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1. INTRODUCTION

This paper deals with reversible models of computation, which differ from con-
ventional models in that all operations in a reversible computation must be (locally)
invertible. Some discussion of the background and motivation for such models is
warranted, for the benefit of readers who may be unfamiliar with them.

Importance of energy dissipation limits for future computing. Over the history
of computing, shrinking bit-device (e.g., transistor) sizes have resulted in an energy
dissipation per bit-operation that has decreased roughly in proportion to the ever-
increasing rates of bit-operations achievable in a machine of given cost. As a result,
total power dissipation is not overwhelmingly greater today for a machine of given
cost than it was in the early days of computing, even though the computational
power of machines has increased by many orders of magnitude over the same period.
(E.g., Compare today’s order-100 Watt, 1 GIPS desktop computers with order-10
Watt, 1 IPS hand-cranked mechanical calculators of a hundred years ago.) So,
although power requirements have always been relevant to computer performance,
they have never been the overwhelmingly dominant limiting factor—the total cost
of the energy needed to run a computer over its operational lifetime has never been
much greater than the cost of the machine itself.

However, in the future this situation could change, if continuing improvements
in manufacturing techniques, such as nano-mechanical assembly [1] or molecular
self-assembly result in manufacturing costs per bit-device continuing to decrease
even after fundamental thermodynamic or technological lower limits on bit-energies
have been reached, and if techniques that recycle bit energies are not applied. The
Moore’s law trend-line (see fig. 1) for bit energies reaches the absolute thermody-
namic minimum of about kg7 = 4x10~2! J (for room-temperature operation) by
around the year 2035, so bit energies must start to level off at that time, if not ear-
lier. Decreasing temperature would permit lower bit-energies, but this would not
by itself reduce total system power dissipation when the cooling system is included,
even if an ideal Carnot-cycle refrigerator is used.

So, unless manufacturing costs start to level off at the same time or earlier, or the
cost of operation of power and heavy-duty cooling systems decreases radically, we
may face the problem that although we might be able to afford to build nanocom-
puters with ever-increasing numbers of bit-devices, we might not be able to operate
them for long at anywhere close to their peak performance. This problem has been
pointed out before by nanotechnology visionaries Drexler, Merkle, Hall, and others
[1, 2, 3].
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FIG. 1. This graph shows the CV?2/2 energy required to charge the gate of a minimum-
sized transistor, computed from figures for power supply voltage, minimum transistor length, and
gate oxide thickness listed in the 1994, 1997, and 1999 editions of the International Technology
Roadmap for Semiconductors (formerly the National Semiconductor Technology Roadmap). Val-
ues for both high-performance and low-power design scenarios are shown. The 1999 roadmap spec-
ifies these quantities up through the year 2014. The trendline shown extrapolates the roadmap’s
trends, but the roadmap has itself historically been slightly more conservative than the techno-
logical reality of the steady Moore’s Law trends which have held sway for more than 40 years.

Min transistor switching energy, kTs
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Let us define the power premium P of a system to mean the ratio given by the
lifetime cost of operation of a machine’s power and cooling systems, divided by
the cost of the computing hardware itself. Note that the power premium could
potentially be much greater than 1 even today in specialized applications such as
mobile computing (where there is a real, but difficult to quantify, added cost for
power in the form of inconvenience to the user of carrying around heavy spare
batteries) and space-borne systems (where the weight of solar panels and radiators
incurs a high launch cost). But, as various bit-energy limits come into play in future
decades, power premiums can be expected to increase for a wider range of computing
systems, if cheaper manufacturing becomes available. Whenever P >> 1, it can make
sense to change the system design in ways that incur increased manufacturing
costs in exchange for reduced power requirements, if as the sum of the system’s
manufacture and operation costs is thereby reduced.

Furthermore, under a reasonable set of physical assumptions (such as bounded
heat flow density in the cooling system) one can show [4, 5, 6] that for a broad class
of parallel computations that require frequent intercommunication between pro-
cessing elements, asymptotically reducing energy dissipation per operation enables
strictly superior asymptotic performance even if the cost of energy itself is negli-
gible, since reducing heat flow enables packing devices more densely, with shorter
round-trip communication delays.

Adiabatic computing techniques. For any given level of bit energies, the only
way to avoid dissipating roughly one bit-energy with each bit-operation is to use
adiabatic (i.e., asymptotically thermodynamically reversible) physical mechanisms
to conduct the bit-operation. It is a consequence of the second law of thermody-
namics that such mechanisms are capable of performing only logically reversible
(i.e., bijective) transformations of a system’s digital state [7, 8, 9]. Fortunately,
it turns out that reversible operations are still computationally universal. Several
fully-reversible universal processors have already been built [10, 11, 12].

By how large a factor can adiabatic/reversible techniques reduce the fraction
of bit energies which is dissipated in practice? The precise answer for any given
bit-device technology is, as of this writing, still unclear (although we are working
on it). There are several independent limiting factors, including the rate of energy
leakage of the bit-devices used, and the maximum efficiency (the @ quality factor)
of the energy-recovering power supplies needed to drive adiabatic circuits.

In addition to these technological factors, there is also an important economic
limiting factor. An adiabatic reduction in the energy dissipated per operation by
a factor of F requires slowing devices down by a factor of (at least) F' as well, so
that F' times as many devices are required to achieve a given level of raw processing
performance. That is, the raw hardware efficiency or space-time efficiency (in phys-
ical units) of an adiabatic machine decreases in rough proportion to its increase in
energy efficiency. As a result, adiabatics cannot cost-effectively reduce power dis-
sipation by a factor greater than the power premium P, because this would raise
the cost of the hardware to be greater than the original cost of the power, thereby
nullifying any economic benefit of the decreased power consumption.

We do not yet know exactly which of these various limiting factors will dominate
in a real adiabatic computing system implementation, because we do not yet have
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a sufficiently detailed adiabatic system design, including optimized logic and power
supply designs, and accurate models of power supply dissipation and device leakage.
But so far, we know of no fundamental reasons why these technological lower bounds
on dissipation per bit-operation can not be reduced arbitrarily through “simple”
engineering improvements, so it seems plausible that eventually, as power premiums
increase and greater and greater degrees of reversibility can be implemented, the
hardware efficiency of larger and larger reversible computations will come to be a
dominant concern.

Complezity of reversible computations. It turns out that there is an impor-
tant complexity-theoretic impact on this hardware efficiency issue. Beyond the
immediate physical slowdown by F', the hardware efficiency of an adiabatic sys-
tem will in general be further decreased as a result of the possibly greater algo-
rithmic space-time cost (that is, bits of state required, times number of parallel
state-update steps) for the reversible implementation of a specific computation or
sub-computation within the machine. Many specific computations have reversible
algorithms that incur no greater space-time cost than their traditional irreversible
equivalents; some examples are mentioned in §9.5 of [6]. But what about other
computations? In 1989, Bennett [13] proposed a general irreversible-to-reversible
conversion technique that incurs only a modest polynomial increase in the spacetime
cost for any computation. Although originally described as a software algorithm,
it can be straightforwardly mapped to an equivalent logic-circuit construction.

Knowing of this polynomial reduction would be enough to satisfy many com-
plexity theorists, but real-world concerns depend critically on such minutae as the
degree of a polynomial, or the size of its constant coeflicient. It could, for example,
make the difference between adiabatic techniques yielding significant improvements
in cost-efficiency in future generations of computing technology (or even in near-
term power-limited applications), or, in contrast, yielding no improvements ever,
depending on the absolute hardware efficiency of substantially reversible versions of
the circuit algorithms required to implement a reasonable general-purpose micro-
processor. As a result, the outcome of a more detailed study of reversible complexity
theory is vitally relevant to planning future computing technologies.

Therefore, the question naturally arises as to whether Bennett’s algorithm is the
asymptotically optimal one for conversion of arbitrary irreversible algorithms to re-
versible ones, or whether a better algorithm (with still-reasonable constant factors)
might be found. If the latter were to occur, the benefits of reversible computing
might be much greater, and be realized much sooner, than would otherwise be the
case.

Old and new complezity conjectures. Li and Vitanyi conjectured in 1996 [14]
that Bennett’s algorithm was optimal, in terms of space complexity. Lange et al.
disproved this conjecture in [15], but with a construction that incurred exponential
increases in time complexity. However, we hypothesize that Bennett’s algorithm
remains optimal under the metric of space-time complexity, or space complexity
multiplied by time complexity for a given algorithm, which is, anyway, the complex-
ity measure that most directly relates to the goal of maximizing hardware efficiency
(throughput per unit cost) in computer engineering,.
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Although our new conjecture is not yet proven, in this paper we provide suggestive
evidence in support of it, in the form of an oracle construction that separates re-
versible and irreversible space-time complexity classes, together with lower bounds
which are met by Bennett’s algorithm.

Relevance of our relativized proof. We are well aware that relativized construc-
tions have no general validity in drawing conclusions about non-relativized com-
plexity classes, but we felt that presenting our construction might still be useful,
for several reasons:

1. Our oracle is designed to be as realistic as possible: Although technically it
is infeasible to physically realize exactly as defined, it is at least computable in
principle. The oracle calls are also straightforwardly undo-able, as would be any
real primitive operation in a reversible machine.

2. The structures of the oracle, and of the language that separates the classes, are
designed to model a realistic type of real-world computation: Namely, the iteration
of an arbitrary one-way function, such as a cryptographic hash function. We con-
jecture that if one-way functions do exist, then such iteration is a non-relativized
example of a computational problem for which a spacetime-optimal reversible algo-
rithm indeed results from Bennett’s construction, and therefore our lower bounds
still hold without the oracle. It is conceivable that some of the ideas or techniques
used in our proof could be applied to this one-way-function iteration scenario, to
prove a separation of the reversible and irreversible classes without resorting to an
oracle, although we have not yet seen how to do so. But, perhaps someone with
more familiarity with the theory of one-way functions would see the trick. There-
fore, we thought it worthwhile to at least present this result to the community.

3. Finally, we feel that this entire field, which we call “physical computing the-
ory,” of working with new theoretical models of computation that are informed by
increasingly-important physical constraints such as the energy cost of bit erasure,
is deserving of more attention and we wish to help raise its visibility within the
computer science community. The increasing need for models of computation that
relate more closely to physics, and some proposed examples of such models, are
discussed in more detail in [5] and in chapters 2, 5, and 6 of [6].

The results of this paper were first derived by the authors Frank and Ammer in
1997 at MIT, and were circulated in preprint form within the reversible computing
community at that time.

