Linear Mass Balances

The buck stops here

Anonymous (sign on President Truman's desk)

The linear mass balances on various units are combined to analyze the ethanol process.

Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).

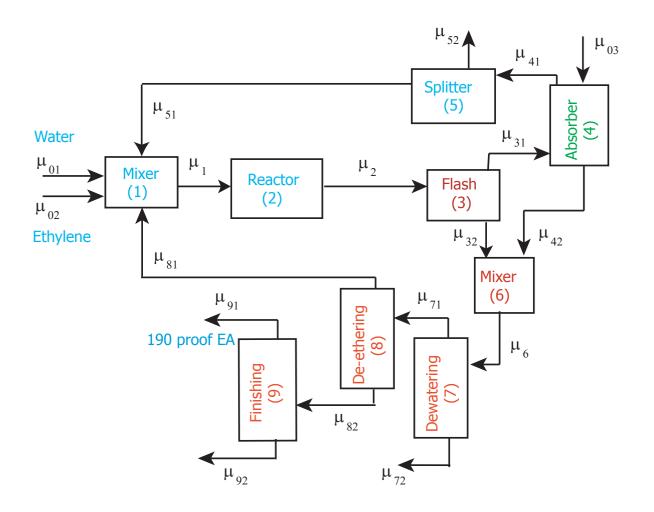
- Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).
- Step 2: Determine coefficients for linear models in each unit $(\alpha_{k/n}, \beta, N, \xi)$.

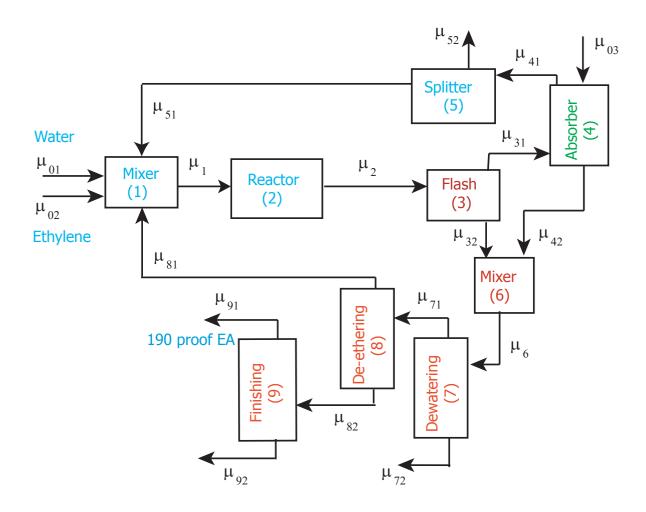
- Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).
- Step 2: Determine coefficients for linear models in each unit $(\alpha_{k/n}, \beta, N, \xi)$.
- Step 3: Setup linear equations and solve for flowrates of each component.

- Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).
- Step 2: Determine coefficients for linear models in each unit $(\alpha_{k/n}, \beta, N, \xi)$.
- Step 3: Setup linear equations and solve for flowrates of each component.
- Step 4: Check guessed values from the first step.

- Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).
- Step 2: Determine coefficients for linear models in each unit $(\alpha_{k/n}, \beta, N, \xi)$.
- Step 3: Setup linear equations and solve for flowrates of each component.
- Step 4: Check guessed values from the first step.
 - Calculate P and T from flowrates. If different from Step 1, go to Step 2 using these values of P and T.

- Step 1: Guess P and T levels in the flowsheet. Specify recoveries, split fractions, ... (use degrees of freedom for each unit).
- Step 2: Determine coefficients for linear models in each unit $(\alpha_{k/n}, \beta, N, \xi)$.
- Step 3: Setup linear equations and solve for flowrates of each component.
- Step 4: Check guessed values from the first step.
 - Calculate P and T from flowrates. If different from Step 1, go to Step 2 using these values of P and T.
 - If flowsheet does not meet specifications, change P and/or T or modify flowsheet.

