of substantial design flaws in most of the existing published lit-
erature on adiabatic circuits in CMOS, leading to an underestimation,
in most of the papers and review articles on the subject, of the energy
efficiency that can be achieved by proper adiabatic design;

• A real lack of detailed designs and demonstrations of high-quality power-
supply clock resonators suitable for driving adiabatic logic with high system-
level energy efficiency;

• A per-device manufacturing cost today that, although much smaller than
it was in the past, makes the hardware overheads of adiabatic, reversible
approaches currently still somewhat prohibitive in terms of the extra hard-
ware cost that is required to achieve better than conventional levels of
throughput within system power constraints.

Items 1 and 2 are educational issues that we expect can be more easily solved
after there have been initial empirical demonstrations of working, practical de-
signs that use sound adiabatic design principles to outperform conventional
designs, and the construction of such demonstration systems is one of our most
important research goals.

Item 4 is an issue that we expect will naturally solve itself over time, as com-
petitive pressures (driven especially by memory applications) continue to force
down per-device costs to the point where logic power dissipation rather than
logic cost becomes an ever-increasingly more dominant constraint on achievable
digital throughput. This is already beginning to happen today, as logic design-
ers working in the latest technologies find they are constrained more and more
by power consumption rather than by device count.

This leaves item 3 as the primary area where concrete technical progress
needs to be made in the near term; having good resonators is a prerequisite for
building empirical demonstrations that will be sufficiently impressive to silence
the critics, show the world what can be done with good adiabatic design, and
thereby begin to solve problems 1 and 2.
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A detailed study of the issues and problems that exist in the area of high-
quality resonator design for adiabatic logic therefore needs to be undertaken.

One early step in this research program is for us to thoroughly understand
and characterize the impact on energy efficiency of the precise shape of the
voltage waveform that is delivered to the logic by the power/clock resonator.
Sinusoidal waveforms are the simplest ones to generate, but they are general
unsuitable for driving high-quality CMOS-based adiabatic logic, which requires
for maximum energy efficiency that the driving signal must remain flat for a
substantial portion of the clock period in order to allow sufficient time for devices
to be turned off without simultaneously trying to drive a current through them
(an act which would lead to nonadiabatic dissipation [?]). However, alternative
devices for adiabatic logic based on quantized states, such as the Quantum-Dot
Cellular Automata (QDCA) devices being studied by Notre Dame and Sandia,
do not suffer from the same requirement for flat-topped waveforms, and can be
appropriately driven by a more general class of waveforms, including sinusoidal
ones, while remaining fully adiabatic.

However, regardless of the precise constraints on the waveform shape that
may or may not be imposed by the requirements of a particular switching tech-
nology, any implementation of reversible computing whose adiabatic transitions
are driven by a time-varying voltage source will involve charge transfer onto
some kind of capacitive load along some resistive path.

For example, in CMOS, the load is a set of transistor gates along with var-
ious parasitic node capacitances, while the resistive charging path consists of
the effective resistance of the transistor channel along with other parasitic resis-
tances in interconnects, etc..; whereas in QDCA, the load consists of an array
of fairly well-isolated single-electron quantum dots that are capacitively cou-
pled to their immediate surroundings, while the resistive charging path consists
of the parasitic resistances that exist along whatever wires are being used for
distribution of the clock signal that drives and controls the timing of the logic
transitions within the dots. QDCA may ultimately have higher performance
than CMOS, due in part to the fact that the driving clock signal does not need
to be gated through any transistors at all, while only single electrons within the
QDCA devices are required to pass through the relatively more resistive tunnel
junctions between the dots.

But regardless of the details, in either technology (CMOS or QDCA), we can
roughly partition our model of the system into the elements that are driving
the resonant oscillation of the clock signal (e.g., some inductors or transmission
lines) and the parasitic loading elements that make up the logic system that is
being driven by that signal.

For any system that makes use of clocked adiabatic charge transfers, the
question naturally arises as to the amount of energy dissipation that arises as
the result of those charge transfers. Furthermore, one wishes to characterize how
the dissipation changes as a function of various design parameters, including
not only the frequency of operation but also the clock waveform shape and the
magnitudes of the resistances and capacitances (whether necessary or parasitic)
that make up the load. Only with a thorough understanding of these basic issues
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Figure 1: Circuit schematic for initial power dissipation modeling.

can we begin to design and optimize complete adiabatic logic systems consisting
of a clock oscillator resonantly driving adiabatic transitions of a logic load, and
to do this job with the confidence that we are analyzing and optimizing our
designs correctly.

The goal of the present memo is simply to solidify our own understanding of
these issues by doing a thorough job of analyzing the energy efficiency of charge
transfers in the context of a simple, general lumped-element circuit model. Later
research along this same line of work will expand the scope of our analyses
by encompassing more detailed circuit models that capture more accurately
the physical behavior of realistic systems, including more detailed and realistic
models of resonators and clock-distribution networks, together with logic models
that characterize more accurately the circuit-level characteristics of particular
categories of devices such as CMOS transistors and QCA cells.

The contents of this memo are as follows. Section 2 presents our basic, gen-
eral circuit model. Section 3 defines our notations for a variety of basic energy
and power quantities associated with charge transfers in this circuit. Sec. 4
defines a couple of important metrics of energy efficiency that we focus on, mo-
tivated by the twin desires to achieve high power-performance in the logic as well
as high quality factors in the power-clock resonators. Then sections 5-9 proceed
to carry out detailed analyses of energy efficiency for particular categories of
driving waveforms. Section 10 summarizes our results and suggests directions
for follow-on work. Finally, Appendix A gives several detailed derivations of the
classic CV 2/2 formula for energy transferred onto the load, while Appendix B
details one way to solve the particular differential equation for the load voltage
that is encountered in §9.

2 Basic circuit model

As a simple starting point for analysis, in this memo we will use the basic
lumped-element RC circuit model illustrated in figure 1. The load (a set of
devices to be driven) is modeled as a load capacitance of C in series with the re-
sistance R of the charging path. The clock generator is modeled as a general AC
voltage source producing a (not necessarily sinusoidal) voltage waveform vs(t),
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Figure 2: Illustration of example source and load voltage waveforms, with var-
ious notations defined. The rising part of the vs(t) source voltage trajectory is
just any arbitrary monotonically non-decreasing function, while the falling part
traverses the identical trajectory but in the negative direction. This “voltage
reversal symmetry” property helps simplify the analysis. The v(t) load curve il-
lustrated is the actual steady-state solution (numerically estimated) that follows
from the given vs(t) for a certain value of RCf . For purposes of quantifying
energy transferred onto the load, we use Vmin as our reference voltage, while for
quantifying energy supplied and recovered by the source, we use Vs,min. The
difference between these two voltage references is given by Vgap = Vmin−Vs,min.
In some analyses, we may also temporarily use the voltage reference Vavg for
convenience.

with maximum voltage Vs,max, minimum voltage Vs,min, and a time-averaged
voltage Vavg which we assume is equal to (Vs,max + Vs,min)/2. The amplitude of
the signal is defined as Vsa = Vs,max − Vavg = (Vs,max − Vs,min)/2. In response
to the voltage signal applied to the source terminal, a time-dependent current
i(t) will flow through the resistor, while the voltage on the load capacitor will
vary according to some function of time v(t), with amplitude Va ≤ Vsa and total
swing V = 2Va ≤ Vs. For resistance R > 0 and frequency f > 0, the load
voltage in general experiences some amount of amplitude damping and phase
lag θlag relative to the driving signal, as illustrated in figure 2.

Using this basic circuit model, we will analyze a variety of important cases to
determine the energy dissipation and the energy efficiency according to various
metrics. The analyses we carry out in subsequent sections are for the most
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part fairly standard and well-known in the adiabatic circuits literature, but we
repeat them here for pedagogical purposes, as well as to better develop our own
understanding of these results.

3 General power and energy analysis

In this section, we show how to derive expressions for various important power
and energy quantities relating to the above circuit starting from the most basic
principles of circuit theory.

