Introduction to Process Design

The buck stops here

Anonymous (sign on President Truman's desk)

The buck stops here

Anonymous (sign on President Truman's desk)

Process design synthesizes knowledge from several disciplines.

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering
 - Process Control

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering
 - Process Control
- Process design involves a number of issues that are qualitative in nature.

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering
 - Process Control
- Process design involves a number of issues that are qualitative in nature.
 - Safety

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering
 - Process Control
- Process design involves a number of issues that are qualitative in nature.
 - Safety
 - Environmental Considerations

- Process design synthesizes knowledge from several disciplines.
 - Thermodynamics
 - Transport Phenomena
 - Reaction Engineering
 - Process Control
- Process design involves a number of issues that are qualitative in nature.
 - Safety
 - Environmental Considerations
 - Ethics

- Board of Directors' Design Problem
 - Generation of wealth
 - Core Competency versus diversification

- Board of Directors' Design Problem
 - Generation of wealth
 - Core Competency versus diversification
- Discovery of New Projects
 - Long term wealth generation
 - Capital investment needs

- Board of Directors' Design Problem
 - Generation of wealth
 - Core Competency versus diversification
- Discovery of New Projects
 - Long term wealth generation
 - Capital investment needs
- Feedback and Consumer Reaction
 - How well will the product sell?
 - Who is the competition?

- Board of Directors' Design Problem
 - Generation of wealth
 - Core Competency versus diversification
- Discovery of New Projects
 - Long term wealth generation
 - Capital investment needs
- Feedback and Consumer Reaction
 - How well will the product sell?
 - Who is the competition?
- Planning and Organizational Design
 - Development of design team
 - Budget and time line

 Generation of conceptual flowsheet and design alternatives

- Generation of conceptual flowsheet and design alternatives
- Preliminary process evaluation of alternatives using simplified models

- Generation of conceptual flowsheet and design alternatives
- Preliminary process evaluation of alternatives using simplified models
- Detailed process evaluation using commercial simulators

- Generation of conceptual flowsheet and design alternatives
- Preliminary process evaluation of alternatives using simplified models
- Detailed process evaluation using commercial simulators
- Economic evaluation

- Generation of conceptual flowsheet and design alternatives
- Preliminary process evaluation of alternatives using simplified models
- Detailed process evaluation using commercial simulators
- Economic evaluation
- Safety and environmental issues

Layout and 3-D Modeling

- Equipment purchase and installation
- Control systems design

Layout and 3-D Modeling

- Equipment purchase and installation
- Control systems design

Construction

- Layout and 3-D Modeling
 - Equipment purchase and installation
 - Control systems design
- Construction
- Startup and Commissioning

- Layout and 3-D Modeling
 - Equipment purchase and installation
 - Control systems design
- Construction
- Startup and Commissioning
- Plant Operation
 - GMP

- Layout and 3-D Modeling
 - Equipment purchase and installation
 - Control systems design
- Construction
- Startup and Commissioning
- Plant Operation
 - GMP
- Debottlenecking
 - Retrofitting
 - Control systems analysis

- Layout and 3-D Modeling
 - Equipment purchase and installation
 - Control systems design
- Construction
- Startup and Commissioning
- Plant Operation
 - GMP
- Debottlenecking
 - Retrofitting
 - Control systems analysis
- Decommissioning

Typically an ill-posed problem is given to you.

- Typically an ill-posed problem is given to you.
- Your objective is to convert this problem to a well posed problem.

- Typically an ill-posed problem is given to you.
- Your objective is to convert this problem to a well posed problem.
- Then, utilize quantitative engineering analysis to solve the problem.

Before you do complicated engineering analysis, the first step is to do an **ECONOMIC ANALYSIS** based on input-output information.

- Typically an ill-posed problem is given to you.
- Your objective is to convert this problem to a well posed problem.
- Then, utilize quantitative engineering analysis to solve the problem.
- Utilize engineering judgment to analyze the solution.

Before you do complicated engineering analysis, the first step is to do an **ECONOMIC ANALYSIS** based on inputoutput information.

It is desired to produce 150,000 cubic meters of 190 proof ethanol per year from a feed of 75 million kg/year of ethylene. The ethylene feed is 96 mole % ethylene, 3 mole % propylene and 1 mole % methane. The feed costs \$0.18 per pound and it is estimated that ethanol can be sold for \$2.55 per gallon.

It is desired to produce 150,000 cubic meters of 190 proof ethanol per year from a feed of 75 million kg/year of ethylene. The ethylene feed is 96 mole % ethylene, 3 mole % propylene and 1 mole % methane. The feed costs \$0.18 per pound and it is estimated that ethanol can be sold for \$2.55 per gallon.

We first need to make sure that we actually have the **POTENTIAL** to make money in this process.

It is desired to produce 150,000 cubic meters of 190 proof ethanol per year from a feed of 75 million kg/year of ethylene. The ethylene feed is 96 mole % ethylene, 3 mole % propylene and 1 mole % methane. The feed costs \$0.18 per pound and it is estimated that ethanol can be sold for \$2.55 per gallon.