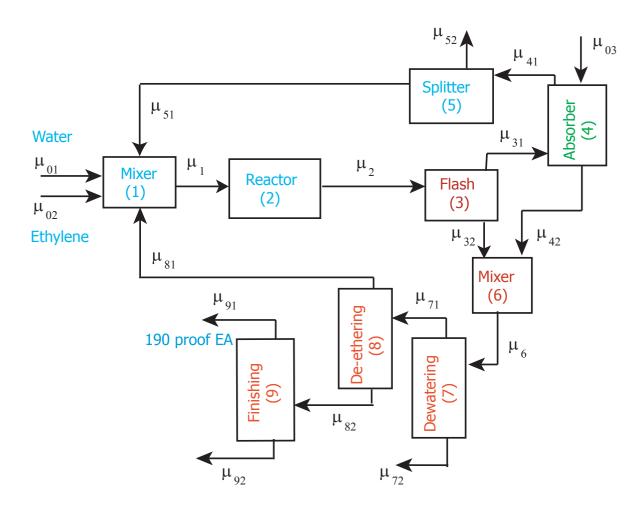




 $M: Methane \qquad EL: Ethylene \qquad PL: Propylene$

 $DEE: Diethyl \ ether \qquad EA: \ Ethanol$

 $IPA: Isopropyl\ alcohol \qquad W:\ Water$



 $M: Methane \qquad EL: Ethylene \qquad PL: Propylene$

 $DEE: Diethyl \ ether \qquad EA: \ Ethanol$

 $IPA: Isopropyl\ alcohol \qquad W:\ Water$

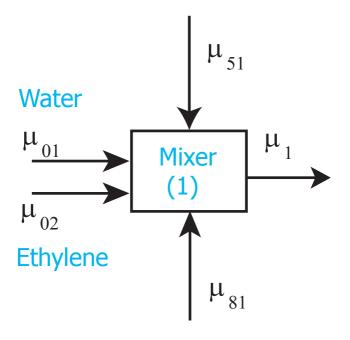
Croton aldehyde is neglected in the mass balance.

Mixer

Basis: $100 \ gmol/s$ of μ_{02} (ethylene feed)

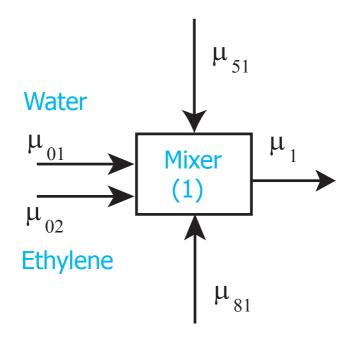
Mixer

Basis: $100 \ gmol/s$ of μ_{02} (ethylene feed)

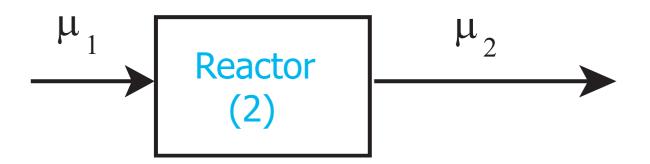


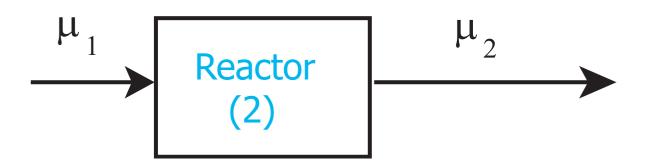
Mixer

Basis: $100 \ gmol/s$ of μ_{02} (ethylene feed)



$$\mu_{01} + \mu_{02} + \mu_{51} + \mu_{81} = \mu_1$$





The following reactions are occurring:

$$EL + W \longrightarrow EA$$
 $\eta_1 = 0.07$ $(EL \ to \ EA)$
 $PL + W \longrightarrow IPA$ $\eta_2 = 0.007$ $(PL \ to \ IPA)$
 $2EA \rightleftharpoons DEE + W$

The following reactions are occurring:

$$EL + W \longrightarrow EA$$
 $\eta_1 = 0.07$ $(EL \ to \ EA)$
 $PL + W \longrightarrow IPA$ $\eta_2 = 0.007$ $(PL \ to \ IPA)$
 $2EA \rightleftharpoons DEE + W$