First, let’s build up our analytical model of the circuit dynamics. From the
definition of capacitance, we have

C = dq/dv, (1)

where q(t) is the instantaneous charge stored on the “upper plate” of the ca-
pacitance as a function of time. Meanwhile, from the definition of current and
the fact that injected charge builds up on a capacitor, we have that the instan-
taneous current in the indicated direction through the resistor is

i = dq/dt. (2)

Finally, Ohm’s Law gives us that the instantaneous current is also

i = ∆v/R. (3)

where ∆v(t) = vs(t) − v(t) is the voltage drop across the resistor. Combining
eqs. 1-3 and solving for dv/dt, we obtain the ordinary differential equation

dv

dt
= ∆v/RC. (4)

Thus, in general for the above circuit, given any input waveform vs(t), the
instantaneous voltage v(t) on the load must obey the equation (4), which can
also written as

RC
dv(t)
dt

= ∆v. (5)

In later sections, we will examine the solutions of this ODE for a variety of
particular cases of interest.

In general, assuming that we have obtained a solution for v(t), then by
Ohm’s law again, the instantaneous current i(t) is given by

i =
∆v

R
. (6)

Now, the definition of the voltage v of a circuit node is

v =
de

dq
(7)
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where e(q) is the total electrostatic potential energy contained on that circuit
node, which is a function of the quantity q of charge contained on it. Thus,
v dq = de. The definition of the power flowing into a given node is p = de/dt =
v dq/dt = vi.

It is important to remember that voltages v, energies e, and power flows p
are all generally only defined up to an additive constant; thus, these quantities
cannot be expressed numerically; only differences between them can. [So?]

For a current flowing across a resistor, the power flowing into the source
terminal of the resistor at voltage vs is vsi, whereas the power flowing out the
other terminal at its voltage v is vi; the difference vsi − vi = i(vs − v) = i∆v
between these is thus the instantaneous amount of power that is dissipated by
the current flow in the resistor,

pd = i∆v =
∆v2

R
. (8)

To determine the total energy dissipated in the resistor between any two given
times, say 0 and τ , one then merely integrates pd over t:

Ed =
∫ τ

t=0

pd(t) dt =
∫ τ

0

[∆v(t)]2

R
dt. (9)

The average power dissipation over this period is then given simply by Pd =
Ed/τ . Of course, one should keep in mind that in general, there may be addi-
tional dissipation in the unknown circuit that implements the waveform gener-
ator for the voltage source vs(t). However, eq. 9 remains satisfactory as far as
the power dissipation directly associated with the resistance R is concerned.

In later sections of this document, we will analytically derive closed-form
expressions for Ed and Pd in a variety of important basic cases. But first, some
general statements about the energy flow are in order.

For voltage sources that alternate between a monotonic increase through the
entire voltage range of Vs over time t, followed by a polarity-reversal-symmetric
monotonic decrease backwards through the same range in the same amount
of time, the energy flow in the circuit over the course of this cycle can be
summarized as illustated in figure 3. Meanwhile, figure 4 shows the detailed
time-evolution of the cumulative energy flow for the particular source and load
waveforms illustrated in figure 2.

Relative to the reference voltage Vs,min, the total energy supplied by the
source during charging of the load is

Esup =
∫ τ1

t=τ0

[vs(t)− Vs,min] · i(t) dt (10)

where τ0 and τ1 are the times at which the current flow in the forwards direction
starts and stops, respectively, as illustrated in figure 2.

The total energy dissipated in the resistance during this low-to-high transi-
tion of the load is

Ed,tr =
∫ τ1

t=τ0

pd(t) dt =
∫ τ1

t=τ0

∆v(t)i(t) dt, (11)
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Figure 3: Schematic summary of per-cycle energy flow given source waveforms
that alternate between monotonic increase and symmetric monotonic decrease
over the range Vs. The gap energy Egap = QtfrVgap represents the apparent de-
crease in the amounts of energy supplied, transferred to the load, and recovered
that arises if one moves from measuring energies in the source-based reference
frame Vs,min = 0 to the load-based frame Vmin = 0. By our convention, Esup

and Erec are defined relative to the former, while Etfr is defined relative to the
latter. These conventions affect our later definitions of the energy transfer and
energy recovery efficiencies.

Figure 4: Detailed temporal evolution of the cumulative energy transferred for
the specific source and load waveforms illustrated in figure 2. The important
energy quantities that are the focus of this memo are indicated.
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while the remaining part of Esup is the energy transferred onto the load capac-
itance (in the base-Vs,min reference frame), and can be expressed as

Esup − Ed,tr =
∫ τ1

t=τ0

[vs(t)− Vs,min] i(t) dt (12)

−
∫ τ1

t=τ0

[vs(t)− v(t)] i(t) dt (13)

=
∫ τ1

t=τ0

[v(t)− Vs,min] i(t) dt (14)

=
∫ τ1

t=τ0

[v(t)− Vmin + Vgap] i(t) dt (15)

=
{∫ τ1

τ0

[v(t)− Vmin] i(t) dt

}
+ Vgap

∫ τ1

τ0

i(t) dt (16)

= Etfr + VgapQtfr (17)
= Etfr + Egap, (18)

where in (15) we are using the gap voltage Vgap = Vmin−Vs,min from figure 2, and
in (17) we are using Etfr to represent the “useful” part of the energy transferred,
which, for our purposes in this document, is defined as

Etfr =
∫ τ1

t=τ0

detfr(t) (19)

=
∫ τ1

t=τ0

[v(t)− Vmin] dq(t) (20)

=
∫ τ1

t=τ0

[v(t)− Vmin]
dq

dt
dt (21)

=
∫ τ1

t=τ0

[v(t)− Vmin] i(t) dt, (22)

where we have defined the differential energy transfer with reference to the
minimum load voltage Vmin, via the relation detfr = [v(t)− Vmin] dq. In (17) we
are also defining and using the total charge transferred Qtfr = CV , and in (18)
we are using the “energy gap” Egap = VgapQtfr, which is needed to compensate
for the fact that Esup and Etfr are defined using different base voltages. The
overall relation Esup − Ed,tr = Etfr + Egap is pictured in figure 3.

Appendix A shows that, given the definition (22), it follows that the energy
transferred also obeys the simple relation

Etfr =
1
2
CV 2, (23)

and explains in more detail how the gap energy Egap arises.
Now, by symmetry considerations in the AC steady state, the energy dissi-

pated during the subsequent high-to-low transition is also Ed,tr, just as in the
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low-to-high transition, and so the total energy dissipated during both transitions
over the course of the complete charge/discharge cycle is

Ed,cyc = 2Ed,tr. (24)

Since in a sustained steady-state cycle, the energy dissipated per cycle intuitively
(and by the first law of thermodynamics) cannot be greater than the total energy
supplied by the source during a cycle, we have that

Ed,cyc ≤ Esup. (25)

We note that this constraint also implies an upper bound on Ed,tr:

Ed,tr = Ed,cyc/2 (26)
≤ Esup/2. (27)

If Ed,cyc < Esup, then the remaining part of Esup is returned to the AC volt-
age source terminal, where it may potentially be recovered by (for example) a
resonant power-clock oscillator for reuse on subsequent cycles; the amount of
potentially recoverable energy is thus given by

Erec = Esup − Ed,cyc (28)
= Esup − 2Ed,tr (29)
= Etfr + Egap − Ed,tr (30)
≥ 0, (31)

where the inequality in the last line follows from (28) and (25), and implies that
always

Etfr + Egap ≥ Ed,tr. (32)

An important caveat to note at this point is that our choice of measuring Esup

and Erec relative to Vs,min while measuring Etfr relative to Vmin is in some sense
completely arbitrary; really, any voltage reference could have been chosen, and
so each of these energies is really only physically meaningful up to an arbitrary
additive constant, whose magnitude depends on the quantity Qtfr = CV of
charge transferred and on where we choose to set our zero of voltage and thus
of electrostatic energy. For example, another possible choice of definitions that
would still satisfy the constraint (25) would involve always setting Erec = 0 and
redefining Etfr = Esup − Ed,tr, which would imply that Etfr = Ed,tr = Esup/2
by eqs. 28-31, with Egap eliminated from eq. 30. However, this particular choice
would then teach us nothing about the relative efficiencies of different charging
profiles.

