Flash Calculations

A feed stream enters a flash unit at 60 ^{o}C . The composition of the stream as well as the Antoine coefficients are given below:

Compound	Flow rate (kmol/hr)	$B.Pt.(^{o}C)$	A	В	С
Hexane	20	68.7	6.87776	1171.530	224.366
1,2 Dichloroethane	30	83.4	7.04636	1305.400	230.000
Methylcyclohexane	50	100	6.82689	1272.864	221.630

Antoine Equation:

$$log_{10}(P) = A - \frac{B}{T+C}$$

where P is the vapor pressure in mm Hg and T is the temperature in o C.

- 1. The flash operates at 80 ^{o}C and 1 bar. What is the composition of the liquid and vapor streams exiting the flash unit?
- 2. The flash operates at 80 ^{o}C and it is desired to have a vapor fraction of 20 % ($\frac{V}{F} = 0.20$). What is the pressure at which the flash unit operates and what is the composition of the liquid and vapor streams exiting the flash unit?
- 3. The flash operates at 1 bar and it is desired to have a vapor fraction of 25 % ($\frac{V}{F} = 0.25$). What is the temperature at which the flash unit operates and what is the composition of the liquid and vapor streams exiting the flash unit?
- 4. The flash operates at 80 °C and it is desired that the split fraction of 1,2 Dichloroethane in the vapor phase be 0.25 ($\xi_2 = 0.25$). Compute the pressure at which the flash unit operates and the composition of the liquid and vapor streams exiting the flash unit.

Instructions

- Do the above problems in CHEMCAD.
- How do the results change if you use different "K-value" methods? Tabulate your results to show this comparison.
- Do these problems by "hand calculations".