Equilibrium can be maintained via recycle at $590\ K$ and $69\ bar$ according to:

$$\frac{[DEE][W]}{[EA]^2} = 0.2$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$

$$\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$

$$\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$$

$$\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$

$$\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$$

$$\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$$

$$\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$

$$\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$$

$$\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$$

$$\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$
 $\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$
 $\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$
 $\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$

$$\mu_2(EA) = \eta_1 \mu_1(EL) + \mu_1(EA)$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$
 $\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$
 $\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$
 $\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$

$$\mu_2(EA) = \eta_1 \mu_1(EL) + \mu_1(EA)$$

 $\mu_2(IPA) = \eta_2 \mu_1(PL) + \mu_1(IPA)$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$
 $\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$
 $\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$
 $\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$

$$\mu_2(EA) = \eta_1 \mu_1(EL) + \mu_1(EA)$$

$$\mu_2(IPA) = \eta_2 \mu_1(PL) + \mu_1(IPA)$$

$$\mu_2(W) = \mu_1(W) - \eta_1 \mu_1(EL) - \eta_2 \mu_1(PL)$$

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$
 $\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$
 $\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$
 $\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$

Solving for the remaining components:

$$\mu_{2}(EA) = \eta_{1}\mu_{1}(EL) + \mu_{1}(EA)$$

$$\mu_{2}(IPA) = \eta_{2}\mu_{1}(PL) + \mu_{1}(IPA)$$

$$\mu_{2}(W) = \mu_{1}(W) - \eta_{1}\mu_{1}(EL) - \eta_{2}\mu_{1}(PL)$$

We choose to use $\mu_1(W) = 0.6\mu_1(EL)$.

$$\mu_2(M) = \mu_1(M) \quad (Inert component)$$
 $\mu_2(EL) = (1 - \eta_1)\mu_1(EL)$
 $\mu_2(PL) = (1 - \eta_2)\mu_1(PL)$
 $\mu_2(DEE) = \frac{0.2[\mu_2(EA)]^2}{\mu_2(W)}$

Solving for the remaining components:

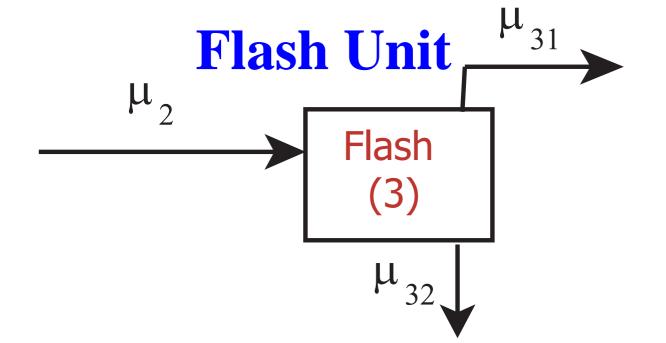
$$\mu_{2}(EA) = \eta_{1}\mu_{1}(EL) + \mu_{1}(EA)$$

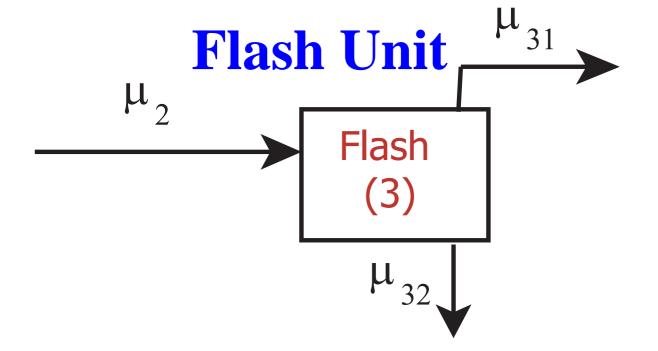
$$\mu_{2}(IPA) = \eta_{2}\mu_{1}(PL) + \mu_{1}(IPA)$$