Our particular choice of voltage conventions can be fairly well justified by
the fact that for purposes of charging up a given load through a given voltage
swing, only C and V are given, and so the energy transfer should depend only
on these, whereas when evaluating the energy recovery efficiency of a resonant
circuit, it is the source voltage swing Vs that matters, and so the most natural,
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interesting question to ask in that context is how much of the energy supplied,
relative to the base of the swing, is returned to the source.

Another point is that in the low-frequency limit which is our primary regime
of operation in adiabatic systems, Vmin → Vs,min, so the two different voltage
references that we are using turn out to be nearly the same as each other anyway.
But, it is important to keep in mind that at higher frequencies, the difference
between these voltages is larger, and this fact can affect the energy transfer
efficiency substantially, and in ways that have practical impact, for example by
requiring a relatively larger voltage swing on the source in order to cause a given
desired energy transfer onto the load.

We should also warn the reader that, in some of our analyses, we may tem-
porarily choose a voltage reference of Vavg = 0, rather than either of the above-
mentioned choices, in order to simplify the mathematical expressions for the
waveforms. However, it should be understood that when this is done, it is
merely a temporary choice, and we always shift our results back to our con-
ventional voltage references for purposes of characterizing the energy efficiency
quantities that are of interest to us, which we’ll now define.

[Note: I still need to finish propagating all of my new voltage/energy
conventions throughout all of the remaining sections.]

4 Energy efficiency metrics

For purposes of choosing a waveform shape that minimizes energy dissipation
in the context of fixed requirements on the energy usefully transferred to the
logic and the frequency of charge/discharge cycles, we define and will make use
of a key figure of merit which we call the energy transfer efficiency ,

ηE,tfr =
Etfr

Ed,tr
, (33)

which is simply the amount of energy that is usefully transferred onto the load
during charging, expressed as a multiple of the amount of energy that is dissi-
pated during this process.

As we’ll show in the next section [move to earlier], in general for a constant
load capacitance C that is taken through a total low-to-high voltage range of V ,
we have that the energy transferred onto the load, relative to Vmin, is exactly

Etfr =
1
2
CV 2 (34)

so that in general equation 33 becomes

ηE,tfr =
CV 2/2
Ed,tr

(35)

=
CV 2

Ed,cyc
. (36)

11



Note that this particular efficiency metric ranges from (0,∞) rather than from
(0, 1); we could have ηE,tfr < 1 if the energy transfer is so inefficient that more
energy is dissipated per load transition than is actually going onto or off of the
load (which we’ll see is what occurs at high frequencies), whereas we could have
ηE,tfr > 1 if less energy is dissipated than is transferred.

In subsequent sections we’ll derive the exact form of eq. 36 as a function of
frequency for various specific wave shapes.

For some purposes, such as when assessing the quality factor Q for a res-
onator system driving a logic load, it may also be of interest to characterize the
energy recovery efficiency

ηE,rec =
Erec

Esup
(37)

=
Etfr + Egap − Ed,tr

Etfr + Ed,tr
(38)

=
(ηE,tfr − 1)Ed,tr + Egap/Ed,tr

(ηE,tfr + 1)Ed,tr
(39)

=
ηE,tfr − 1 + Egap/Ed,tr

ηE,tfr + 1
(40)

which is the fraction of energy supplied by the source that is recovered for
reuse on subsequent cycles. Note that for low-frequency driving signals that
allow sufficient time between transitions for the load voltage v(t) to converge
exponentially close to Vs,max, the energy Egap becomes completely negligible
and so (40) simplifies to

ηE,rec → ηE,tfr − 1
ηE,tfr + 1

. (41)

Finally, we if define the quality factor Q of the charge/discharge process to be
the ratio between energy supplied by the source and energy dissipated during
the cycle,

Q =
Esup

Ed,cyc
, (42)

then we can express Q and ηE,rec in terms of each other as

Q =
Esup

Esup − Erec
=

Esup

Esup − ηE,recEsup
(43)

= (1− ηE,rec)−1, (44)
ηE,rec = 1−Q−1, (45)

so for example if a given circuit and driving waveform combination provides
ηE,rec = 0.999, then it offers a Q factor of 1,000.

Incidentally, one should keep in mind that this Q represents the energy-
recovering quality of the process of charging and discharging the load by itself;
it does not take into account any additional inefficiencies that may exist in the
waveform generator circuitry. Thus the overall Q of a complete system will in
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general be somewhat less than that described here. Later memos in this series
will show in detail how to calculate an overall system Q factor for particular
classes of resonator designs.

This concludes our general circuit analysis; now we go on to analyze specific
classes driving waveforms to determine how ηE,tfr and ηE,rec vary as functions
of frequency in each instance.

5 Step-function charging

First, assume that the voltage source vs(t) = 0 for all t < 0 and vs(t) = Vs for all
t ≥ 0. This then implements a step up in voltage by Vs at time 0. The solution
of (5) in this case is v(t) = 0 for t < 0, and

v(t) = Vs

(
1− e−t/RC

)
(46)

for t ≥ 0. The current is

i =
Vs

R
e−t/RC , (47)

and the power dissipation is

p =
V 2

s

R
e−2t/RC . (48)

The total energy dissipated over t ∈ (−∞,∞) is

Ed =
∫ ∞

t=0

V 2
s

R
e−2t/RCdt (49)

=
V 2

s

R

∫ ∞

0

e−2t/RCdt (50)

=
V 2

s

R

RC

−2
e−2t/RC |∞t=0 (51)

= −1
2
CV 2

s

(
e−∞ − e0

)
(52)

=
1
2
CV 2

s . (53)

Note that this classic formula for the energy dissipation that results from charg-
ing a load by direct connection to a voltage source with a constant voltage of
Vs does not depend at all on the magnitude of R. In fact, R can even have an
arbitrary time-dependence without changing the result, as is demonstrated by
another derivation of the same formula that is obtained even more directly.

Consider that a total charge of Qtfr = CV must be moved onto the capacitor
in order to charge it up by V = Vs; the energy supplied by the source and
carried initially by this amount of charge when it leaves the source at voltage
of V (relative to Vs,min = v(0) = 0) is Esup = QtfrV = CV 2, while the total
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electrostatic energy transferred to and accumulated on the capacitor during
charging, relative to the initial v(0) = 0, is

Etfr =
∫

dEtfr =
∫ Qtfr

q=0

[v(q)− v(0)] dq =
∫ Qtfr

q=0

q

C
dq =

Q2
tfr

2C
=

1
2
CV 2. (54)

The remaining energy of

Esup − Etfr = CV 2 − 1
2
CV 2 =

1
2
CV 2 (55)

is not stored anywhere in the circuit, so it must be dissipated in the charging
process. Thus we find the same answer Esup = CV 2/2 in a way that is clearly
completely independent of the precise shape of the load voltage trajectory v(t),
and that depends only on the fact that the source voltage is a constant V
throughout the entire charging process.

Note that in the case of a step function, we can see that the energy transfer
efficiency is

ηE,tfr =
Etfr

Ed,tr
(56)

=
CV 2/2
CV 2/2

(57)

= 1. (58)

Thus, using step functions at asymptotically zero frequency, the amount of
energy that is usefully transferred at each step (that is, the amount moved onto
or off of the load) is equal to the amount that is dissipated.

Meanwhile, since in this limit Egap = Vmin− Vs,min = 0, the energy recovery
efficiency over a complete cycle can be derived from (41) as

ηE,rec =
ηE,tfr − 1
ηE,tfr + 1

= 0/2 (59)

= 0. (60)

That is, none of the energy supplied by the source is recovered at the end of
the cycle for an asymptotically zero-frequency square wave; instead, all of it is
dissipated; the first half during charging, and the second half during discharging.