2. TABLE OF SYMBOLS

The following table gives the meanings of most symbols used in this document.
The third column gives the page number of the first appearance (often the defini-
tion) of the given symbol in the text. Please note that a symbol that has different
meanings in different contexts within this paper correspondingly has multiple en-
tries in this table.

See also table 2 on page 20 for the definitions of our order-of-growth notations.
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Sym. Meaning p-
A A particular self-reversible oracle that separates two given cor- 17
responding TISP and RTISP complexity classes. Modeled as
a function A : C — C, where A = A~1.
a In §6, a bit-string of length b used as an address to reference 33
the memory I.
B A particular permutation oracle that equates two given corre- 17
sponding TISP and RTISP complexity classes.
b Some arbitrary bit-string. 19
b In §6, a word length b > 0. Also, for n = b2°, b(n) = b. 33
C Transistor gate capacitance. 3
C: Machine configuration of machine M; resulting after = steps of 27
execution on input 0”.
c Centi-, 1072. 7
c In §6, a presumed constant such that reversible machine M de- 33
cides L in no more than ¢ + ¢S space and ¢ + ¢T time.
C; The constant ¢; € N appearing in the ith pair (M;,¢;) in an 24
enumeration of all pairs of reversible oracle-querying machines
& such constants.
C The space of possible oracle tape contents. 18
¢ A variable standing for an arbitrary complexity class. 17
D For a given time point 7, a direction (“forwards” or “backwards”) 30
in which queries lie that cause most of the nodes pebbled at 7
to be pebbled.
d A description; a bit string that describes another bit string un- 19
der some description system s.
€ An arbitrarily small positive real number; e € R; ¢ > 0; e — 0. 15
F Factor reduction in energy dissipation per operation from adi- 4
abatics.
F A set of functions f having a particular asymptotic relation (@,
0, Q, w, o)
f, 9 In localized contexts, these are often complexity functions f,g: 20
N — N mapping input lengths (in bits) to some quantity that
is roughly proportional to a complexity measure (e.g., space or
time) for worst-case inputs of the given length.
f In our main proof, f is a partial successor function f: {0,1}* —» 22
{0,1}* defining a directed graph on bit-strings that is repre-
sented by our graph oracle A.
g Gram; unit of mass originally defined as the mass of 1 cm® of 8
water.
h From given time point 7, how many nodes are pebbled because 30
of queries in direction D?
I A random-access, reversible, read-only memory of 2’ b-bit 33
words.
IPS One instruction per second; measure of performance.
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Sym. Meaning p-

i Except in localized contexts, 4 in this paper means the index 24
of one of the possible pairs (M;,c¢;) of reversible machines &
constants.

i In §6, a node index, 1 < i < t. 34

J Joule; the SI unit of energy, defined as 1 N - m. 2

j Index of a query string, 1 < j <'t. 25

k Kilo-, 103. 8

k Number of sublevel repetitions in Bennett’s 1989 algorithm [13]. 15

k Index of a query string, 1 < k < t. 26

k Largest number of pebbles which is insufficient to pebble 2% 27
nodes in Bennett’s pebble game.

kr Boltzmann’s constant, ~1.4 x 10723 J/K. 2

L For given S, T, and A, the separator language L(A) shows 23
RTISP(T,S)4 2 TISP(T,S)%; it belongs to the latter class
but not the former.

L In §6, for given S, T, this is the (non-relativized) language show- 33
ing that RTISP(T,S) 2 TISP(T,S).

l A natural number giving the length of a bit-string. 19
M In §6, this is an (oracle-less) reversible machine presumed to 33
decide the language L within ¢ + ¢S space and ¢ + ¢T time.

f The reversible oracle-querying machine in the ith pair (M;,¢;) 24
of an enumeration of all pairs of such machines and constant
factors.

m Meter; unit of length originally defined as i x 1077 of Earth’s 8
circumference.
N Newton; the SI unit of force, defined as 1 m - kg/s?. 8
N The set of the natural numbers, {0, 1, 2, ...}. 19
NP The complexity class of languages decidable in polynomial time 17
by nondeterministic Turing machines.
n Number of levels in Bennett’s 1989 algorithm [13]. 15
n Abbreviation of n;, or n;. 24
n; The length of input strings for which machine M; fails to de- 24
cide L within the space-time bounds determined by S, T, and
constant c;.
Tin Number of bits in an input string. 19
NEXT  Given time point 7, NEXT(g;) is the next query in M;’s history 28
involving g; before time 7.
o) Some arbitrary oracle. (In our context, a self-reversible one.) 17
o The “at most” order-of-growth operator O maps any function 20
g : N = N to the set F = O(g) of functions f that are asymp-
totically at most proportional to g.
o The “less than” order-of-growth operator o maps any function 20

g : N — N to the set F' = o(g) of functions f that are asymp-
totically strictly less than g.
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Sym. Meaning p-

P The complexity class of languages decidable in polynomial time 17
in most traditional models of computation (e.g., Turing ma-
chines).

P Power premium; ratio of lifetime power cost to logic hardware 4
cost.

P The number of nodes that are pebbled at time 7. 28

PREV  Given time point 7, PREV(g;) is the previous query in M;’s 28
history involving g; before time 7.

Q Quality factor; ratio between energy transfered and energy dis- 4
sipated during a system’s cycle of operation.

q A possible oracle query string, i.e., an oracle tape contents, i.e., 24
a bit string, i.e., a graph node identifier, i.e., a graph node.

q An alternative final node in the chain, replacing our original 26
choice of ¢;.

Qo Initial query string in a node chain. go = 05. 26

q; A particular query string in the sequence ¢, - . . , ¢; formed from 25
z, or if j = 0, see qo above.

R The (nonconstructive) set of all “real” numbers. 7

RTISP RTISP(T,S) is the complexity class of problems solvable by 17
reversible algorithms taking time O(T) and space O(S).
r(I) In §6, the 1-bit result for a given input memory I, found by doing 33
| T/S] iterated pointer dereferences in I starting at address 0°.

S Space bounding function S : N — N, mapping an input length 13
ninto an upper bound S(n;,) on the number of temporary state
bits used at any time in processing any input of length nip.

s A larger space bounding function, S' < Slog(T/S), which is still 32
not enough to allow reversible machines to compute the same
functions in linear time (in our oracle model).

s Second; unit of time originally defined as 1/86,400 of Earth’s 8
solar day.

s A description system. (In §6, a particular one that we are defin- 19
ing.)

84 The particular description system used to select the incompress- 25
ible string z that defines the chain of nodes that foils M;.

T Absolute temperature. 2

T Time bounding function T : N — N, mapping an input length 12
nipto an upper bound T(ny,) on the number of state-update
“ticks” to be used in processing any input of length niy.

T Actual number of steps T’ < ¢; + ¢; T(n) taken before halting in 27
the case of a machine that does not exceed the time bound.

TISP  TISP(T,S) is the complexity class of problems solvable by or- 17
dinary algorithms taking time O(T) and space O(S).
t t(n) is the number of nodes, size S(n) each, in a chain of nodes 25

that will take time @(T(n)) to traverse on a serial machine.

t(n) = [T(n)/S(n)].



10 MICHAEL P. FRANK AND M. JOSEPHINE AMMER

Sym. Meaning p-
T 0 <7 < T', an index of the machine configuration of M; (run- 28
ning on the oracle graph) that results after 7 steps (primitive
operations) have taken place.

AT; The number of steps between time 7 and the query in direction 30
D that causes node g; to be pebbled at time 7.
(] The “exactly” order-of-growth operator ® maps any function 20

g : N = N to the equivalence class F = ©(g) of functions f
that are asymptotically proportional to g.

v Logic swing voltage; absolute voltage difference between 0 and 3
1 logic levels.
w An arbitrary bit-string input to our oracle-querying machines. 24

w; In §6, length-b bit string number i, where 1 <14 <, in a linked 34
list of bit strings formed from z.

z A bit-string, |z| = T(n), incompressible in description system 25
s, to be broken up into a chain of node bit-strings qq, . . . , g¢-

! z with a substring spliced out. (See explanations in text.) 26

y A bit-string that is described by another bit-string d under some 19
description system s.

z The maximum length over all oracle queries asked by ma- 24
chines My,... ,M;_1 running within their respective bounds
co,--- ,Ci—1 when given respective inputs 0™°,... ,0™-1.

Q The “at least” order-of-growth operator €2 maps any function 20

g : N = N to the set F' = Q(g) of functions f that are asymp-
totically no less than proportional to g.

w The “more than” order-of-growth operator w maps any func- 20
tion g : N — N to the set F = w(g) of functions f that are
asymptotically strictly greater than g.

3. REVIEW OF PREVIOUS RESULTS IN REVERSIBLE
COMPUTING THEORY

In this section we briefly review previous results in the theory of computability
and of computational complexity relating to reversible computation.

Reversible models of computation. Reversible models of computation can be
easily defined in general as models of computation in which the transition func-
tion between machine configurations has a single-valued inverse. In other words,
the directed graph showing allowed transitions between states has in-degree 1. In
this paper we will always deal with machines that are deterministic, so that the
configuration graph always has out-degree one as well. See figure 2.

3.1. Computability in reversible models

Unbounded-space reversible machines are Turing-universel. In his 1961 paper
[7], Landauer had already pointed out that arbitrary irreversible computations
could be embedded into reversible ones by simply saving a record of all the in-
formation that would otherwise be thrown away (cf. §3 of [7]). This observation
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FIG. 2. Machine configuration graphs in (deterministic) reversible and irreversible models

of computation.

In the configuration graphs of irreversible machines, configurations may have many different
predecessor configurations. In reversible models of computation, each configuration may have at
most one predecessor. The configuration graph therefore consists of disjoint loops and chains,
which may be infinite. In both reversible and irreversible models we may, if we wish, permit
configurations having 0 predecessors (initial states) and/or 0 successors (final states).

makes it obvious that reversible machines with unbounded memory can certainly
compute all the Turing-computable functions.

We call this idea, of embedding an irreversible computation into a reversible one
by saving a history of garbage, a “Landauer embedding,” since Landauer seems to
have been the first to suggest it.

A certain model of reversible finite automata is especially weak. In contrast to
Landauer’s result, in 1987 Pin [16] investigated reversible finite automata, which
he defined as machines with fixed memory reading an unbounded-length one-way
stream of data, and found that such cannot even decide all the regular languages,
which means that technically they are strictly less powerful than normal irreversible
finite automata.

So there are stream recognition tasks computable by an irreversible machine with
fixed memory that no purely reversible machine with fixed memory can compute,
given an external one-way stream of input. We should note, however, that this
incapacity may be due to the non-reversible nature of the input flow, rather than
to the reversibility of the finite automaton itself. Conceivably, if a finite reversible
machine was permitted to read backwards as well as forwards through its read-
only input, and perform some sort of “unread” operations, it might then be able
to recognize any regular language. But we have not investigated that possibility in
detail.