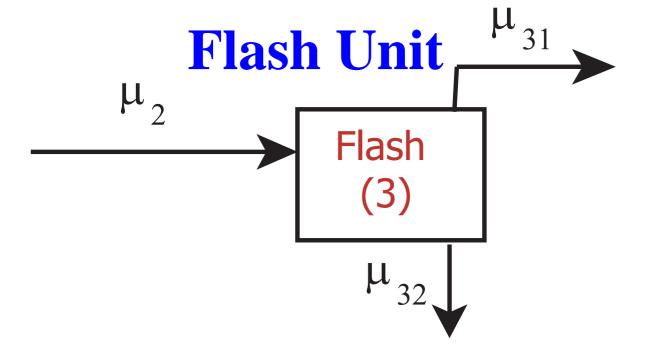
$$\mu_{2}(W) = \mu_{1}(W) - \eta_{1}\mu_{1}(EL) - \eta_{2}\mu_{1}(PL)$$

We choose to use $\mu_1(W) = 0.6\mu_1(EL)$. Limiting component is actually W!

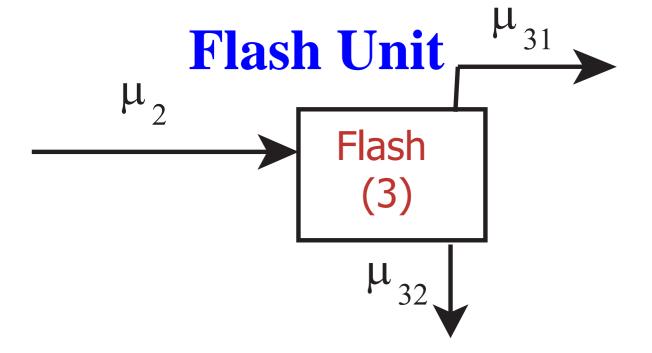
Flash Unit



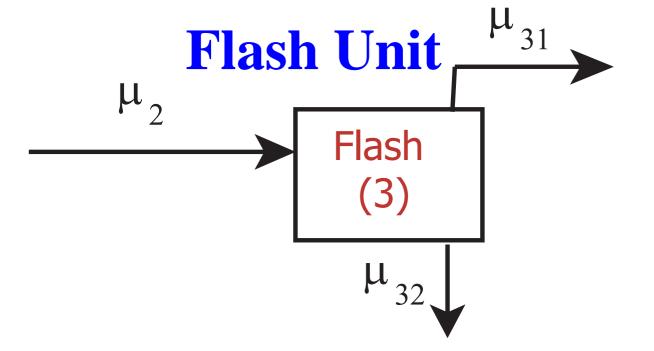




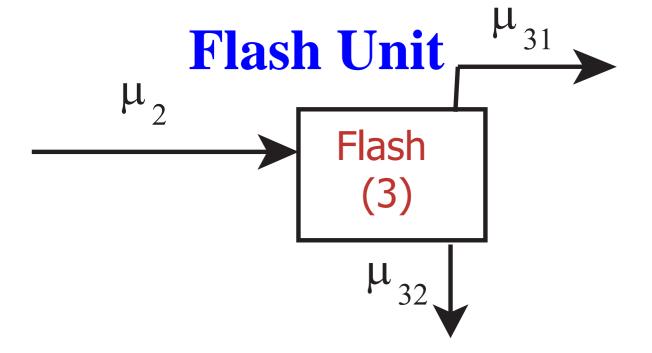
Assume a pressure drop of $0.5\ bar$ from the reactor and operate the flash at $68.5\ bar$.



- Assume a pressure drop of $0.5\ bar$ from the reactor and operate the flash at $68.5\ bar$.
- Choose DEE as the key component, n, because of its intermediate volatility.



- Assume a pressure drop of $0.5\ bar$ from the reactor and operate the flash at $68.5\ bar$.
- Choose DEE as the key component, n, because of its intermediate volatility.
- Assume $\xi_n = 0.5$ for DEE and calculate split fractions of remaining components.



We want to take the reactor effluent to cooling water temperature and separate the liquid product from reactants.