6 Square wave driver

The previous section applies to sources that are square waves with frequency
approaching zero. We now do an exact analysis for a source waveform that is a
square wave toggling between voltages Vs,min = 0 and Vs = Vs,max with a 50%
duty cycle and an arbitrary finite, non-infinitesimal frequency of f . (Figure 5.)
Let τ = 1/f be the clock period, thus τ/2 = 1/2f is the time between clock
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Figure 5: Source and load waveforms for a square-wave driver with clock period
τ = 8RC. In this figure, the time and voltage intervals are scale-free, in arbitrary
units.

edges. Let a given rising edge be at t = 0 when the load voltage is at v(0) = v0,
which will in general be greater than Vs,min in the steady state (not equal because
the load voltage doesn’t have time to decay all the way to Vs,min). Thus, before
time t = 0, v will have been still falling, whereas after the rising edge, v will
then begin rising, so also we have that Vmin = v0 and Vgap = v0 − Vs,min = v0.
For the first half-cycle, the load response initially looks exactly as it would for
a step-function source rising by an amount Vs − v0 (from v0 to Vs,max) at time
0; i.e., for t ∈ [0, τ/2], we can apply an appropriately scaled and shifted version
of eq. 46, namely

v(t) = v0 + (Vs − v0)
(
1− e−t/RC

)
. (61)

A bit later, at the time t = τ/2, the source voltage then steps back down
to 0 and a similar (and symmetric) discharge process begins. Due to symmetry
considerations, the steady-state load waveform must be an even function verti-
cally centered on the v = Vavg = Vs/2 axis, so we must have v(τ/2) = Vs − v0.
Thus we have the equation

v(τ/2) = Vs − v0 (62)

v0 + (Vs − v0)
(
1− e−τ/2RC

)
= Vs − v0 (63)
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v0 + Vs − Vse−τ/2RC − v0 + v0e−τ/2RC = Vs − v0 (64)

v0

(
1 + e−τ/2RC

)
= Vse−τ/2RC (65)

v0 =
Vse−τ/2RC

1 + e−τ/2RC
, (66)

which implies that the magnitude of the initial voltage drop across the resistor
immediately after each (rising or falling) clock edge is

|∆V0| = Vs − v0 =
Vs

1 + e−τ/2RC
. (67)

Using now (51) with |∆V0| in place of Vs and t = τ/2 in place of t = ∞ gives,
for the energy dissipation during each half-cycle,

Ed,tr =
∆V 2

0

R

RC

−2
e−2t/RC |τ/2

t=0 (68)

=
1
2
C(∆V0)2(1− e−τ/RC). (69)

Note that at low frequencies f → 0, ∆V0 → Vs, and so this expression ap-
proaches 1

2CV 2
s which, as we already saw in the previous section, is the dis-

sipation for charging a load all the way through a step of V = Vs using a
constant-voltage source.

Over the course of a full cycle the total energy dissipation Ed,cyc is twice
that of (69), and so in terms of the cycle frequency f = 1/τ , the average power
dissipation is

Pd = C(∆V0)2f(1− e−1/RCf ). (70)

Note that when τ ¿ RC, Ed → 0 because there is not time to dissipate much
energy, but in this same limit, the voltage swing V on the load of

V = (Vs − v0)− v0 = Vs − 2v0 = (71)

= Vs − 2
Vse−τ/2RC

1 + e−τ/2RC
(72)

=
Vs(1 + e−τ/2RC)

1 + e−τ/2RC
− 2Vse−τ/2RC

1 + e−τ/2RC
(73)

= Vs
1− e−τ/2RC

1 + e−τ/2RC
(74)

also approaches zero, so this case does not provide an energy-efficient way to
switch a load across a fixed desired voltage range V , because this will require
a large source voltage swing Vs in order to compensate for the large damping
factor. Solving (75) for the Vs required to yield a given desired target load swing
of V gives

Vs = V
1 + e−τ/2RC

1− e−τ/2RC
, (75)
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which for τ → 0 approaches (using the general fact that e−x → 1− x as x → 0)

Vs →
(

4RC

τ
− 1

)
V (76)

which approaches ∞ in proportion to the frequency f . Also in terms of V , the
energy dissipation per half-cycle is (combining eqs. 67, 69, and 75)

Ed,tr =
1
2
CV 2 1− e−τ/RC

(1− e−τ/2RC)2
. (77)

Although it is perhaps not immediately obvious, this can be simplified a bit,
since in general 1− e−x can be factored into (1 + e−x/2)(1− e−x/2), so that

Ed,tr =
1
2
CV 2 (1 + e−τ/2RC)(1− e−τ/2RC)

(1− e−τ/2RC)2
(78)

=
1
2
CV 2 1 + e−τ/2RC

1− e−τ/2RC
, (79)

which clearly (since the numerator is always greater than the denominator)
always exceeds the CV 2/2 dissipation that would be required for the load to
swing through an ordinary step up in the source voltage by V if more time were
available. In figure 6 we plot eq. 79 divided by CV 2/2 as a function of the
relative frequency r = RCf . As τ → 0, eq. 79 approaches

Ed,tr → 1
2
CV 2 1 + (1− τ/2RC)

1− (1− τ/2RC
(80)

=
1
2
CV 2 2− τ/2RC

τ/2RC
(81)

=
1
2
CV 2

(
4RC

τ
− 1

)
(82)

→ 2CV 2 RC

τ
, (83)

which tends towards infinity in proportion to f . So, although overdriving a
load via a large-voltage-swing source can cause the load to traverse a desired
voltage swing V in a time τ/2 that may be less than the usual full-swing delay
of several RC, this approach is less energy efficient than even ordinary square
wave charging driven by the desired voltage swing over clock periods of many
RC.

More explicitly, using the definition (33) and eqs. 208 and 79, the energy
transfer efficiency for the square wave driver is

ηE,tfr =
Etfr

Ed,tr
(84)

=
1− e−τ/2RC

1 + e−τ/2RC
, (85)

17



Figure 6: Energy dissipated per load transition as a multiple of energy trans-
ferred (reciprocal of ηE,tfr) for a square wave driver having a frequency-
dependent amplitude that is sufficient to swing a load through a fixed voltage
range of V .
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which approaches 0 for τ → 0 (f →∞) and 1 for τ →∞ (f → 0).
Let’s now look at the energy supplied and recovered, and the energy recovery

efficiency. Recall that our convention is to measure these relative to Vs,min. For
the square wave, all of the energy is supplied during the first half-cycle, when
v(t) − Vs,min = Vs; during the second half-cycle, when v(t) − Vs,min = 0, no
energy is considered to be transmitted or received by the source, regardless of
the value of the instantaneous current i. Thus, the energy supplied by the source
(as defined by eq. 10) is given by

Esup = Vs

∫ τ/2

t=0

i(t) dt (86)

= VsQtfr = VsCV (87)

= CV 2 1 + e−τ/2RC

1− e−τ/2RC
(88)

in terms of the load voltage swing V (where in line 88 we substituted eq. 75 for
Vs), while by doubling (79) we get that the energy dissipated per cycle is

Ed,cyc = CV 2 1 + e−τ/2RC

1− e−τ/2RC
. (89)

Since (88) and (89) are the same, the energy recovered by the source is, by
the definition (28), always

Erec = Esup − Ed,cyc = 0 (90)

for the square wave. The Q factor for driving a load with a square wave is
therefore 1, the lowest possible.

To make sure everything is self-consistent, let’s now double-check this result
carefully using a different equation (30) for Erec instead:

Erec = Etfr + Egap − Ed,tr (91)

=
1
2
CV 2 + QtfrVgap − 1

2
CV 2 1 + e−τ/2RC

1− e−τ/2RC
(92)

=
1
2
CV 2

(
1− 1 + e−τ/2RC

1− e−τ/2RC

)
+ QtfrVgap (93)

=
1
2
CV 2

(
1− e−τ/2RC

1− e−τ/2RC
− 1 + e−τ/2RC

1− e−τ/2RC

)
+ CV v0 (94)

= −1
2
CV 2 2e−τ/2RC

1− e−τ/2RC
+ CV 2 e−τ/2RC

1− e−τ/2RC
(95)

= −CV 2 e−τ/2RC

1− e−τ/2RC
+ CV 2 e−τ/2RC

1− e−τ/2RC
(96)

= 0. (97)

Thus, even though for small τ the energy Etfr transferred to the load is small
compared to the energy Ed,tr dissipated during charging, the gap energy Egap
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makes up for the difference; together, the energy transferred plus the gap energy
supplies exactly the energy that will be dissipated on the discharging transition,
when the source voltage is 0 relative to Vs,min.