In any event, the finite automaton model is not generally considered to express
the salient features of computation, since real computers are not designed as state
machines with small fixed numbers of states, but rather as unbounded-memory ma-
chines that can be given as much external storage as needed to perform a particular
task, and can explore an enormous state space, one that grows exponentially with
the number of storage bits that are available. So, for the rest of this paper, we con-
sider only models of computation that permit access to increasingly large amounts
of memory as input sizes increase. For such machines, Landauer’s result overrides
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Pin’s, and pure computability is no longer an issue. So we turn to questions of
computational complexity.

3.2. Time complexity in reversible models

In a theoretical computer science context, “time complexity” T for serial machine
models means essentially the number of primitive operations performed. Landauer’s
suggestion (cf. §3 of [7]) of embedding each irreversible operation into a reversible
one makes it clear that the number of such operations in a reversible machine need
not be larger than the number for an irreversible machine, as was demonstrated
more explicitly in later embeddings by Lecerf [17] and Bennett [18]. So under the
time complexity measure by itself, reversibility does not hurt.

Can a reversible machine perform a task using fewer computational operations
than any irreversible machine? Obviously not, if we take reversible operations
to just be a special case of irreversible operations. However, it is interesting to
note that, physically speaking, actually it is the converse that is true: so-called
“irreversible” operations, implemented physically, are really just a special case of
reversible operations, since physics is believed to be always reversible at a low
level. The implications of this fact for physical time complexity are discussed in
more detail in [19]. But, using the usual computer-science definition of time as the
number of computational operations required, clearly reversible machines can be
no more “time’-efficient than irreversible ones.

Although Lecerf and Bennett explicitly discussed their time-efficient reversible
simulations only in the context of Turing machines, the approach is easily gener-
alized to any model of computation in which we can give each processing element
access to an unbounded amount of auxiliary unit-access-time stack storage. For
example, Toffoli [20] describes how one can use essentially the same trick to create
a time-efficient simulation of irreversible cellular automata on reversible ones, by
using an extra dimension in the cell array to serve as a garbage stack for each cell
of the original machine.

3.3. Entropic complexity in reversible models
The original point of reversibility was not to reduce time but to reduce energy
dissipation, or in other words entropy production. Can this be done by reversible
machines? In 1961 Landauer [7] argued that it could not, since if we cannot get rid
of the “garbage” bits that are accumulated in memory, they just constitute another
form on entropy, no better in the long term than the kind produced if we just
irreversibly dissipated those bits into physical entropy right away.

Lecerf reversal. However, in 1963, Lecerf [17] formally described a construction
in which an irreversible machine was embedded into a reversible one that first simu-
lated the irreversible machine running forwards, then turned around and simulated
the irreversible machine in reverse, uncomputing all of the history information and
returning to a state corresponding to the starting state. If anyone familiar with
Landauer’s work had noticed Lecerf’s paper in the 1960’s, it would have seemed
tantalizing, because here was Lecerf showing how to reversibly get rid of the garbage
information that was accumulated in Landauer’s reversible machine in lieu of en-
tropy. So maybe the entropy production can be avoided after all!
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Unfortunately, Lecerf was apparently unaware of the thermodynamic implications
of reversibility; he was concerned only with determining whether certain questions
about reversible transformations were decidable. Lecerf’s paper did not address
the issue of how to get useful results out of a reversible computation. In Lecerf’s
embedding, by the time the reversible machine finishes its simulation of the irre-
versible machine, any outputs from the computation have been uncomputed, just
like the garbage. This is not very useful!

The Bennett trick. Fortunately, in 1973, Charles Bennett [18], who was un-
aware of Lecerf’s work but knew of Landauer’s, independently rediscovered Lecerf
reversal, and moreover added the ability to retain useful output. The basic idea
was simple: one can just reversibly copy the desired output into available memory
before performing the Lecerf reversal! As far as we know, this simple trick had not
previously occurred to anyone.

Bennett’s idea suddenly implied that reversible computers could in principle be
more efficient than irreversible machines under at least one cost measure, namely
entropy production. To compute an output on an irreversible machine, one must
produce an amount of entropy roughly equal to the total number of (irreversible)
operations performed; whereas the reversible machine in principle can get by with
no new entropy production, and with the accumulation of only the desired output
in memory.

Entropy proportional to speed. Unfortunately, absolutely zero entropy genera-
tion per operation is achievable in principle only in the ideal limit of a perfectly-
isolated ballistic (frictionless) system, or in a Brownian-motion-based system that
makes zero progress forwards through the computation on average, and takes @(n?)
expected time before visiting the nth computational step. In useful systems that
progress forwards at a positive constant speed, the entropy generation per opera-
tion appears to be, at minimum, proportional to the speed. (We do not yet know
how fundamental this relationship is, but it appears to be the case empirically.) A
cost analysis that takes both speed and entropy into account will need to recognize
this tradeoff. We do this in [4, 5] and in ch. 6 of [19].

3.4. Space complexity in reversible models
In computational complexity, “space complexity” refers to the number S of mem-
ory cells that are required to perform a computation.

Initial estimates of space complexity. As Landauer pointed out [7], his simple
strategy of saving all the garbage information appears to suffer from the drawback
that the amount of garbage that must be stored in digital form is as large as the
amount of entropy that would otherwise have been generated. If the computation
performs on average a constant number of irreversible bit-erasures per computa-
tional operation, then this means that the memory usage becomes proportional to
the number of operations. This means a large asymptotic increase in memory usage
for many problems; up to exponentially large. Even if the garbage is uncomputed
using Lecerf reversal, this much space will still be needed temporarily during the
computation.
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FIG. 3. Tllustration of two versions of Bennett’s 1989 algorithm for reversible simulation

of irreversible machines. Diagram (a) illustrates the version with k = 2, diagram (b) the version
with & = 3. (See text for explanation of k.)

In both diagrams, the horizontal axis indicates which segment of the original irreversible compu-
tation is being simulated, whereas the vertical axis tracks time taken by the simulation in terms
of the time required to simulate one segment. The black vertical lines represent times during
which memory is occupied by an image of the irreversible machine state at the indicated stage
of the irreversible computation, whereas the shaded areas within the triangles represent memory
occupied by the storage of garbage data for a particular segment of the irreversible computation
being simulated.

Note that in (b), where k = 3, the 9th stage is reached after only 25 time units, whereas in
(a) 27 time units are required to only reach stage 8. But note also that in (b), at time 25, five
checkpoints (after the initial state) are stored simultaneously, whereas in (a) at most four are
stored at any given time. This illustrates the general point that higher-k versions of the Bennett
algorithm run faster, but require more memory.

Bennett’s pebbling algorithm. In 1989, Bennett [13] introduced a new, more
space-efficient reversible simulation for Turing machines. This new algorithm in-
volved doing and undoing various-sized portions of the computation in a recursive,
hierarchical fashion. Figure 3 is a schematic illustration of this process. We call
this the “pebbling” algorithm because the algorithm can be seen as a solution to
a sort of “pebble game” or puzzle played on a one-dimensional chain of nodes, as
described in detail by Li and Vitanyi '96 [21]. (Compare figure 3(a) with fig. 9 on
page 27.) We will discuss the pebble game interpretation and its implications in
more detail in §5.

The overall operation of the algorithm is as follows. The irreversible computation
to be simulated is broken into fixed-size segments, whose run time is proportional
to the memory required by the irreversible machine. The first segment is reversibly
simulated using a Landauer embedding (as in [7]). Then the state of the irreversible
machine being simulated is checkpointed using the Bennett trick of reversibly copy-
ing it to free memory. Then, we do a Lecerf reversal (§3.3, p. 12) to clean up the
garbage from simulating the first segment.
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We proceed the same way through the second segment, starting from the first
checkpoint, to produce another checkpoint. After some number £ of repetitions of
this procedure, all the previous checkpoints are then removed by reversing every-
thing done so far except the production of the final checkpoint. Now we have only
a single checkpoint which is k& segments along in the computation. We repeat the
above procedure to create another checkpoint located another k¥ segments farther
along, and then again, and again k times, then reverse everything again at the
higher level to proceed to a point where we only have checkpoint number k2 in
memory. The procedure can be applied indefinitely at higher and higher levels.

In general, for any number n of recursive higher-level applications of this pro-
cedure, k™ segments of irreversible computation are be simulated by (2k — 1)
reversible forwards-and-backwards simulations of a single segment, while having at
most n(k — 1) intermediate checkpoints in memory at any given time [13].

The upshot is that if the original irreversible computation takes time T and
space S, then the reversible simulation via this algorithm takes time O(T'*¢) and
space O(Slog T) = O(S?). As k increases, the € approaches 0 (very gradually), but
unfortunately the constant factor in the space usage increases at the same time
[22].

Li and Vitanyi 96 [21] proved that Bennett’s algorithm (with k& = 2) is the most
space-efficient possible pebble-game strategy for reversible simulation of irreversible
machines. This result is central to our proof.

Crescenzi and Papadimitriou ’95 [23] later extended Bennett’s technique to pro-
vide space-efficient reversible simulation of nondeterministic Turing machines as
well.

3.4.1. Achieving linear space complexity

Bennett’s results stood for almost a decade as the most space-efficient reversible
simulation technique known, but in 1997, Lange, McKenzie, and Tapp [15] showed
how to simulate Turing machines reversibly in linear space—but using worst-case
exponential time. Their technique is very clever, but simple in concept: Given a
configuration of an irreversible machine, they show that one can reversibly enu-
merate its possible predecessors. Given this, starting with the initial state of the
irreversible machine, the reversible machine can traverse the edges of the irreversible
machine’s tree of possible configurations in a reversible “Euler tour.” (See figure 4.)
This is analogous to using the “right-hand rule” technique (move forward while
keeping your right hand on the wall) to find the exit of a planar non-cyclical maze.
The search for the final state is kept finite, and the space usage is kept small, by
cutting off exploration whenever the configuration size exceeds some limit. Unfor-
tunately, the size of the pruned tree, and thus the time required for the search, is
still, in the worst case, exponential in the space bound.

In a very recent result, Buhrman et al. ’01 [24] show that it is actually possible
to view the Bennett and Lange-McKenzie-Tapp techniques as extreme points on a
continuous spectrum of simulation algorithms having intermediate asymptotic space
and time requirements. (Unfortunately, all of the intermediate algorithms in this
tradeoff space still suffer at least a polynomial increase in spacetime complexity.)
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FIG. 4. Illustration of an Euler tour of an irreversible machine’s computation tree. Although
the tree has branches, the Euler tour is itself both forward- and reverse-deterministic, and so can
be traversed in purely reversible fashion, using no more space than is needed to keep track of the
current irreversible machine configuration [15].