- Assume a pressure drop of $0.5\ bar$ from the reactor and operate the flash at $68.5\ bar$.
- Choose DEE as the key component, n, because of its intermediate volatility.
- Assume $\xi_n = 0.5$ for DEE and calculate split fractions of remaining components. It needs to be verified later that this recovery is possible.

k

M

EL

PL DEE

EA

IPA

 \mathbf{W}

Split Fraction (Calculations	at $T =$	310	K:
------------------	--------------	----------	-----	----

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1

\overline{k}	M	EL	PL	DEE	EA	IPA	\overline{W}
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$lpha_{k}$	_n 256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

$$\mu_{31}(M) = 0.996\mu_2(M)$$

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

$$\mu_{31}(M) = 0.996\mu_2(M)$$
 Vapor

\overline{k}	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

$$\mu_{31}(M) = 0.996\mu_2(M)$$
 $Vapor$

$$\mu_{32}(M) = 0.004\mu_2(M)$$

k	M	EL	PL	DEE	EA	IPA	W
P^0	211,000	55,500	11,360	824	114.5	75.1	47.1
$\alpha_{k/n}$	256.1	67.3	13.3	1.0	0.138	0.091	0.057
ξ_k	0.996	0.985	0.932	0.5	0.121	0.083	0.054

$$\mu_{31}(M) = 0.996\mu_2(M)$$
 Vapor

$$\mu_{32}(M) = 0.004\mu_2(M)$$
 Liquid

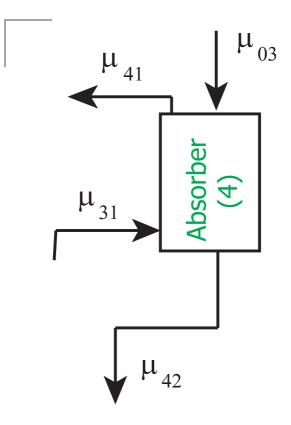
$$\mu_{31}(EL) = 0.985\mu_2(EL)$$
 $\mu_{32}(EL) = 0.015\mu_2(EL)$
 $\mu_{31}(PL) = 0.932\mu_2(PL)$
 $\mu_{32}(PL) = 0.068\mu_2(PL)$
 $\mu_{31}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{32}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{31}(EA) = 0.121\mu_2(EA)$
 $\mu_{32}(EA) = 0.879\mu_2(EA)$
 $\mu_{31}(IPA) = 0.083\mu_2(IPA)$
 $\mu_{32}(IPA) = 0.917\mu_2(IPA)$
 $\mu_{31}(W) = 0.054\mu_2(W)$
 $\mu_{32}(W) = 0.946\mu_2(W)$

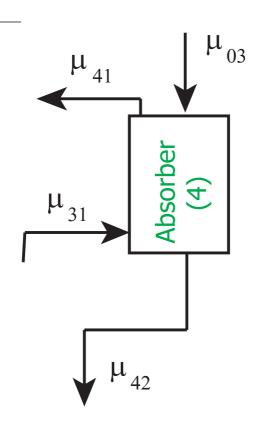
$$\mu_{31}(EL) = 0.985\mu_2(EL)$$
 $\mu_{32}(EL) = 0.015\mu_2(EL)$
 $\mu_{31}(PL) = 0.932\mu_2(PL)$
 $\mu_{32}(PL) = 0.068\mu_2(PL)$
 $\mu_{31}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{32}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{31}(EA) = 0.121\mu_2(EA)$
 $\mu_{32}(EA) = 0.879\mu_2(EA)$
 $\mu_{31}(IPA) = 0.083\mu_2(IPA)$
 $\mu_{32}(IPA) = 0.917\mu_2(IPA)$
 $\mu_{31}(W) = 0.054\mu_2(W)$
 $\mu_{32}(W) = 0.946\mu_2(W)$

Note that we ASSUMED a key component recovery.

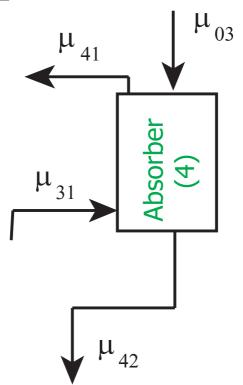
$$\mu_{31}(EL) = 0.985\mu_2(EL)$$
 $\mu_{32}(EL) = 0.015\mu_2(EL)$
 $\mu_{31}(PL) = 0.932\mu_2(PL)$
 $\mu_{32}(PL) = 0.068\mu_2(PL)$
 $\mu_{31}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{32}(DEE) = 0.5\mu_2(DEE)$
 $\mu_{31}(EA) = 0.121\mu_2(EA)$
 $\mu_{32}(EA) = 0.879\mu_2(EA)$
 $\mu_{31}(IPA) = 0.083\mu_2(IPA)$
 $\mu_{32}(IPA) = 0.917\mu_2(IPA)$
 $\mu_{31}(W) = 0.054\mu_2(W)$
 $\mu_{32}(W) = 0.946\mu_2(W)$