To understand in yet another way why the energy recovery efficiency remains
0 in the high-frequency limit, when the amount of energy usefully transferred
onto the load is much less than the energy supplied, consider the following.
In the limit f → ∞, the load voltage v(t) is essentially a constant v(t) ≈
Vavg, because there is simply insufficient time for the load voltage to change
significantly during the very short charge/discharge cycle. Thus, with the source
voltage always at 0 or Vs, there is always an absolute voltage drop across the
resistor of almost exactly a constant |∆V | ≈ Vavg = Vs − Vavg = Vs/2. The
absolute current is therefore always almost exactly a constant |I| ≈ |∆V |/R =
Vs/2R, and the power dissipation is almost exactly a constant Pd = I∆V =
|∆V |2/R = V 2

s /4R. Meanwhile, the instantaneous power ps supplied by the
source, relative to the Vs,min = 0 reference level, is IVs = V 2

s /2R exactly half of
the time (namely, when vs(t) = Vs,max = Vs) and is 0 the rest of the time (when
vs(t) = Vs,min = 0); so on average, it is Psup = IVs/2 = V 2

s /4R. Thus, the
average power dissipated Pd is equal to the power supplied Psup; therefore the
average power recovered Prec = Psup−Pd = 0, so the energy recovery efficiency
on each cycle is zero also.

To summarize the results of this section, we found that, the energy transfer
efficiency of the square-wave driver is 1 at low frequencies, but approaches 0 in
inverse proportion to the frequency at high frequencies, meaning that the energy
dissipation noticeably worsens if we try to drive the load through a given voltage
swing much faster than a characteristic frequency of roughly fc = 0.1/RC, as we
can see by looking at figure 6. Meanwhile, the energy recovery efficiency of the
square-wave driver is always zero regardless of the frequency. Thus, a square-
wave driver cannot perform any energy recovery whatsoever, no matter how low
the switching frequency. The square wave therefore represents in a sense the
absolute worst case for the energy efficiency among clock-driven dynamic logics;
in terms of the achievable energy recovery, logic nodes driven by a square wave
are not being driven the least bit adiabatically, no matter how slowly the actual
charge transfer takes place due to the nonzero RC time constant. The root
cause is that the source voltage toggles between two extremal values in a time
that is small compared to RC; this fact by itself immediately and automatically
precludes us from achieving any amount of energy recovery.

The square wave having been dispensed with, we now proceed to analyze
some more favorable waveform shapes.

7 Linear ramp driver

Suppose now that instead of undergoing instantaneous steps between extremal
levels, the source voltage is vs(t) = Vs,min = 0 for all t < 0 and then begins
linearly ramping up at t = 0 with a slope of s; that is, for t ≥ 0, let

vs(t) = st. (98)

20



The differential equation (5) in this case is therefore a linear equation,

RC
dv

dt
= st− v, (99)

or, rearranged into a certain standard form,

dv

dt
+

1
RC

v =
s

RC
t. (100)

Its solution is therefore generated using a standard solution template as

v(t) =

∫
u(t) st

RC dt + K1

u(t)
(101)

for some constant K1, where

u(t) = exp
(∫

1
RC

dt

)
(102)

is the integrating factor. Integrating this, we find that

u(t) = et/RC+K2 (103)

so

v(t) =

∫
et/RC+K2 st

RC dt + K1

et/RC+K2
. (104)

The integral in the numerator of (104) evaluates as

s

RC

∫
tet/RC+K2 dt = s(t−RC)et/RC+K2 + K3 (105)

so letting K4 = K1 + K3, and K5 = K4e−K2 , (104) simplifies to

v(t) = s(t−RC) + K5e−t/RC . (106)

Since we know that v(t) = 0 for t = 0, this implies K5 = sRC, so (106) becomes

v(t) = s[t−RC(1− e−t/RC)]. (107)

Differentiating, the slope of the load voltage is

dv

dt
= s

(
1− e−t/RC

)
, (108)

and so the instantaneous current is

i(t) = C
dv

dt
= sC

(
1− e−t/RC

)
(109)
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and the instantaneous power dissipation is

pd(t) = [i(t)]2R (110)

= R(sC)2
(
1− e−t/RC

)2

(111)

= Cv2
s

RC

t2

(
1− 2e−t/RC + e−2t/RC

)
, (112)

or, in terms of εt = e−t/RC and the time-dependent energy coefficient cE(t) =
Cv2

s RC = Cs2t2RC,

pd(t) =
cE

t2
(1− 2εt + ε2t ) (113)

= Cs2RC(1− 2εt + ε2t ) (114)
= p∞(1− 2εt + ε2t ), (115)

where p∞ = s2RC2 = pd(∞) (since ε∞ = 0) is the limiting steady-state power
dissipation that would be asymptotically approached in the limit t → ∞. (Of
course, in practice the source voltage cannot really continue rising forever.)

The cumulative energy dissipation up through time t = τ , when vs(t) = sτ ,
is therefore

Ed(t < τ) =
∫ τ

t=0

pd(t) dt (116)

= p∞

∫ τ

t=0

(
1− 2e−t/RC + e−2t/RC

)
dt (117)

= p∞

[
t + 2RCεt − RC

2
ε2t

]τ

t=0

(118)

= p∞

{
τ −RC

[
2 (1− ετ )− 1

2
(
1− ε2τ

)]}
(119)

= Eτ

[
1− RC

τ

(
3
2
− 2ετ +

1
2
ε2τ

)]
. (120)

where we define Eτ = p∞τ . At time τ , the voltage across the resistor is

∆V (τ) = vs(τ)− v(τ) = i(t)R = sRC
(
1− e−τ/RC

)
= vs

RC

τ
(1− ετ ). (121)

If the linear source voltage ramp were to flatten out at time τ and remain flat
at the level Vs = vs(t) = sτ for all t ≥ τ , then the load voltage eventually goes
full-swing, V = Vs, and the remaining energy dissipated over times t > τ can be
derived using the classic constant-source dissipation for an initial voltage drop
of size ∆V (τ):

Ed(t > τ) =
1
2
C[∆V (τ)]2 (122)

=
1
2
C [sRC(1− ετ )]2 (123)

=
1
2
CV 2

(
RC

τ

)2

(1− ετ )2 . (124)
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Note also that since s = V/τ , we have that the energy Eτ that appears in
equation 120 can be written as

Eτ = p∞τ = Cs2RCτ = C
V 2

τ2
RCτ = CV 2 RC

τ
= cE/τ, (125)

where cE is called the energy coefficient cE = CV 2RC for the adiabatic charge
transfer. Thus, (124) can be written more simply as just

Ed(t > τ) =
1
2
Eτ

RC

τ
(1− ετ )2 (126)

=
1
2

cE

τ
(1− ετ )2 . (127)

Summing equations (120) and (126), the total energy dissipation for a ramp
that goes to a voltage V = Vs over time τ and then levels off is given by

Ed,tr = Ed(t < τ) + Ed(t > τ) (128)

= Eτ

[
1− RC

τ

(
3
2
− 2ετ +

1
2
ε2τ

)]
+

1
2
Eτ

RC

τ
(1− ετ )2 (129)

= Eτ

{
1 +

RC

τ

[
−

(
3
2
− 2ετ +

1
2
ε2τ

)
+

(
1
2
− ετ +

1
2
ε2τ

)]}
(130)

= Eτ

[
1 +

RC

τ
(ετ − 1)

]
(131)

= CV 2r
[
1 + r

(
e−1/r − 1

)]
(132)

where in the last line we have substituted the rapidity r = RC/τ of the voltage
source’s transition interval τ relative to the tc = RC time constant of the circuit.
See figure 8 for a graph of this function. As we can see from the graph, expres-
sion 132 approaches CV 2/2 as the rapidity r → ∞, which is to be expected
since in that limit τ → ∞ and the ramp approaches the instantaneous rise of
the step function. To confirm this limit analytically, we’ll let ε = 1/r = τ/RC
be the rise time in units of tc = RC, and utilize the Taylor series expansion,

e−ε =
∞∑

n=0

(−1)nεn

n!
= 1− ε +

ε2

2
− ε3

6
+

ε4

24
− . . . . (133)

Thus we find that

Ed,tr

CV 2
= r

[
1 + r

(
e−1/r − 1

)]
(134)

=
1
ε

[
1 +

1
ε

(
e−ε − 1

)]
(135)

=
1
ε

{
1 +

1
ε

[(
1− ε +

ε2

2
− ε3

6
+

ε4

24
− . . .