As with Bennett’s techniques, the Lange-McKenzie-Tapp technique was defined
explicitly only in terms of Turing machines, but it is easily generalized to many
different models of computation.

The above time and space complexity results for reversible simulation are very inter-
esting in themselves, but to our knowledge, before our work no one had previously
addressed the specific question of whether a single reversible simulation could run
both in linear time like Bennett’s 1973 technique and in linear space like the newer
Lange et al. technique. Li and Vitanyi’s analysis [21] of Bennett’s 1989 algorithm
[13] leads to our proof in this paper that if such an ideal simulation exists, it would
not relativize to oracles, or work in cases where the space bound is much less than
the input length.

3.5. Miscellaneous developments

Here, we mention in passing a couple of other miscellaneous developments in
reversible computing theory.

Coppersmith and Grossman (1975, [25]) proved a result in group theory which
implies that reversible boolean circuits only 1 bit wider than a fixed-length input
can compute arbitrary boolean functions of that input.

Toffoli (1977, [20]) showed that reversible cellular automata can simulate irre-
versible ones in linear time using an extra spatial dimension. Fredkin and Toffoli
developed much reversible boolean-circuit theory (1980-1982, [26, 27, 28]).

4. GENERAL DEFINITIONS

In this section we set forth some general definitions that we will use in our proof,
but that may also be useful for future proofs in reversible computing theory. Later,
in section 5.2, we will give some additional, more specific definitions that are not
anticipated to be widely useful outside of this paper.
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4.1. Space-time complexity classes

Given any reversible model of computation (e.g., reversible Turing machines),
and given any computational space and time bounding functions S(nin), T(nin),
we define (following Bennett [13] the reversible space-time S, T complezity class,
abbreviated RTISP(T,S), to be the set of languages that are accepted by reversible
machines that take worst-case space of O(S(nin)) memory bits and worst-case time
O(T(nin)) ticks, where n;, is the length of the input. Similarly, we define the
(unrestricted) space-time S, T complezity class, abbreviated TISP(T,S), to be the
set, of languages accepted in that same order of space and time on the corresponding
normal machine model, without the restriction on the in-degree of the transition
graph. For oracle-relativized complexity classes, we use the notation €©, as is
standard in complexity theory, to indicate the class of problems that can be solved
by the machines that define the class € if they are allowed to query oracle O.

We want to know whether RTISP(T,S) = TISP(T,S), for all S, T, in normal
sorts of serial computational models such as multi-tape Turing machines or RAM
machines.

Unfortunately, we have found this question, in its purest form, very difficult to
definitively resolve. We do not see any general way to simulate normal machines
on reversible machines without suffering asymptotic increases in either the time
or space required. But neither do we know of a language that can be proven to
require extra space or time to recognize reversibly in ordinary machine models.
The difficulty is in constructing a proof that rules out all reversible algorithms, no
matter how subtle orvclever.

But is the RTISP = TISP question truly difficult to resolve, or have we just been
unlucky in our search for a proof? Often in computational complexity theory, we
find ourselves unable to prove whether or not two complexity classes (for example,
P and NP) are equivalent. Traditionally (as in Baker et al. [29]), one way to
indicate that such an equivalence might really be difficult to prove is to show that
if the machine model defining each class is augmented with the ability to perform
a new type of operation (a query to a so-called “oracle”), then the classes may be
proven either equal or unequal, depending on the behavior of the particular oracle.
This shows that any proof equating or separating the two classes must make use of
the fact that normal machine models are only capable of performing a particular
limited set of primitive operations. Otherwise, we could just add the appropriate
oracle call as a new primitive operation, and invalidate the supposed proof.

In this section we will demonstrate, for any given S, T in a large class, an oracle
A relative to which we prove RTISP(T,S)4 # TISP(T,S)4, for the case of serial
machine models with a certain kind of oracle interface. For these same S, T we have
not yet found an alternative oracle B for which RTISP(T,S)? = TISP(T,S)%,
except for irreversible oracles which make the equivalence trivial. It may be that
no reversible oracle that equates the classes exists, but this is uncertain.

4.2. Reversible oracle interface
First, we define an oracle interface that allows a reversible machine to call an
oracle. Ordinarily, oracle queries are irreversible, and thus impossible in reversible
machines. For example, a bit of the oracle’s answer cannot just overwrite some
storage location, because regardless of whether the location contained 0 or 1 before
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FIG. 5. Ilustration of the structure of (a) a permutation oracle, and (b) a self-reversible
permutation oracle.

In either case, the oracle call operation replaces the old contents of the oracle tape with new
contents according to a transition function A : C — C that is a permutation mapping—a bijective
function—over the space C of possible tape contents. The bijectivity of this function means that
a call to a permutation oracle is always a reversible operation. After an oracle call, the previous
oracle tape contents can be uniquely determined by applying the inverse mapping A~!. In self-
reversible oracles, A = A~L.

the oracle call, after the call it would contain the oracle’s answer. The resulting
configuration would thus have two predecessors, and the machine would be irre-
versible.

Our reversible oracle-calling protocol is as follows. Machines will have reversible
read and write access to a special oracle tape which has a definite start, unbounded
length, and is initially clear. At any time, the machine is allowed to perform an
oracle call, a special primitive operation which in a single step replaces the entire
contents of the oracle tape with new contents, according to some fixed invertible
mapping A : C — C over the space C of possible tape contents. The function A is
called a permutation oracle. Further, if A is its own inverse, A = A™!, it will be
called self-reversible. Presented more formally:

DEFINITION 4.1. A permutation oracle A is an invertible (bijective) function
A :C — C, where C is the space of possible contents of a semi-infinite oracle tape.

DEFINITION 4.2. A self-reversible (permutation) oracle is a permutation oracle
A such that 4 = A~

In the below, we will deal only with self-reversible oracles. Self-reversibility en-
sures that machines can easily undo oracle operations, just as they can easily undo
their own internal reversible primitives. (Since primitive operations such as bit-
operations are by definition finite operations over small state-spaces, if those oper-
ations are invertible then their inverses must be easy to compute.) If oracle calls
were much harder to undo than to do, then the oracle model would be unlikely to
teach us anything meaningful about real machines.

4.3. ST-constructibility
In order for our proof to go through, we will need to restrict our attention to space
and time functions S(nin), T(nin) which are ST -constructible, meaning that given
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any input of length n;,, an irreversible machine can construct binary representations
of the numbers S(ni,) and T(ni,) using only space O(S(nin)) and time O(T (nin))-
We state here without proof that many reasonable pairs of functions are indeed
ST-constructible. For example, S = nZ, T = n can both be computed in time
(”)(log;2 Nin) plus O(niy) to count the input bits, and space O(logniy) plus O(niy) if
we include the input.

Next, we need some basic definitions to support the notion of incompressibility that
will be crucial to the proof of our theorem. The following definition and lemma
follow the spirit of the discussions of incompressibility in Li and Vitanyi’s excellent
book on Kolmogorov complexity [30].

4.4. Description systems and compressibility

DEFINITION 4.3. A description system s is any function s: {0,1}* — {0,1}*
from bit-strings to bit-strings, that is, from descriptions to the bit-strings they
describe. We say that a bit-string d describes bit-string y in description system
s if s(d) = y. We say that a bit-string y is compressible in description system s
if there is a shorter bit-string that describes it; i.e. if there exists a string d such
that s(d) = y and |d| < |y|, where the notation |b| denotes the number of bits in
bit-string b.

LeMMA 4.1 (Existence of incompressible strings).  For any description system
s, and any string length £ € N, there is at least one bit-string y of length £ that is
not compressible in s.

Proof (Trivial counting argument). There are 2¢ bit-strings of length ¢, but
there are only Ef;é 2¢ = 2¢ — 1 descriptions that are shorter than £ bits long. Each
description d can describe at most one bit string of length ¢, namely the string
s(d) if that string’s length happens to be £. Therefore there must be at least one
remaining bit-string y of length £ that is not described by any shorter descrip-
tion. W

In our main proof, we will be selecting incompressible strings from a series of
computable description systems.

4.5. Notational conventions
In the following, we will often abbreviate the space and time function values
S(ni) and T(ny,) by just S and T, respectively; likewise for other functions of ny,.
For comparing orders of growth, we will use both the standard @, O, Q, o, w
notations, and our mnemonic <, 3, =, <, = notation, defined in table 2.

~? ~)

5. MAIN THEOREM

Preliminary discussion. In this section we prove that reversible machine mod-
els require higher asymptotic space-time complexity on some problems than cor-
responding irreversible models, if a certain new reversible black-box operation (a
self-reversible oracle A) is made available to both models. Thus, no completely
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TABLE 2

In addition to reviewing the

standard notation, we introduce a simplified, more mnemonic

notation that will be convenient in some contexts.

Cryptic A more

standard mnemonic Mathematical definition;

notation notation  English explanation

f=0(g) or fxg der,co,mo >0: VR >mno: 0 < cig(n) < f(n) <

f € O(g) c2g(n); f has the same asymptotic order of growth
as g.

f=0(g) or f3g de,mo>0:Vn>mno: 0< f(n) <cg(n); f has a

f€O(g) lower asymptotic order of growth than g.

f=19%(g) or fzg Je,no > 0:Vn > mng: 0 <cg(n) < f(n); f has a

f € Q(g) greater asymptotic order of growth than g.

f=o(g) or f<g Ve>0:3no>0: Vo >mno: 0< f(n) < cg(n);

f €olg) f has a strictly lower asymptotic order of growth
than g.

f=w(g)or f=g Ve>0:3ng>0: Vn>mno: 0<cg(n) < f(n); f

f €w(yg) has a strictly greater asymptotic order of growth

than g.

general technique can exist for simulating irreversible machines on reversible ones
with no asymptotic overhead.

However, the new primitive operation that we defined in order to make this proof
go through is not itself physically realistic. The operation implements a computable
function, but the operation is modeled as taking constant (@(1)) time to perform
independent of the size of its input, which violates physical locality and the asymp-
totically very large number of steps that it would take to compute the operation
using the algorithm that corresponds directly to the operation’s definition.

Therefore, technically, even given our proof, it is still an open question whether
a perfectly efficient simulation technique might still exist that works in the case
of reversible machines simulating irreversible machines that are composed only of
primitives that are physically realistic.