Note that we ASSUMED a key component recovery. Once the flow rates are established, we need to verify if this assumption corresponds to our desired temperature and pressure specifications.



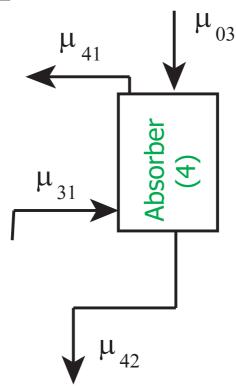


There are 4 degrees of freedom: P, T, key component recovery and liquid feed rate.



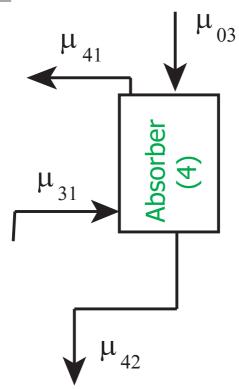
There are 4 degrees of freedom: P, T, key component recovery and liquid feed rate.

We want to run the absorber at low temperature and high pressure because:



There are 4 degrees of freedom: P, T, key component recovery and liquid feed rate.

- We want to run the absorber at low temperature and high pressure because:
 - Reactor is at high pressure.
 - We want to condense as much of the product as possible.



There are 4 degrees of freedom: P, T, key component recovery and liquid feed rate.

- We want to run the absorber at low temperature and high pressure because:
 - Reactor is at high pressure.
 - We want to condense as much of the product as possible.
- Choose $P = 68 \ bar$ and $T = 310 \ K$

• Choose ethanol recovery to be 99% ($\xi_n = 0.99$)

- Choose ethanol recovery to be 99% ($\xi_n = 0.99$)
- Choose liquid flow rate of solvent from:

- Choose ethanol recovery to be 99% ($\xi_n = 0.99$)
- Choose liquid flow rate of solvent from:

$$A = \frac{L_0}{V_{n+1}K_{EA}} = 1.4$$

- Choose ethanol recovery to be 99% ($\xi_n = 0.99$)
- Choose liquid flow rate of solvent from:

$$A = \frac{L_0}{V_{n+1}K_{EA}} = 1.4$$

$$K_{EA} = \frac{P_{EA}^0(310)}{P} = 2.25 \times 10^{-3}$$

- Choose ethanol recovery to be 99% ($\xi_n = 0.99$)
- Choose liquid flow rate of solvent from:

$$A = \frac{L_0}{V_{n+1}K_{EA}} = 1.4$$

$$K_{EA} = \frac{P_{EA}^0(310)}{P} = 2.25 \times 10^{-3}$$

Thus:

$$\mu_{03} = \mu_{31}(2.25 \times 10^{-3})(1.4) = 3.15 \times 10^{-3}\mu_{31}$$

- Choose ethanol recovery to be 99% ($\xi_n = 0.99$)
- Choose liquid flow rate of solvent from:

$$A = \frac{L_0}{V_{n+1}K_{EA}} = 1.4$$

$$K_{EA} = \frac{P_{EA}^0(310)}{P} = 2.25 \times 10^{-3}$$

Thus:

$$\mu_{03} = \mu_{31}(2.25 \times 10^{-3})(1.4) = 3.15 \times 10^{-3}\mu_{31}$$

How much water do we lose in the overhead vapor (in μ_{41})?

$$N = \frac{\ln\left\{\frac{r - A_{EA}}{-A_{EA}(1-r)}\right\}}{\ln(A_{EA})} = 10$$

$$N = \frac{\ln\left\{\frac{r - A_{EA}}{-A_{EA}(1-r)}\right\}}{\ln(A_{EA})} = 10$$