)
− 1

]}
(136)

=
1
ε

[
1 +

1
ε

(
−ε +

ε2

2
− ε3

6
+

ε4

24
− . . .

)]
(137)
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Figure 7: Energy dissipated per load transition as a multiple of energy trans-
ferred (reciprocal of ηE,tfr) as a function of the rapidity factor r = RC/τ for a
linear ramp driver with fixed source voltage swing V = Vs and rise time τ .
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=
1
ε

[
1 +

(
−1 +

ε

2
− ε2

6
+

ε3

24
− . . .

)]
(138)

=
1
ε

(
ε

2
− ε2

6
+

ε3

24
− . . .

)
(139)

=
1
2
− ε

6
+

ε2

24
− . . . . (140)

So, as the rise time τ goes to zero, we have that Ed,tr goes to

lim
ε→0

Ed,tr =
1
2
CV 2 (141)

as expected. The other limit of (132) can be found even more easily by observing
that as r → 0 (τ →∞),

Ed,tr

CV 2
= r

[
1 + r

(
e−1/r − 1

)]
(142)

→ r
[
1 + r

(
e−∞ − 1

)]
(143)

= r [1 + r (0− 1)] (144)
= r − r2 (145)
→ r (146)
→ 0. (147)

Thus, the energy dissipated approaches 0 as the rise time approaches infinity,
as expected for an adiabatic charge transfer.

The exact result (132) for a real voltage ramp may be contrasted with
the more idealized situation where one imagines that there is an exactly con-
stant current of i = CV/τ (provided by some unspecified current source) pass-
ing through the resistor for a time τ , in which case the power is a constant
CV 2RC/τ2 = cE/τ2 and the energy dissipated is exactly Eτ = cE/τ . Equa-
tion (132) is not precisely equal to this ideal because the load does not exactly
follow the ramp; the slope of the load voltage initially lags, and then later grad-
ually levels off after the source voltage has flattened. These variations from the
linear-ramp ideal result in the additional correction terms appearing in eq. 132.

Note, however, that for small values of the rapidity r = RC/τ ¿ 1, that is
when the charging time τ À RC, the value of ετ = e−1/r converges exponentially
rapidly towards zero as r → 0, and so very rapidly r

[
1 + r

(
e−1/r − 1

)] →
r(1 − r) which approaches r for small r, so that in this regime (132) to first
order approaches simply

Ed → CV 2 RC

τ
=

cE

τ
, (148)

which is the classic formula for adiabatic charging with constant current over
time τ .

The energy transfer efficiency of the ideal adiabatic charge transfer would
be

ηE,tfr(ideal) =
CV 2/2
CV 2 RC

τ

=
τ

2RC
=

1
2r

, (149)
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thus decreasing in inverse proportion to the rapidity of the voltage rise; as the
rapidity r → 0, we have ηE,tfr → ηE,tfr(ideal) = τ

2RC → ∞. Thus the energy
transfer efficiency of the voltage ramp approaches infinity in proportion to the
rise time τ of the source, which is the expected slow-speed behavior for an
adiabatic charge transfer.

This idealized formula (149) would also seem to suggest that the energy
transfer efficiency would become indefinitely small as the rapidity increases;
however by examining the exact dissipation (132) and substituting (140) we can
see that the exact energy transfer efficiency is

ηE,tfr =
CV 2/2

CV 2r
[
1 + r

(
e−1/r − 1

)] (150)

=
1

2r
[
1 + r

(
e−1/r − 1

)] (151)

=
1

2
(

1
2 − ε

6 + ε2

24 − . . .
) (152)

=
1

1− ε
3 + ε2

12 − . . .
, (153)

which approaches 1 (from above) as ε → 0; thus we can see that the energy
transfer efficiency is in reality at worst 1. This also follows even more simply
from eq. 141.

As for the energy recovery efficiency ηE,rec, this is equally easy to compute.
Since V = Vs in this case, Vgap = 0 and so Egap = 0. Thus, Esup = Etfr + Ed,tr

and Erec = Etfr − Ed,tr. So the energy recovery efficiency is just

ηE,rec =
Erec

Esup
(154)

=
Etfr −Ed,tr

Etfr + Ed,tr
(155)

=
1
2CV 2 − CV 2r

[
1 + r

(
e−1/r − 1

)]
1
2CV 2 + CV 2r

[
1 + r

(
e−1/r − 1

)] (156)

=
1
2CV 2 − CV 2

(
1
2 − ε

6 + ε2

24 − . . .
)

1
2CV 2 + CV 2

(
1
2 − ε

6 + ε2

24 − . . .
) (157)

=
1
2 −

(
1
2 − ε

6 + ε2

24 − . . .
)

1
2 +

(
1
2 − ε

6 + ε2

24 − . . .
) (158)

=
ε
6 − ε2

24 + . . .

1− ε
6 + ε2

24 − . . .
. (159)

As ε → 0, this expression approaches ε/6 = τ/6RC, so we see that for short
rise times, the fraction of energy that’s recovered is the same as the rise time
expressed as a fraction of 6tc = 6RC, or six RC time constants.
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Figure 8: Energy recovery efficiency ηE,rec as a function of the rapidity factor
r = RC/τ for a linear ramp driver with fixed source and load voltage swing
V = Vs and rise time τ .

Of course, in the slow charging limit τ →∞ (ε), we saw earlier that Ed,tr →
0, so in that limit

ηE,rec =
Etfr − Ed,tr

Etfr + Ed,tr
(160)

→ Etfr − 0
Etfr + 0

(161)

= 1, (162)

and thus the energy recovery efficiency approaches 100% in this case.

8 Trapezoidal waveforms

Figure 9 shows example source and load waveforms for a trapezoidal source
waveform. The source wave shape is characterized by two parameters: τs,tr is
the rise (or fall) time of the source waveform, which τcyc = 1/fcyc is the total
cycle period for a wave with cycle

[This section still needs to be written.]
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Figure 9: Source and load waveforms for a trapezoidal-wave driver with clock
period τcyc ≈ 5.26RC and rise time τs,tr = τcyc/4 =≈ 1.32RC. The time and
voltage intervals are scale-free, in arbitrary units.
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9 Sinusoidal drivers

[This section still needs to be cleaned up.]
In this section, for greater simplicity of the formulas we assume a voltage

reference based on the average signal level Vavg = 0. Consider now an ideal
sinusoidal voltage source

vs = Vavg + Vsa sin(ωt) = Vsa sin(ωt), (163)

where Vsa is the source voltage amplitude and ω = 2πf is the angular frequency
of the source.

Plugging this into our general differential equation (5), we have that

RC
dv

dt
= Vsa sin ωt− v. (164)

The solution to eq. 164 (derived in appendix B) is

v(t) =
Vsa√

(RCω)2 + 1
sin[ωt− tan−1(RCω)], (165)

where notice that the signal at the load has been taken down in amplitude by the
damping factor d =

√
(RCω)2 + 1 > 1 and lags in phase by θ = tan−1(RCω).

Both terms depend on the critical dimensionless speed parameter σ = RCω =
tc/tr where tc = RC is the time constant (the e-folding time for the exponential
decay) for charging the load C through resistance R, while tr = tcyc/2π is the
time for the source signal to rotate 1 radian, where tcyc = 1/f = 2π/ω is the
clock cycle period. We might call σ the “quickness” of the clock oscillation,
judged relative to the circuit’s natural transition time of tc.