Incidentally though, if one wishes to progress to complete physical realism, then
to be completely fair, one should take into account the physical time and space costs
associated with removing the physical entropy produced by irreversible operations
from a machine, when comparing reversible and irreversible machine models. We
do this in [19] and conclude that under certain reasonable assumptions, a variety
of physically realistic reversible models are actually asymptotically strictly more
spacetime-efficient on some problems than are the corresponding irreversible mod-
els, although an extremely large scale of machine may be required to realize that
particular theoretical benefit.

The encroaching issue of lower limits on bit energies is more important. As
we mentioned in §1, the exact magnitude of the purely computational asymptotic
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overheads incurred by reversible operation has an important role to play in helping
to make an accurate comparison between the potential efficiency of reversible and
irreversible machine designs in particular technologies. It is a key element that
drastically affects the shape of the overall tradeoff function between energy costs
and hardware costs in partially-adiabatic machine design spaces.

Below, we will prove our results in both oracle-relativized and non-oracle forms
for serial (uniprocessor) machines. The oracle results cover a large family of possible
asymptotic bounds on the joint space and time requirements of computations. For
all bounding functions within this family, we show that there exist an oracle and
a language such that the language is decidable within the given bounds by serial
machines that can query the oracle only if the machines are irreversible. This result
is non-trivial (compared to Pin’s, for example) because the individual oracle calls
are themselves reversible and easy to undo.

In section 6, a similar result, not involving an oracle, covers cases where the space
bound is much smaller than the length of the randomly (and reversibly) accessible
input. Corollaries to both the oracle and non-oracle results give loose lower bounds
on the amount of extra space a reversible machine will require to decide the language
within the same time bounds as the irreversible machine, although one should keep
in mind that this approach of meeting the time bounds will not necessarily minimize
the real costs corresponding to the space-time product.

Another contribution of our proof is to illustrate ways to use incompressibility
arguments in analyzing reversible machines. It is conceivable that similar techniques
might increase the range of reversible and irreversible space-time complexity classes
that we can separate without resorting to the oracle.

5.1. Statement of main theorem

THEOREM 5.1. (Relative separation of reversible and irreversible space-time
complexity classes.) Let S, T be any two non-decreasing functions over the non-
negative integers. Then both of the following are true:

(a)IfS = T or T = 25, then RTISP(T,S)? = TISP(T,S)? for any self-
reversible oracle O.

(b) IfS < T < 25, and if S, T are ST-constructible, then there exists a computable,
self-reversible oracle A such that RTISP(T,S)4 # TISP(T,S)4.

Proof.

Part (a). (Cases S - T and T X 25.) First, if S = T, then obviously we
have both RTISP(T,S)° = RTISP(T,T)? and TISP(T,S)° = TISP(T,T)?
simply because in time T no more than S < T memory cells can be accessed on a
machine that performs ®(1) operations per time step. Similarly, if T > 25, then
RTISP(T,S)? = RTISP(25,5)° and TISP(T,S)° = TISP(25,5)?, because no
computation using only S bits of memory can run for more than 25 steps without
repeating. So part (a) reduces to proving RTISP(T,S)? = TISP(T,S)? only for
the case where S < T or T x 25.

From here, the result follows due to the existing relativizable simulations. When
S =< T, Bennett’s simple reversible simulation technique [18] can be applied because
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it takes time O(T) and space O(T). Similarly, when T x 25 the simulation of Lange
et al. [15] can be used because it takes time ((2%) and space O(S). Both techniques
can be eagsily seen to relativize to any self-reversible oracle O. Thus, in both cases,
any irreversible machine can be simulated reversibly in O(T) and space O(S), and
therefore RTISP(T,S)? = TISP(T,S)°.

Part (b). (Case S < T < 25.) Here, we give only an outline of the full proof
of part (b), which will be fleshed out in §§5.2-5.4 below. Proof outline: We will
construct A to be a permutation oracle that can be interpreted as specifying an
infinite directed graph of nodes with outdegree at most 1. We will also define a
corresponding language-recognition problem, which will be to report the contents of
a node that lies T/S nodes down an incompressible linear chain of nodes that have
size-S identifiers, starting from a node that is determined by the input length. The
oracle will be explicitly constructed via a diagonalization, so that for each possible
reversible machine, there will be a particular input for which our oracle makes that
particular reversible machine take too much space or else get the wrong answer. In
the cases where the reversible machine takes too much space, we will prove this by
equating the machine’s operation with the “pebble game” for which Li and Vitanyi
[21] have already proven lower bounds, and by showing that if the machine does
not take too much space, then we can build a shorter description of the chain of
nodes using the machine’s small intermediate configurations, thus contradicting our
choice of an incompressible chain.

Before we can develop the proof of part (b) in full detail, we need some more
definitions specialized to our needs.

5.2. Specialized definitions

DEFINITION 5.1. A graph oracle is a self-reversible permutation oracle with the
following property: There exists a partial function f: {0,1}* — {0,1}*, called a
successor function, such that for any bit string (node) b € {0,1}* for which f is
defined, the oracle’s permutation function maps the tape contents b to the tape
contents b#f(b), and also maps b#f(b) back to b, where # is a special separator
character in the oracle tape alphabet. For all tape contents x not of either of these
forms, the oracle’s permutation function maps them to themselves. See fig. 6.

Remark. The name “graph oracle” for this concept is really over-general; our
graph oracles are capable of embodying only graphs of a special type, namely
directed graphs in which all nodes are named by bit-strings and have out-degree 1.
The unique node that is adjacent from node ¢ is given by the successor function

f(@).

Given that we will be working only with graph oracles, we can now specify an
oracle by specifying just the successor function f that it embodies. But before we
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FIG. 6. Encoding outdegree-1 directed graphs in self-reversible permutation oracles. Letters
stand for nodes represented as bit-strings, except for x which represents any other bit-string not
explicitly shown. The # is a special separator character.

On the left, we show an example of an outdegree-1 directed graph with bit-string nodes abbre-
viated a,b,c,d,e,g. The graph function f gives the successor of each node: f(a) =c, f(c) = d, etc.
This f is a partial function; e.g. f(d) is undefined. For each edge in this graph, there is a corre-
sponding pair of strings that are mapped to each other by the self-reversible oracle. To represent

[73% 1)

the edge a — c, for example, the permutation oracle maps tape contents “a” to “a#c” and maps
“a#c” back to “a”. Any other string z (including those for terminal nodes of the graph) is simply
mapped to itself. In this way the permutation oracle allows easily and reversibly looking up a
node’s successor, or uncomputing a node’s successor given the node and its successor. But finding
a node’s predecessor(s), given just the node itself, is designed to be hard. Thus the oracle call
resembles the reversible computation of a “one-way” invertible function that is easy to compute,
but whose inverse is difficult to compute.

actually construct the special oracle A that proves theorem 5.1, let us define, relative
to A, the language that we claim separates RTISP(T,S)# from TISP(T,S)4.

DEFINITION 5.2. Given two ST-constructible functions S(n), T(n), and graph
oracle A with successor function f, we define the separator language L(A) to be the
language decided by the irreversible machine described by algorithm 1 in figure 7.

The algorithm is essentially this: Given a string of length n, construct a string
of zeros of length S(n). Treat this string as a node identifier, and use oracle queries
to proceed down its chain of successors for up to | T/S| nodes. Finally, return the
first bit of the final node’s bit-string identifier.

We will be explicitly constructing the successor function f so that it always
returns a string of the same length as its input. Given the corresponding oracle,
algorithm 1 obviously requires only space O(S) and time O(T) on on irreversible
machine in any standard serial model of computation. (Recall that S, T are ST-
constructible.) Therefore the language L(A) will be in the class TISP(T,S)4.

In §5.3, we will show how to construct f so that the language L(A) will not
be computable by any reversible machine that takes space O(S) and time O(T).
The way we will do this is to make each of the node identifiers be a different
incompressible string. Intuition suggests that the only way to decide L(A) is to
actually follow the entire chain of nodes, to see what the final one is. But having
obtained a node’s successor, the reversible machine cannot easily get rid of its
incompressible records of the prior nodes. The graph oracle provides no convenient
way to compute f~! and find a node’s predecessor, even if the successor function f
happens to be invertible. Thus (as we will show) the reversible machine will tend to
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ArLgoriTEM 1 (SEPARATOR(w)).

Given input string w,

Let n = |w|; compute S = S(n), T = T(n).

Let bit-string b = 0°.

Repeat the following, ¢t = | T/S| times:
Write b on the oracle tape, and call the oracle A.
If result is of the form b#c, with ¢ a bit-string,

assign b + ¢ (note that ¢ = f(b)),

else, quit loop early.

Accept iff b[0] = 1.

FIG. 7. Irreversible algorithm defining the language L(A) that separates TISP(T,S) from
RTISP(T,S), relative to our reversible oracle A. The essence of this algorithm is simply to
interpret A as a graph oracle, construct an initial node (which is dependent on the input string),
and follow the directed path leading away from the initial node for a certain number of steps.

accumulate records of previous nodes, of size S(nin) each, and thus, for sufficiently
long enough chains, it will take more than a constant factor times S(n;,) space.
The reversible machine could conceivably find and uncompute predecessor nodes
by searching them all exhaustively, but this would take too much time.

The situation with this oracle language resembles the non-oracle problem of iter-
ating a one-way function, i.e. an invertible function whose inverse much is harder to
compute than the function itself (e.g., MD5). Public-key cryptography depends on
the (unproven, but empirically reasonable) assumption that some functions are
one-way. The same assumption might allow us to show that RTISP(T,S) #
TISP(T,S) without an oracle, by using a one-way function instead.

5.3. Oracle construction

We now construct a particular oracle A (given any appropriate T,S) and prove
that L(A) ¢ RTISP(T,S)A.

First, fix some standard enumeration of all reversible oracle-querying machines.
The enumeration is possible because reversible Turing machines, for example, can
be characterized by local syntactic restrictions on their transition function, as in
Lange et al., so we can enumerate all machines and pick out the reversible ones. Let
(My,c1),(Ms,c2), - .. be this enumeration dovetailed together with an enumeration
of the positive integers. If a given machine always runs in space O(S) and time
O(T) then it will eventually appear in the enumeration paired with a large enough
¢; so that the machine M; takes space less than ¢; + ¢;S(nin) and time less than
¢; + ¢; T(niy) for any input length ni,.