We determine the split fractions for the other components from:

$$N = \frac{\ln\left\{\frac{r - A_{EA}}{-A_{EA}(1-r)}\right\}}{\ln(A_{EA})} = 10$$

We determine the split fractions for the other components from:

$$A_k = \frac{1.4}{\alpha_{k/EA}} = \frac{L}{VK_k} \quad \beta_N^k = \frac{1 - A_k^{N+1}}{1 - A_k} \qquad \beta_{N-1}^k = \frac{1 - A_k^N}{1 - A_k}$$

$$N = \frac{\ln\left\{\frac{r - A_{EA}}{-A_{EA}(1-r)}\right\}}{\ln(A_{EA})} = 10$$

We determine the split fractions for the other components from:

$$A_{k} = \frac{1.4}{\alpha_{k/EA}} = \frac{L}{VK_{k}} \quad \beta_{N}^{k} = \frac{1 - A_{k}^{N+1}}{1 - A_{k}} \quad \beta_{N-1}^{k} = \frac{1 - A_{k}^{N}}{1 - A_{k}}$$

$$v_{1}^{k} = \frac{v_{N+1}^{k}}{\beta_{N}^{k}} + \frac{\beta_{N-1}^{k}}{\beta_{N}^{k}} l_{0}^{k} \quad l_{N}^{k} = \left(1 - \frac{\beta_{N-1}^{k}}{\beta_{N}^{k}}\right) l_{0}^{k} + \left(1 - \frac{1}{\beta_{N}^{k}}\right) v_{N+1}^{k}$$

$$N = \frac{\ln\left\{\frac{r - A_{EA}}{-A_{EA}(1-r)}\right\}}{\ln(A_{EA})} = 10$$

We determine the split fractions for the other components from:

$$A_k = \frac{1.4}{\alpha_{k/EA}} = \frac{L}{VK_k} \quad \beta_N^k = \frac{1 - A_k^{N+1}}{1 - A_k} \qquad \beta_{N-1}^k = \frac{1 - A_k^N}{1 - A_k}$$

$$v_1^k = \frac{v_{N+1}^k}{\beta_N^k} + \frac{\beta_{N-1}^k}{\beta_N^k} l_0^k \quad l_N^k = \left(1 - \frac{\beta_{N-1}^k}{\beta_N^k}\right) l_0^k + \left(1 - \frac{1}{\beta_N^k}\right) v_{N+1}^k$$

Note that $\frac{\beta_{N-1}^k}{\beta_N^k} = \text{fraction of } l_0 \text{ in vapor } v_1$

At T = 310 K we have:

At T = 310 K we have:

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

At T = 310 K we have:

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41$$
 $A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$ $\beta_N^W = 3.05 \times 10^5$ $\beta_{N-1}^W = 8.93 \times 10^4$

At T = 310 K we have:

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_{N-1}^W}{\beta_N^W} = 0.293$$

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

Thus, 29.3% of the solvent goes into the vapor phase.

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

Thus, 29.3% of the solvent goes into the vapor phase. The assumption of isothermal operation is probably violated.

Increase P

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

Thus, 29.3% of the solvent goes into the vapor phase. The assumption of isothermal operation is probably violated.

Increase P - Expensive

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

- Increase P Expensive
- Decrease T

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

- Increase P Expensive
- Decrease T Expensive

$$\alpha_{W/EA} = \frac{47.1}{114.5} = 0.41 \quad A_W = \frac{1.4}{\alpha_{W/EA}} = 3.415$$

$$\beta_N^W = 3.05 \times 10^5 \qquad \beta_{N-1}^W = 8.93 \times 10^4$$
 Thus
$$\frac{\beta_N^W}{\beta_N^W} = 0.293$$

- Increase P Expensive
- Decrease T Expensive
- Increase Absorption factor A_{EA} and hence increase solvent flow rate

Suppose $A_{EA}=10$ Then, $\mu_{03}=0.0225\mu_{31}$ and N=1.95.