We first need to make sure that we actually have the **POTENTIAL** to make money in this process.

Fundamental Rule of Economics: SELLING PRICE SHOULD BE GREATER THAN COST PRICE

<u>Step 1:</u> Price of 190 proof ethanol = 2.55/gal150,000 m^3/yr = 39.6 million gal/yr= \$101 million/yr

Step 1:

- Price of 190 proof ethanol = \$2.55/gal
- 150,000 m^3/yr = 39.6 million gal/yr
- = \$101 million/*yr*

Step 2:

190 proof ethanol: 85.44 mole % ethanol + 14.56 mole % water. Thus, 1 kg mole of 190 proof ethanol is: (0.8544)(46.07) + (0.1456)(18.02) = 41.99 kg

Step 1:

- Price of 190 proof ethanol = \$2.55/gal
- 150,000 m^3/yr = 39.6 million gal/yr
- = \$101 million/*yr*

Step 2:

190 proof ethanol: 85.44 mole % ethanol + 14.56 mole % water. Thus, 1 kg mole of 190 proof ethanol is: (0.8544)(46.07) + (0.1456)(18.02) = 41.99 kg

(because mol. wt. of ethanol is 46.07 and mol. wt. of water is 18.02)

Weight fraction of ethanol is: $\frac{(0.8544)(46.07)}{41.99} = 0.937$ Density of 190 proof ethanol is 810 kg/m^3 . Thus, moles of ethanol in 150,000 m^3/yr of 190 proof ethanol is: $\frac{(0.937)(150,000)(810)}{46.07} = 2,471,000 \ kmol/yr$ Weight fraction of ethanol is: $\frac{(0.8544)(46.07)}{41.99} = 0.937$ Density of 190 proof ethanol is 810 kg/m^3 . Thus, moles of ethanol in 150,000 m^3/yr of 190 proof ethanol is: $\frac{(0.937)(150,000)(810)}{46.07} = 2,471,000 \ kmol/yr$

Assuming 100% conversion of ethylene to ethanol, to produce 1 mole of ethanol requires 1 mole of ethylene. Thus, to produce 2,471,000 kmol/yr of ethanol, we need: (2,471,000)(28.05) = 69,310,000 kg/yr of ethylene The feed is impure. With 96 moles of ethylene, we are also getting 3 moles of propylene and 1 mole of methane.

The feed is impure. With 96 moles of ethylene, we are also getting 3 moles of propylene and 1 mole of methane.

This amounts to the following:

$$\frac{3}{96}(2,471,000)(42.08) = 3,249,000 \ kg/yr \text{ propylene}$$
$$\frac{1}{96}(2,471,000)(16.04) = 412,900 \ kg/yr \text{ methane}$$

The feed is impure. With 96 moles of ethylene, we are also getting 3 moles of propylene and 1 mole of methane.

This amounts to the following:

$$\frac{3}{96}(2,471,000)(42.08) = 3,249,000 \ kg/yr \text{ propylene}$$
$$\frac{1}{96}(2,471,000)(16.04) = 412,900 \ kg/yr \text{ methane}$$

Total feed = $72,980,000 \ kg/yr$ Cost of feed = \$0.18/lb (given)

Thus total feed cost =
$$(72, 980, 000)(2.2046)(0.18)$$

 \approx \$29 million

The reaction to convert ethylene to ethanol requires water. Assuming that the cost of water is negligible: The reaction to convert ethylene to ethanol requires water. Assuming that the cost of water is negligible:

MAXIMUM PROFIT POTENTIAL is:

- Profit = Selling Price-Cost Price
 - = \$101 million \$29 million
 - = \$72 million

The reaction to convert ethylene to ethanol requires water. Assuming that the cost of water is negligible:

MAXIMUM PROFIT POTENTIAL is:

- Profit = Selling Price-Cost Price
 - = \$101 million-\$29 million
 - = \$72 million

Thus, we need a process where equipment cost plus operating cost are less than \$72 million.

Ethylene	Ethanol	Max. Profit
0.18/lb	2.55/gal	\$72 million
0.16/lb	2.04/gal	million
0.18/lb	2.68/gal	million
0.21/lb	3.08/gal	million

Ethylene	Ethanol	Max. Profit
0.18/lb	2.55/gal	\$72 million
0.16/lb	2.04/gal	\$55 million
0.18/lb	2.68/gal	million
0.21/lb	3.08/gal	million

Ethylene	Ethanol	Max. Profit
0.18/lb	2.55/gal	\$72 million
0.16/lb	2.04/gal	55 million
0.18/lb	2.68/gal	\$77 million
0.21/lb	3.08/gal	million

Ethylene	Ethanol	Max. Profit
\$0.18/lb	2.55/gal	\$72 million
0.16/lb	2.04/gal	\$55 million
0.18/lb	2.68/gal	\$77 million
0.21/lb	3.08/gal	\$89 million