We will construct the oracle A so that each machine M; will fail to decide L(A)
within these bounds. When considering M;, f(g) will have already been specified
for all oracle queries q asked by machines My, Ms...,M; 1 when given certain
inputs of lengths ny,n2,... ,n;—1, respectively. Now, choose n; (henceforth called
n), the input length for which our oracle definition will foil M;, to be such that
S(n) is greater than the maximum length z of any of those earlier machines’ oracle
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incompressible chain of

S(n) zeros t = [T(n)/ n)Cnodes

input w 0b0..:0 - P
length |:> —»U G e 3 i return
-

wl=n — — N low bit
N of last
I / P \ node
all nodes size §(n)
FIG. 8. The problem graph defined by our oracle for inputs of size n. The “correct answer”
is just the first bit of the final node g:. If the reversible machine M; that we are trying to foil

happens to get the right answer, but never asks for the successor of node g:—1, we redefine g¢—1’s
successor to be a new node ¢’ having a different initial bit.

TABLE 3
Constraints on the input length n; chosen to foil machine M; running
within bounds determined by S, T, and c;.

Constraint on n; Introduced on
S(ni) > = p- 24
(4, k, &")| < || p. 26
1950 > ¢ 4 ¢ T(ni) p. 26
(G, A7y, kj)| < 3S(ni) p. 30
t(n;) > 24ttt p. 32
S(ns) > ¢ p. 32

TABLE 4

Description formats needed in description system s;.

Description format Explained on
(, k,z") p- 26
;") p. 26
(C-,D,z’, h triples (j, A7j, k;), extra bits) p- 30
(j: ATjakjixl) p- 31

queries. Some other lower bounds on the size of n will be mentioned as we go along,
and are summarized in table 3.

Later we will specify a description system s;, summarized in table 4, based on
M;, ¢;, the value of n, and all the f(q) values defined so far (for bit-strings smaller
than S(n)). The description system will be a total computable function, i.e., there
is an algorithm that computes s;(d) for any d and always halts. We will use this
description system to define f(q) for bit-strings ¢ of length S(n), as follows:

Let x be a bit-string of length T(n) that is incompressible in description system
s; (to be defined as we go along). This z will be used as the sequence of size-S(n)
node identifiers that will define our graph for inputs of size n.

Break z up into a sequence of t(n) = | T/S] bit-strings of length S(n) each; call
these our graph nodes or query strings qi, ... ,q:. (Due to the floor operation, up to
S — 1 bits may be left over; these aren’t used in any query strings.) We will design
our description system s; so that all the g;’s must be different. We accomplish
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this by allowing descriptions of the form (j, k, z'), where j and k are the indices of
two equal nodes g; = qx, j < k, and 2’ is & with the ¢ substring spliced out. The
description system would be defined to generate z from such a description by simply
looking up the string ¢; in 2’ and inserting a copy of it in the kth position. The
indices j and k would take O(log(T/S)) space, which is O(log T) space, which is o(S)
space, whereas we are saving S(n) space by not explicitly including the repetition
of g;. Therefore as long as n is sufficiently large, the total length of this description
of z would be less than |z|. With z being incompressible in a description system
that permits such descriptions, we know that ¢, ... ,¢; includes no repetitions.

Now we can specify exactly how the oracle defines our problem graph for inputs
of size n, as follows. Define query string go = 0% (a string of S 0-bits). Provisionally,
set f(gj—1) = g; for all 1 < j <t. These assignments are possible since all the g;’s
are different, as we just proved. (They also must be different from gg, but this is easy
to ensure as well, using descriptions of the form (j,z').) Given these assignments,
all strings of length n are in the language L(A) if and only if ¢;[0] = 1 (where ¢;[0]
means the first bit of ¢;), due to the earlier definition of L(A). (Definition 5.2.)

Suppose temporarily that our oracle definition were completed by letting f remain
undefined over all strings w for which we have not yet specified f(w). (Le., let
A(w) = w for these strings.) Under that assumption, simulate M;’s behavior on
the input 0™. If M; runs for more than ¢; + ¢;T steps, then it takes too much time,
and we are through addressing it. Otherwise, M; either accepts (1) or rejects (0).
If this answer is different from ¢;[0], then M; already fails to accept the language
L(A), and we are through with it.

Alternatively, suppose M;’s answer is correct with the given g;’s and it halts
within ¢; + ¢;T steps. But now, suppose that M; never asked any query that was
dependent on our choice of f(g;—1) during its run on input 0”. That is, suppose
M; never asked either query ¢;—; or query q;—1#¢;. In that case, let us change our
definition of f(g;—1) as follows, to change the correct answer to be the opposite of
what M; gave. Let ¢’ be a bit-string that is independent of all queries made by M;
in that simulation, and whose first bit is the opposite of M;’s answer. To ensure
such strings exist, note there are %25 bit-strings of length S having the desired
initial bit, but M; can make at most ¢; + ¢;T" queries since that is its running time.
We know T < 25, so with sufficiently large n, %25 > ¢; + ¢ T, and we can find our
node ¢’. Now, given ¢', we change f(q;_1) to be ¢'. This cannot possibly affect
the behavior of M; since it never asked about f(g;—1). But the correct answer is
changed to the first bit of ¢/, the new node number ¢ in the chain. Thus with this
new partial specification of f, M; fails to correctly decide L(A), and we can go on
to foil other machines.

Finally, suppose M; does ask query ¢;_ 1. We now show how to complete the
definition of our description system s;, source of our incompressible z, so that if M;
does ask query ¢;_1, then it must at some point take more than ¢; + ¢;S space.

To do this, we show that M; can always be interpreted as following the rules
of Bennett’s reversible “pebble game,” introduced in [13] and analyzed by Li and
Vitanyi in [21].

Pebble game rules. The game is played on a linear chain of nodes, which we will
identify with our query strings qq,...,q;- At any time during the game some set
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Move sequence —

FIG. 9. Bennett’s reversible pebble game strategy. Highlights point out the move made at
each step. (Compare with fig. 3(a), page 14, rotated 90°.)

A node ¢; can be pebbled or unpebbled only if it is node ¢ or if the previous node g;_1 is
pebbled. The strategy invented by Bennett [13], illustrated here, was shown by Li and Vitanyi to
be optimal [14] in terms of the number of pebbles required. But even with this optimal strategy,
to pebble node 2F we must at some time have more than k nodes pebbled. In this example, we
reach node 2% = 8 but must use 4 pebbles to do so. (After pebbling node 8, we can remove all
pebbles by undoing the sequence of moves.) The fact that a constant-size supply of pebbles can
only reach upwards along the chain a constant distance is crucial to our proof.

of nodes is pebbled. Initially, no nodes are pebbled. At any time, the player (in our
case, M;) may, as a move in the game, change the pebbled vs. unpebbled status of
node ¢; or any node g; for which the previous node g;_; is pebbled. Only one such
move may be made at a time.

The idea of the pebbled set is that it corresponds to the set of nodes that is cur-
rently “stored in memory” by M;. (We will show how to make this correspondence
explicit.) We will show that pebbling or unpebbling node g; will require querying
the oracle with query string g;_1 or g;_i#g;, respectively. The goal of the pebble
game is to eventually place a pebble on the final node g;. This corresponds to the
fact (already established) that M; must at some point ask query ¢;—1, or the oracle
we are constructing will foil it trivially.

Li and Vitanyi’s analysis of the pebble game [21] showed that no strategy can
win the game for 2% nodes or more without at some time having more than k nodes
pebbled at once. We will show that our machine M; and its space usage can be
modeled using the pebble game, so that for some sufficiently large n, the space
required to store the necessary number of pebbled nodes will exceed M;’s allowable
storage capacity ¢; + ¢;S.

For the oracle A as defined so far, consider the complete sequence of configura-
tions of M; given input 07, notated Cy,Cs,... ,Cr, where T' < ¢; + ¢ T is M;’s
total running time, in terms of the number of primitive operations (including oracle
calls) performed.
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Now, we need a couple of slightly more complex definitions.

DEFINITION 5.3.  (Previous and next queries involving a node.) For any time
point 7, where 0 < 7 < T', and for any node g¢; in the chain of nodes ¢1,... , ¢,
define the previous query involving ¢; (written PREV(g;)) to mean the most recent
oracle query in M;’s history before time 7 in which the query string (the one that
is present on the oracle tape at the start of the query) is either g;_1, gj—1#g;, g;, or
¢;#¢j+1. There may of course be no such query, in which case PREV(g;) does not
exist. Similarly, define the next query involving g; (written NEXT(g;)) to mean the
most imminent such query in M;’s future after time 7.

DEFINITION 5.4. (A node being pebbled at a point in time.) Node g; is pebbled
at time 7 iff at time 7 either:

(a) PREV(g;) exists and is either

a.l qj*l;

1)
a.2) g;, or
)
(b) NEXT(g;) exists and is

2) gj#gj41, or
(b3) qi—1#q;.

)

(

(

(a.3) gj#gj41, or
)

(b

(b

(With the exception that the final node ¢; is only considered pebbled in cases (a.1)
and (b.3).)

Note that this definition implies that g; is not pebbled iff both PREV(g;) =
gj—1#g; (or nonexistent) and NEXT(g;) = g;j—1 (or nonexistent).

Figure 11 illustrates the intuition behind this definition using the graphical no-
tation introduced in fig. 10. This graphical notation is especially nice because it
evokes the image of playing the pebble game or running Bennett’s algorithm (com-
pare fig. 11 with figs. 9 and 3).

The times at which a node is to be considered “pebbled” during a machine’s exe-
cution are indicated by the solid horizontal lines on 11. These times are determined,
according to definition 5.4 above, solely by the arrangement of triangles (represent-
ing oracle queries, see fig. 10) on the chart. Each vertex of a triangle generates
a line of pebbled times for the corresponding node, extending horizontally away
from the triangle until it hits another triangle. Query string 0 is never considered
pebbled because it is not considered to be a node.

5.4. Main Space-Bounding Lemma
Let p denote the number of distinct nodes out of ¢i,... ,q that are pebbled at
time 7. We now lower bound the size of C,, i.e. M;’s space usage at time 7.
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Query q astep#1 Query qj#qﬂat T

Query String

Time Step
FIG. 10. Triangle representation of oracle queries.
The shape and direction of the triangle is meant to evoke the fact that at the times just before
and after an oracle query, the oracle tape contains the shorter string q; at one of the times, and
the longer string g;#g;j41 at the other time. The set of triangles defines the set of pebbled nodes

at any time, as illustrated in figure 11.
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FIG. 11. Visualizing the definition of the set of pebbled nodes.

The times at which a node is pebbled (indicated by solid horizontal lines on the chart) are de-
termined, by definition, solely by the identities and timing of oracle queries and the corresponding
arrangement of triangles (see fig. 10) on the chart. Each vertex of a triangle generates a line of
pebbled times for the corresponding node, extending horizontally away from the triangle until it
encounters another triangle. (Except query string 0 is never pebbled, because it is not considered
to be a node.)

