Distillation using CHEMCAD

The following feed at 82 °C and 1035 kN/m² is to be distilled at that pressure so that the vapor distillate contains 98% of the C_3H_8 but only 1% of the C_5H_{12} .

Component	mole fraction
CH_4	0.03
C_2H_6	0.07
$n-C_3H_8$	0.15
$n-C_4H_{10}$	0.33
$n - C_5 H_{12}$	0.30
$n - C_6 H_{14}$	0.12

- 1. Estimate the minimum reflux ratio, minimum number of stages and the corresponding products using "hand-calculations" as well as the short-cut column method in CHEMCAD.
- 2. Compute the actual reflux ratio and the actual number of trays by "hand calculations" (Fenske-Underwood-Gilliland method). How do these results compare with the short-cut column method in CHEMCAD.
- 3. Use the reflux ratio computed above in the SCDS column in CHEMCAD and compute the distillate and bottoms compositions.
- 4. What are the heat duties of the total condenser and total reboiler?
- 5. How do the results change if a partial condenser and partial reboiler are used?