[Continue fixing voltage notation below.]
Now, plugging (165) back into (4), the voltage drop across the resistor is

vs − v =
Vsaσ√
σ2 + 1

cos(ωt− tan−1 σ), (166)

so by (3) the current is

i =
CVsaω√
σ2 + 1

cos(ωt− tan−1 σ). (167)

Using p = iv, the instantaneous power dissipated in the resistor is then

p =
CV 2

saRCω2

σ2 + 1
cos2(ωt− tan−1 σ). (168)

Over one complete cycle of length tcyc = 2π/ω, the energy dissipated is thus

Ed,cyc =
∫ 2π/ω

t=0

p dt, (169)
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=
CV 2

saRCω2

σ2 + 1

∫ 2π/ω

t=0

cos2(ωt− tan−1 σ) dt (170)

=
CV 2

saRCω2

σ2 + 1

∫ 2π

θ=0

cos2 θ
dθ

ω
(171)

= CV 2
sa

πσ

σ2 + 1
(172)

=
π

σ + σ−1
CV 2

sa (173)

where in (171) we have temporarily substituted θ = ωt and removed the phase
lag, which is irrelevant to the full-cycle integration; the integral then evaluates
to π/ω since by the symmetry between sin and cos it is exactly half of

∫ 2π

0

(cos2 θ + sin2 θ)
dθ

ω
=

∫ 2π

0

1
dθ

ω
=

2π

ω
. (174)

Now, the most important thing for us to note about eq. 173 is its behavior
for small quickness σ → 0, that is for slow charging, when the radial time
tr = tcyc/2π À RC. Just as with the classical case of adiabatic charging with
a linear ramp, note that here too, as the signal rise time increases and the
clock frequency decreases, the energy dissipated per cycle decreases roughly
proportionately, since σ/(σ2 + 1) → σ as σ → 0.

Note also that for very large quickness σ → ∞, it is also the case that
Ed,cyc → 0, since σ/(σ2 + 1) → 1/σ as σ → ∞. However, in this case, the low
dissipation can be attributed to the fact that the load voltage does not have
time to change very much in a cycle, due to the substantial size of the damping
factor d =

√
σ2 + 1, which approaches σ as σ →∞.

The maximum dissipation per cycle is Ed,cyc = π
2 CV 2

sa which occurs when
σ = 1, that is when ω = 1/RC. This is the case of “least adiabatic” charging,
but in fact dissipates only π/8 ≈ 40% as much energy as the 4CV 2

sa that would
be dissipated by a square wave taking the load through the identical range of
voltages [−Vsa, +Vsa].

In general, we can characterize the degree of adiabaticity of a given pro-
cess as the ratio between the energy transferred Etfr and the energy dissipated
Ediss. For the charging and discharging of a load between −Vsa and +Vsa,
the total amount of electrostatic energy moved onto and off of the load is
Etfr = 1

2C(2Vsa)2 = 2CV 2
sa, whereas with a sinusoidal driver we saw that the

actual dissipation in a cycle was only Ed,cyc = CV 2
saπσ/(σ2 +1). Therefore, the

degree of adiabaticity A of the complete sinusoidal charge/discharge process is

A =
2(σ2 + 1)

πσ
=

2
π

(σ + σ−1), (175)

which has a minimum of 4/π = 1.27 when σ = 1. Or, putting things another
way, we can define the energy recovery efficiency [fix] ηE,rec = 1 − 1/A =
(Etfr − Ediss)/Etfr = Erec which is the ratio between the amount of energy
recovered (i.e., not dissipated) Erec = Etfr − Ediss and the amount of energy
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transferred. Phrased this way, the efficiency of the sinusoidal charge/discharge
cycle is

η = 1− π

2(σ + σ−1)
(176)

whose minimum is
η = 1− π/4 ≈ 21.46% (177)

when σ = 1, whereas the efficiency approaches 100% as σ → 0, with the distance
from 100% in that limit being proportional to σ since the expression (176) for η
approaches 1−πσ/2. Note, in contrast, that the energy efficiency of a standard
abrupt (square wave) charge/discharge process always approaches 0% whenever
the load voltage range approaches full-swing, since the energy delivered from the
constant-voltage source after the sharp rising clock edge is CV 2, and exactly
this much energy is dissipated upon charging and then discharging the load
(half of it or 1

2CV 2 after each clock edge). Whereas for the adiabatic sinusoidal
driver, the case σ → 0, d → 1 where the load voltage range approaches full swing
(and also with phase lag θ approaching zero) is also the same limit in which the
energy efficiency of the charge transfer approaches 100%.

We can thus see that in all cases, sinusoidal charging dissipates less energy
per complete charge-discharge cycle than sharp-edged square-wave charging,
dissipating at most about 21% of the energy transferred, and at best nearly 0%
when the clock period tcyc is large compared to 2πRC, since in this limit, as
σ = RC/tcyc → 0, the fraction of the capacitor charging energy that is actually
dissipated on each cycle approaches πσ/2, that is, it goes down in proportion to
the quickness of the clock transitions, as would be expected for an asymptotically
adiabatic process.

10 Conclusion

[Summarize results and suggest directions for future work, including
more accurate modeling of particular resonator architectures, logic
devices, and distributed loads.]

Appendix A:
Energy transferred and the need for the gap en-
ergy

This appendix gives detailed derivations showing why, with our definitions, the
energy Etfr transferred onto the load is always CV 2/2, and why the gap energy
Egap arises in the relation between the energy supplied and energy transferred.

Although it may not be immediately apparent from the defining expression
(22), the energy transferred Etfr is actually a state function that depends only
on the load capacitance C and the total load voltage swing V , and not on
the detailed current/voltage trajectories v(t), i(t) at all. To see this, we need
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merely expand the charge increment dq in terms of the capacitance using (1),
and simplify:

Etfr =
∫ τ1

t=τ0

detfr(t) (178)

=
∫ τ1

t=τ0

[v(t)− v(τ0)] dq(t) (179)

=
∫ τ1

t=τ0

[v(t)− v(τ0)] C dv(t) (180)

= C

[∫ τ1

t=τ0

v(t) dv(t)
]
− Cv(τ0)

∫ τ1

t=τ0

dv(t) (181)

= C

{
1
2

[v(t)]2
}τ1

t=τ0

− Cv(τ0) [v(t)]τ1
t=τ0

(182)

=
1
2
C

{
[v(τ0)]

2 − [v(τ1)]
2
}
− Cv(τ0) [v(τ1)− v(τ0)] (183)

=
1
2
C [v(τ1)]

2 − 1
2
C [v(τ0)]

2 − Cv(τ0)v(τ1) + C [v(τ0)]
2 (184)

=
1
2
C [v(τ1)]

2 − Cv(τ0)v(τ1) +
1
2
C [v(τ0)]

2 (185)

=
1
2
C

{
[v(τ1)]

2 − 2Cv(τ0)v(τ1) + [v(τ0)]
2
}

(186)

=
1
2
C [v(τ1)− v(τ0)]

2 (187)

=
1
2
CV 2. (188)

Another, slightly less direct derivation involves integrating over the charge trans-
ferred to the load, rather than the voltage:

Etfr =
∫ τ1

t=τ0

detfr(t) (189)

=
∫ τ1

t=τ0

[v(t)− v(τ0)] dq(t) (190)

=
∫ τ1

t=τ0

[∫ t

t′=τ0

dv(t′)
]

dq(t) (191)

=
∫ τ1

t=τ0

[∫ t

t′=τ0

dq(t′)
C

]
dq(t) (192)

=
1
C

∫ τ1

t=τ0

[∫ t

t′=τ0

dq(t′)
]

dq(t) (193)

=
1
C

∫ τ1

t=τ0

[q(t′)]tt′=τ0
dq(t) (194)

=
1
C

∫ τ1

t=τ0

[q(t)− q(τ0)] dq(t) (195)
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=
1
C