The above example shows a pattern of queries similar to the one that would occur if one tried
to apply Bennett’s [13] optimal pebble game strategy. (Compare with figs. 9 and 3.)

Node 2 is considered pebbled at time (a) both because of the previous and next queries (trian-
gles) involving node 2. Node 1 is not pebbled at times (b) because the previous and next queries
are go#q1 and go respectively. Node 4 is pebbled at all times after (c) because even though there
is no next query involving node 4, the previous query involving node 4 exists and is of the right
form (g3). Node 3 is pebbled at time (d) because although the previous query (e) is of the wrong
form (go#q3), the next query is okay.

Query (e) does not change the set of pebbled nodes and so is not considered to be a move in
the pebble game. All the other queries are considered to be pebbling or unpebbling moves in the
pebble game, depending on the direction of the corresponding triangle.

In the machine configuration C, at time 7, nodes 2, 3, and 4 are pebbled. But note that the
query string for node 2 can be found by simulating the machine backwards from time 7 until query
(e), and reading g2 off of the oracle tape. And if g3 is given, we can continue simulating backwards
until we get to time (c), and read ga off the oracle tape as well. The ability to perform this sort
of simulation, for any arrangement of triangles, either forwards or backwards in time as needed to
find out more than a constant number of the pebbled nodes is what makes our incompressibility
argument work.




30 MICHAEL P. FRANK AND M. JOSEPHINE AMMER

TABLE 5

Size accounting for the description format d used to prove lemma 5.1.

Component of description d Length
C, < 7pS
D 1 bit
z' (t—h)S<(t—1ip)S
h triples (4, A1j, k;) h-o(S) =o(ipS—1)
extra bits T—1S
TOTAL < T = |z| (for sufficiently large n)

LEMMA 5.1 (Minimum space required to pebble p nodes).  Given the preced-
ing definitions, |C| > pS.

Remark. The constant i here is somewhat arbitrary, and with straightforward
generalization of the below proof this constant could instead be replaced by % —€
for any constant € > 0. We conjecture, but have not proven, that it could also be
replaced by any constant 1 — €.)

Proof. Suppose C, were no larger than %pS bits. Then we can show that x
(the sequence of all ¢;’s) is compressible to a shorter description d, which we will
now specify. Our description system s; will be defined to process descriptions of
the required form.

First, note that for each node g; that is pebbled at time 7, that node is pebbled
either because of the previous query involving g;, because of the next query involv-
ing g;, or both. Therefore, either at least %p nodes are pebbled because of their
previous query, or at least %p nodes are pebbled because of their next query. Let D
be a direction (forwards or backwards) from time 7 in which one can find queries
causing h > %p nodes to be pebbled.

We now specify the shorter description d that describes x. It will contain an
explicit description of C., which by our assumption is no longer than %pS. It will
also specify the direction D and contain a concatenation z' of all ¢ — h of the nodes
g; (for 1 < j <t) that are not pebbled because of queries in direction D. The size
of ¢’ will be (¢—h)S. For each of the h nodes g; that are pebbled because of a query
in direction D, the description d will contain the node index j and an integer Ar;
giving the number of steps from step 7 to the time of the query. Also we include a
short tag k; indicating which of the 3 possible cases of queries causes the node to
be pebbled. Each of the indices j takes space O(logt) < log T < S, and similarly
each AT; takes space O(log T) < S. The tag is constant size. Thus for sufficiently
large n, all h < p of the (j, A7;, k;) tuples together take less than 1pS space. The
total space so far is less than ¢S. If ¢S < T, then z will contain some additional
bits beyond the concatenation of ¢i1¢2...q;, in which case d includes those extra
bits as well. The total length of d will still be less than T = |z|, as demonstrated
in table 5.
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We now demonstrate that the description d is sufficient to reconstruct z, and
give an algorithm for doing so. The function computed by this algorithm tells how
our description system s will handle descriptions of the form outlined above.

The algorithm will work by simulating M;’s operation in direction D starting from
configuration C;, and reading the identifiers of pebbled nodes from M;’s simulated
oracle tape as it proceeds. We can figure out which oracle queries correspond
to which nodes by referring to the stored times A7; and tags k;. Once we have
extracted the identifiers of all nodes pebbled in direction D, we print all the nodes
out in the proper order.

As an example, refer again to fig. 11. In the machine configuration marked at time
T, nodes 2, 3, and 4 are pebbled. But note that the query string for node 2 can be
found by simulating the machine backwards from time 7 until query (e), and reading
g2 off of the oracle tape. And if g3 is known, we can continue simulating backwards
until we get to time (c), and read g4 off the oracle tape as well. The ability to
perform this sort of simulation, for any arrangement of triangles, either forwards
or backwards in time as needed to find out at least half of the pebbled nodes is
what makes our incompressibility argument work. The algorithm is described and
verified in more detail in §7.

Given d, the algorithm produces z, and with n chosen large enough, the length
of the description will be smaller than z itself, contradicting the assumption of z’s
incompressibility relative to s. Therefore for these sufficiently large n, all configura-
tions in which p nodes are pebbled must actually be larger than ipS. This completes

the proof of lemma 5.1. MW

Interpreting any M; as playing the pebble game. Now, given the definition of the
set of pebbled nodes from earlier (defn. 5.4), it is easy to see how M;’s execution
history can be interpreted as the playing of a pebble game. Whenever M; performs
a query g; and node g;4; was not already pebbled immediately prior to this query,
we say that M; is pebbling node gj+1 as a move in the pebble game. Similarly,
whenever M; performs a query g;#g;4+1 and node g;11 is not pebbled immediately
after this query, we say that M; is unpebbling node gj+1. All other oracle queries
and computations by M; are considered as pauses between pebble game moves of
these two forms. For example, in fig. 11, query (e) (the first occurrence of ga#gs)
is not considered a move in the pebble game, since it doesn’t change the set of
pebbled nodes as defined by definition 5.4.

It is obvious that under the above interpretation, all moves must obey the main
pebble game rule, i.e. that the pebbled status of node g; can only change if j = 1 or
if node g;_1 is pebbled during the change. The move is a query, and the presence
of the query means the node g;_; is pebbled both before and after the query, by
definition 5.4, unless j = 1 (we consider go not to be a node).

To show that no nodes are initially pebbled (another pebble game rule) takes
only a little more work. Suppose that some nodes were pebbled in M;’s initial
configuration, and consider a node g; out of these that is pebbled due to the earliest
query involving any of the initially-pebbled nodes. Then a shorter description of z
(for sufficiently large n) can be given as (j, A7, k;, '), where 2’ is = with ¢; spliced
out. This description could be processed via simulation of M; to produce z in much
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the same way as in lemma 5.1, except that this time, the starting configuration C
can be produced directly from the known values of M; and n, and need not be
explicitly included in the description. Of course the description system s needs to
be able to process descriptions of this form. Then the incompressibility of z in s
shows that the assumption that g; is initially pebbled is inconsistent.

Thus, M; can be seen as exactly obeying all the rules of the Bennett pebble game.
Now, Li and Vitanyi have shown [21] that any strategy for the pebble game that
eventually pebbles a node at or beyond node 2* must at some time have at least k+1
nodes pebbled at once. So let us simply choose n large enough so that #(n) > 2F for
some k > 4(c; + 1), and also so that S > ¢;. Then at times 7 when p is maximum,
M;’s space usage is (using lemma 5.1) |C;| > 1pS > $kS > (c; + 1)S > ¢; + ¢;S.

The above discussion establishes that machine M; takes more than space ¢; + ¢;S
if it correctly decides membership in L(A) for inputs of length n; = n and takes
only time ¢; + ¢; T, so long as the oracle A is consistent with the definition above.
Since machine M;’s behavior on the input 0™ only depends on the values of the
successor function f(b) for bit-strings b up to a certain size (call it z), we are free
to extend the oracle definition to similarly foil machine M;y; by picking n;y1 so
that S(n;y1) > 2. If one continues the oracle definition process in this fashion for
further M;’s ad infinitum, then for the resulting oracle, it will be the case that for
any M; and constant ¢; in the entire infinite enumeration, the machine will either
get the wrong answer or take more than time ¢; + ¢; T or space ¢; + ¢;S on input
0™. Thus, no reversible machine can actually decide L(A) in time O(T) and space
O(S), and so L(A) ¢ RTISP(T,S).

Note that this entire oracle construction, as described, is computable. If we are
given procedures for computing S(n) and T(n), we can write an effective procedure
that, given any finite oracle query, returns A’s response to the query. The details
of the oracle construction algorithm follow directly from the above definition of A,
but would be too tedious to present here. This concludes our proof of theorem 5.1.

Note that in the above proof, we used the fact that the number of pebbles required
to get to the final node grows larger than any constant as n increases. But the actual
rate of growth can be used as well, to give us an interesting lower bound.

5.5. Lower Bound Corollary

COROLLARY 5.1. (Lower bound on space for linear-time relativizable reversible
simulation of irreversible machines.) For all ST-constructible S, T and computable
S' such that S < T < 25 and S' < Slog(T/S), there exists a computable, self-
reversible oracle A such that RTISP(T,S')4 2 TISP(T,S)4.

Proof. (Sketch.) Essentially the same as theorem 5.1 part (b), but with S’ in
place of S in appropriate places. In the last part of the proof, M; is shown to
take more than ¢; + ¢;S' space by using lemma 5.1, together with the fact that p >

|lg| T/S]| pebbles are required to reach the final node. ®
This result implies that any general linear-time simulation of irreversible ma-

chines by reversible ones that is relativizable with respect to all self-reversible ora-
cles must take space Q(Slog(T/S)).



REVERSIBLE AND IRREVERSIBLE SPACE-TIME COMPLEXITY CLASSES 33

The most space-efficient linear-time reversible simulation technique that is cur-
rently known was provided by Bennett ([13], p. 770), and analyzed by Levine and
Sherman [22] to take space O(S(T/S)/(0-5818(T/S))). Bennett’s simulation can be
easily seen to work with all self-reversible oracles, so it gives a relativizable upper
bound on space. There is a gap between it and our lower bound, due to the fact
that the space-optimal pebble-game strategy referred to in our proof takes more
than linear time in the number of nodes. A lower bound on the number of pebbles
used by linear time pebble game strategies would allow us to expand our lower
bound on space, hopefully to converge with the existing upper bound.

6. NON-RELATIVIZED SEPARATION

We now explain how the same type of proof can be applied to show a non-
relativized separation of RTISP(T,S) and TISP(T,S) for a certain slowly-growing
space bound S, when inputs are accessed in a specialized way that is similar to an
oracle query, and the input size is not included in the space usage.

Input framework. Machine inputs will be provided in the form of a random-
access read-only memory I, which may consist of 2° b-bit words for any integer
b > 0. The length of this input may be considered to be n(b) = b2° bits; let b(n) be
the inverse of this function. The machine will have a special input access tape which
is unbounded in one direction, initially empty, and is used for reversibly accessing
the input ROM via the following special operations.

Get input size. If the input access tape is empty before this operation, after the
operation it will contain b written as a binary string. If the tape contains b before
the operation, afterwards it will be empty. In all other circumstances, the query is
a no-op.

Access input word. If the input access tape contains a binary string a of length
b before the operation, afterwards it will contain the pair (a, I[a]) where I[a] is a
length-b binary string giving the contents of the input word located at address a.
If the tape contains this pair before the operation, afterwards it will contain just a.
Otherwise, nothing happens.

THEOREM 6.1. (Non-relativized separation of reversible and irreversible space-
time.) For models using the above input framework, and for S(n) = b(n) and any
ST-constructible T(n) such that S < T < 25, RTISP(T,S) # TISP(T,S).

Proof.  (Sketch following proof of theorem 5.1.) For input I of length n = b2°,
define result bit r(I) to be the first bit in the b-bit string given by

I[I[...1[0%]...]).
N——
LT/s]

Let language L = {I : r(I) = 1}. L € TISP(T,S) because an irreversible machine
can simply follow the chain of |T/S| pointers from address 0°, using space O(S)
(not counting the input) and time O(T).

Assume there is a reversible machine M that decides L in ¢ + ¢S space and
¢ + ¢T time for some ¢. Let b be sufficiently large for the proof below to work.
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Let s be a certain description system to be defined. Let ¢ = |T/S|. Let = be a
length-tS string incompressible in s. Let w;...wy; = x where all w; are size b.
Restrict s so that all the words w; must be different from each other and from
0°. Let I be an input of length n = b2° such that I[0°] = w;, and I[w;] = wit1
for 1 < i < t, and I[a] = 0° for every other address a. M must at some time
access I[wy_1] because otherwise we could change the first bit of Ifw;—;1] to be
the opposite of whatever M’s answer is, and M would give the wrong answer.
Assign a set of pebbled nodes to each configuration of M’s execution on input
like in the oracle proof, except that this time, input access operations take the
place of oracle calls. Show, as in lemma 5.1, that the size of any of these con-
figurations is at least %pS where p is the number of pebbled nodes, by defining s
to allow descriptions that are interpreted by simulating M forwards or backwards
and reading pebbled nodes from the input access tape. As before, the machine
must therefore take space ©(Slog(T/S)), which for sufficiently large n contradicts

our assumption that the space is bounded by ¢ + ¢S. Thus L ¢ RTISP(T,S). ®

CoOROLLARY 6.1. Non-relativized lower bound on space for linear-time reversible
simulations. For S = b(n), computable S' < Slog(T/S), and ST -constructible T(n)
such that S < T < 25, RTISP(T,S') 2 TISP(T,S).

Proof. (Sketch.) As in corollary 5.1, but with theorem 6.1. ®

Such a T exists because b can be found in space and time O(logb) using the
“get input size” operation, after which T = b2, for example, can be found in space
O(logb) and time O(log® b).

COROLLARY 6.2. Thus, any reversible machine that simulates irreversible ones
without asymptotic slowdown takes Q(Slog(T/S)) space in some cases, given the
type of input model presented in this section.

Again, we emphasize that this particular lower bound is probably not tight.

We should also note that this particular non-relativized result is not very com-
pelling, because with a space bound that is much less than the input size, the space
usage is unlikely to reflect a dominant component of system cost for real-world
applications.

7. DECOMPRESSION ALGORITHM

It is probably not obvious to the reader that the algorithm that we briefly men-
tioned in the proof of lemma 5.1 in §5.4 can be made to work properly. In this
section we give the complete algorithm and explain why it works.

The algorithm, shown in figure 12, essentially just simulates M;’s operation in
direction D starting from configuration C, and reads the identifiers of the pebbled
nodes off of M;’s simulated oracle tape. The bulk of the algorithm is in the details
showing how to simulate all oracle queries correctly.

There is a small subtlety in the fact that this algorithm has, built into it, some
of the values of f that are defined by the oracle. Yet the algorithm is part of the
definition of our description system s;, which is used to pick z and define the f(g;)
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values. This would be a circularity that might prevent the oracle from being well-
defined, if not for the fact that the portion of f that is built in, that is, f(b) for
|b] < S, is disjoint from the portion of f that depends on this algorithm, that is,
only values of f(b) for |b] > S(n;). Thus there is no circularity.

The f() values for the entire infinite oracle can be enumerated by enumerating all
values of i in sequence, and for each one, computing the appropriate values of M;
and ¢;, and choosing an n; that satisfies all the explicit and implicit lower bounds
on n that we mentioned above. Then, n; is used in the above algorithm to allow
us to define s; and choose the appropriate x, which determines f(b) for all b where
|b| = S(n;); these values of f can then be added to the table for use in the algorithm
later when running on higher values of .

We now explain why the simulation carried out by the (oracle-less) decompression
algorithm imitates the real oracle-calling program exactly. When we come to an
oracle query operation where the queried bit-string(s) do not appear in our g¢[j]
array and do not have a matching A7;, then we know the bit-string(s) must not
correspond to a real node in ¢y, ... , g, because if they did, then either they were
not pebbled due to queries in direction D, in which case they would have been in
the description d and would have been present in the initial g array, or else the first
query that involved them must have been before the current one (or else some A7;
would match), in which case they would have been added to the ¢ array earlier.

Moreover, when we get to a single query g;, we know we can look up gj41 to
answer the query, because it must already have been stored. Either g;; was not
pebbled in direction D in which case it was stored originally, or it was pebbled in
direction D in which case the first query involving it must have been before this
one, since this query is not of the type that would have caused the node to be
pebbled in direction D. In either case we will already have a value in array entry
qlj +1].

Given any description d derived from the execution history of a real M;, the
simulation will eventually find values for all nodes, since either they were given
initially or they are found eventually as we simulate. Thus the algorithm prints z,
as required for the proof of lemma 5.1.

8. BEYOND THIS PROOF

In light of the work above, an obviously desirable next step would be to show that
RTISP(T,S) # TISP(T,S) (and demonstrate corresponding tight lower bounds)
for a larger class of space-time functions S, T in a reasonable serial model of com-
putation without an oracle or a black-box input. A similar problem of following a
chain of nodes may still be useful for this. But when there is no oracle, and when
the time bound is larger than the input length T > n, there is no opportunity to
specify an incompressible chain of nodes to follow. Instead, the function f mapping
nodes to their successors must be provided by some actual computation that is
specified by the relatively short input. It may be helpful in such a proof if f is
non-invertible, or is a one-way invertible function, whose inverse might be hard to
compute. But f will still have some structure in general, and so it may be very
difficult to prove that there are no shortcuts that might allow the result of repeated
applications of f to be computed reversibly using little time or space.
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ArLgoriTEM 2 (DECOMPRESS(d)).

1. Given description d as described on p. 30,
2. Let g[1]...¢[t] be a table of node values, initially all NULL.
3. Initialize all g[j]’s not pebbled in direction D, as specified by description d.
4. Simulate M; in direction D starting from configuration C, as follows:
5. To simulate a single operation of M;:
6. If it’s a non-query operation, then
7. simulate it straightforwardly, and proceed.
8. Otherwise, it’s an oracle query; examine the oracle tape.
9. If the tape is not of the form b or b#c for bit-strings b, ¢, where |b| = |¢|,
10. do nothing for this operation.
11. Else, if |b| < S, then look up f(b) in a computable table,
12. set the oracle tape appropriately, and proceed.
13. Else, if |b| > S,then do nothing for this operation.
14. Else, if the oracle tape is of the form b, then
15. If the current step count matches some A7; in direction D,
16. then set ¢[j] = b.
17. If b = q[j] for some j < t,
18. then set the oracle tape to b#q[j + 1],
19. else, do nothing for this operation.
20. Else, if the oracle tape is of the form b#c, then
21. For each A7; in direction D matching the current step count,
22. set g[j] to b or ¢ depending on tag k;.
23. If b = q[j] and ¢ = ¢[j + 1] for some j, set oracle tape to b,
24. else do nothing for this operation.
25. Increment count of the number of steps simulated.

26. Continue simulating steps of M; until step count exceeds largest A7;.
27. Print all g[j]’s.

FIG. 12. Algorithm to print the incompressible chain of nodes z via simulation of the
reversible machine M;.
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9. CONCLUSION

Although the above results are inconclusive with respect to their real-world im-
plications, it seems likely that reversible algorithms in the real world will indeed
in many cases require algorithmic space-time costs that exceed those of traditional
computations, by factors that are at least logarithmic and more likely small poly-
nomials in the cost of the original computation.

However, this is not to say that reversible computing will never be useful. For
contexts where the cost of energy is high compared to the cost of computation,
or where the computation would benefit from a 3-D parallel architecture which
would tend be difficult to cool effectively, we have shown elsewhere that the overall
cost per performance of a partially-reversible solution may be lower than that of
a traditional irreversible design, despite the higher algorithmic costs [5]. Also,
someday we might carry out quantum computations which would be demonstrably
much more efficient than traditional computation on some problems, despite their
reversibility [31]. So, the exact magnitude of the algorithmic cost of reversibility is
still important, because it affects the location of the optimal tradeoff points for a
reversible design, within those contexts where it is useful.

We believe that the most fruitful direction for future work in reversible comput-
ing theory at this point is to optimize the parameters of Bennett’s algorithm in a
way that minimizes the hardware cost per unit performance of parallel reversible
architectures, as a function of whatever upper bounds on power dissipation per
unit performance may arise from the requirements presented by particular appli-
cation contexts. Such analyses should take into account the asymptotic behavior
of realistic physical implementations of reversible computing; for example, there is
an additional asymptotic slowdown factor not accounted for in the present paper
which is required for the quasi-adiabatic (i.e., asymptotically reversible) physical
operation of real logic devices. Additionally, in order for the analytical model to be
useful for estimating the feasibility of real-world computer designs, the model would
also need to incorporate the specific constant factors and limits on reversibility that
would be incurred in a specific, feasible real-world reversible technology.

In the years since the first manuscripts of this paper were written and circulated
(circa 1997), we have been developing elements of some practical reversible hard-
ware technologies (cf. [11, 32, 33, 34]) and carrying out the accompanying tradeoff
analysis. The results of the most recent (and still unpublished) work will be an-
nounced in future reports to be presented to the computer science & engineering
community.
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