{[∫ τ1

t=τ0

q(t) dq(t)
]
−

∫ τ1

t=τ0

q(τ0) dq(t)
}

(196)

=
1
C

{[
1
2
[q(t)]2

]τ1

t=τ0

− q(τ0) [q(t)]τ1
t=τ0

}
(197)

=
1
C

{
1
2

[
[q(τ1)]2 − [q(τ0)]2

]− q(τ0) [q(τ1)− q(τ0)]
}

(198)

=
1

2C

{
[q(τ1)]2 − [q(τ0)]2 − 2q(τ0)q(τ1) + 2[q(τ0)]2

}
(199)

=
1

2C

{
[q(τ1)]2 − 2q(τ0)q(τ1) + [q(τ0)]2

}
(200)

=
1

2C
[q(τ1)− q(τ0)]

2 (201)

=
1

2C
Q2

tfr (202)

=
1

2C
(CV )2 (203)

=
1
2
CV 2. (204)

In a rather more abbreviated version of this derivation, we simplify things by
redefining q to be the instantaneous quantity of charge accumulated on the
capacitor relative to whatever charge it was storing at the initial time τ0, when
v(τ0) = Vmin, so that we have q(τ0) = 0, and by then changing integration
variables to integrate directly over the accumulated charge q rather than the
time t, so that for any t we define v(q(t)) = v(t):

Etfr =
∫

dEtfr (205)

=
∫ Qtfr

q=0

[v(q)− v(0)] dq (206)

=
∫ Qtfr

q=0

q

C
dq (207)

=
Q2

tfr

2C
=

1
2
CV 2, (208)

where we have made use of the fact that, in this new setting, v(q)−v(0) = q/C,
where both voltages here are functions of the accumulated charge.

To see more clearly why the gap energy Egap arises, suppose that instead of
defining the incremental energy transferred detfr based on the voltage reference
Vmin, we had instead used some other voltage reference, such as Vs,min. Then
the energy transferred onto the capacitance in the process of charging it from
voltage Vmin to voltage Vmax would be, under this alternate definition,

E′
tfr = etfr(τ1)− etfr(τ0) (209)
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=
1
2
C(Vmax − Vs,min)2 − 1

2
C(Vmin − Vs,min)2 (210)

=
1
2
C

[(
V 2

max − 2VmaxVs,min + V 2
s,min

)− (
V 2

min − 2VminVs,min + V 2
s,min

)]
(211)

=
1
2
C

[
V 2

max − 2VmaxVs,min − V 2
min + 2VminVs,min

]
(212)

=
1
2
C

[
V 2

max − 2Vs,min(Vmax − Vmin)− V 2
min

]
(213)

=
1
2
C

[
V 2

max − 2Vs,minV − V 2
min

]
. (214)

The difference between this and our original definition of Etfr would be:

E′
tfr − Etfr =

1
2
C

[
V 2

max − 2Vs,minV − V 2
min

]− 1
2
CV 2 (215)

=
1
2
C

[
V 2

max − 2Vs,minV − V 2
min − (Vmax − Vmin)2

]
(216)

=
1
2
C

[
V 2

max − 2Vs,minV − V 2
min − (V 2

max − 2VmaxVmin + V 2
min)

]
(217)

=
1
2
C

[−2Vs,minV + 2VmaxVmin − 2V 2
min

]
(218)

= C
[−Vs,minV + VmaxVmin − V 2

min

]
(219)

= C
[−Vs,minVmax + Vs,minVmin + VmaxVmin − V 2

min

]
(220)

= C [Vmax(Vmin − Vs,min)− Vmin(Vmin − Vs,min)] (221)
= C (VmaxVgap − VminVgap) (222)
= C (Vmax − Vmin) Vgap (223)
= CV Vgap (224)
= QtfrVgap (225)
= Egap. (226)

Appendix B:
Solution of differential equation from §9
This appendix (which may or may not be useful to include in a published paper)
shows how to solve the differential equation (164) from first principles, without
delving into formulations in terms of complex impedances which may be non-
intuitive for some readers.

We know from our general background knowledge that a circuit composed
of linear elements (such as resistors, capacitors, and inductors) and driven by
constant-frequency sinusoidal sources will always attain what is known as an AC
steady state. Thus, the solution to (164) must also be a sinusoid of constant
amplitude, frequency, and phase shift; furthermore, it must have the same aver-
age (DC) voltage level as the source, since with no net DC current the resistor
cannot maintain a constant DC voltage drop across it.
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Thus, we know that the solution to (164) must be of the general form

v(t) = Va sin(ωLt + θL) (227)

where Va is the amplitude of the voltage swing (from −Va to +Va) of the signal
on the load node, ωL is the angular frequency of this signal (which we will see
must be the same as the driving frequency ω), and θL is the phase of the load
voltage relative to the driving voltage at t = 0 (and also at all other times, since
ωL = ω).

Starting from (227), we can take its derivative

dv

dt
= VaωL cos(ωLt + θL) (228)

which we can then plug into the left side of (164), along with (227) itself in
place of v on the right, to get:

VaωL cos(ωLt + θL) =
Vsa sin ωt− Va sin(ωL + θL)

RC
. (229)

We now have an ordinary (no longer differential) equation which we need
merely solve in order to find the unknown parameters Va, ωL, and θL as functions
of the known parameters Vsa, ω, and RC. Since the equation must hold true for
all values of t ∈ (−∞, +∞), this will allow us to determine all three unknown
parameters using just this single equation.

In what follows, we often substitute tc = RC for conciseness. Multiplying
both sides of (229) by tc and gathering all of the terms containing unknowns on
the left side of the equation, we get

tcVaωL cos(ωLt + θL) + Va sin(ωLt + θL) = Vsa sin ωt. (230)

Factoring out Va from the left side,

Va [tcωL cos(ωLt + θL) + sin(ωLt + θL)] = Vsa sin ωt. (231)

To match this up with the right-hand side, we would prefer if the left-hand
side was expressed as a single sinusoidal function of t. Fortunately, the term
in brackets is of the form a cos x + sin x which reduces to a single sinusoidal
function. In other words, we can always write

a cosx + sin x = b sin(x + φ) (232)

where b and φ are both closed-form functions of a. To see this, note that
equation (232) is merely the real part of

aei(x+π/2) + eix = bei(x+φ). (233)

Factoring the exponentials,

aeixeiπ/2 + eix = beixeiφ, (234)
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and we can divide out eix, leaving

ai + 1 = beiφ. (235)

This equation makes it obvious that

φ = tan−1 a, (236)

b =
√

a2 + 1, (237)

so the desired identity is

a cos x + sin x =
√

a2 + 1 sin(x + tan−1 a). (238)

This is exactly the sort of thing we need to simplify the left-hand side of equation
(231). The square root and arctangent functions do not present a problem
since those expressions are just constants (not functions of x, or in our case t).
Applying (238) to (231), we get

Va

√
(tcωL)2 + 1 sin

[
ωLt + θL + tan−1(tcωL)

]
= Vsa sin ωt. (239)

Since tcωL appears twice, we begin using σ in place of it:

Va

√
σ2 + 1 sin(ωLt + θL + tan−1 σ) = Vsa sin ωt. (240)

Now, an equation between two sinusoidal functions of t can only hold true for
all values of t if the frequencies, amplitudes, and phases of these two functions
are all identical. Thus from (240) we obtain the three equations:

ωL = ω (241)

Va

√
σ2 + 1 = Vsa, (242)

θL + tan−1 σ = 0. (243)

Solving for Va and θL, we have

Va =
Vsa√
σ2 + 1

(244)

θL = − tan−1 σ. (245)

At this point, we observe that the voltage swing on the load is taken down
by the damping divisor d =

√
σ2 + 1, and that the load incurs a phase lag of

θ = −θL = tan−1 σ. Plugging the equations for Va and θL back into (227),
we finally have that the unique real solution to the differential equation (164),
modulo physically meaningless shifts of ±2πn in the phase lag θ, is

v(t) =
Vsa√
σ2 + 1

sin(ω − tan−1 σ). (246)
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