Suppose $A_{EA}=10$ Then, $\mu_{03}=0.0225\mu_{31}$ and N=1.95. $A_W=\frac{10}{\alpha_{W/EA}}=24.39$

Suppose $A_{EA} = 10$ Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95. $A_W = \frac{10}{\alpha_{W/EA}} = 24.39$

$$A_W = \frac{}{\alpha_{W/EA}} = 24.39$$

$$\beta_N^W = 528.7 \text{ and } \beta_{N-1}^W = 21.68.$$

Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95.

$$A_W = \frac{10}{\alpha_{W/EA}} = 24.39$$

$$eta_N^W = 528.7 \ {
m and} \ eta_{N-1}^W = 21.68$$
 .

Loss of water in the overhead vapor is $\frac{\beta_{N-1}^{\prime\prime}}{\beta_{N}^{W}}=0.041$.

A loss of 4.1% is acceptable.

Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95.

$$A_W = \frac{10}{\alpha_{W/EA}} = 24.39$$

$$eta_N^W = 528.7$$
 and $eta_{N-1}^W = 21.68$.

Loss of water in the overhead vapor is $\frac{\beta_{N-1}^{\prime\prime}}{\beta_{N}^{W}}=0.041$.

A loss of 4.1% is acceptable.

$$\mu_{41}(W) = \frac{\mu_{31}(W)}{\beta_N^W} + \frac{\beta_{N-1}^W}{\beta_N^W} \mu_{03}(W)$$

Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95.

$$A_W = \frac{10}{\alpha_{W/EA}} = 24.39$$

$$eta_N^W = 528.7$$
 and $eta_{N-1}^W = 21.68$.

Loss of water in the overhead vapor is $\frac{\beta_{N-1}^{\prime\prime}}{\beta_{N}^{W}}=0.041$.

A loss of 4.1% is acceptable.

$$\mu_{41}(W) = \frac{\mu_{31}(W)}{\beta_N^W} + \frac{\beta_{N-1}^W}{\beta_N^W} \mu_{03}(W)$$
$$= 0.0019\mu_{31}(W) + 0.00092\mu_{31}$$

Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95.

$$A_W = \frac{10}{\alpha_{W/EA}} = 24.39$$

$$eta_N^W = 528.7$$
 and $eta_{N-1}^W = 21.68$.

Loss of water in the overhead vapor is $\frac{\beta_{N-1}^{\prime\prime}}{\beta_{N}^{W}}=0.041$.

A loss of 4.1% is acceptable.

$$\mu_{41}(W) = \frac{\mu_{31}(W)}{\beta_N^W} + \frac{\beta_{N-1}^W}{\beta_N^W} \mu_{03}(W)$$
$$= 0.0019\mu_{31}(W) + 0.00092\mu_{31}$$

Since μ_{03} is pure water, $\mu_{03}(k)$ where $k \neq water$ is zero.

Then, $\mu_{03} = 0.0225\mu_{31}$ and N = 1.95.

$$A_W = \frac{10}{\alpha_{W/EA}} = 24.39$$

$$eta_N^W = 528.7$$
 and $eta_{N-1}^W = 21.68$.

Loss of water in the overhead vapor is $\frac{\beta_{N-1}^{\prime\prime}}{\beta_{N}^{W}}=0.041$.

A loss of 4.1% is acceptable.

$$\mu_{41}(W) = \frac{\mu_{31}(W)}{\beta_N^W} + \frac{\beta_{N-1}^W}{\beta_N^W} \mu_{03}(W)$$
$$= 0.0019\mu_{31}(W) + 0.00092\mu_{31}$$

Since μ_{03} is pure water, $\mu_{03}(k)$ where $k \neq water$ is zero. We can calculate $\mu_{41}(k)$ and $\mu_{42}(k)$ in terms of μ_{31} .

It can be shown that:

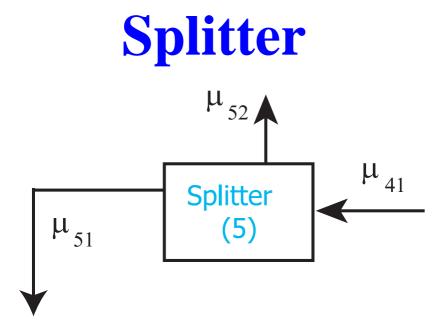
It can be shown that:

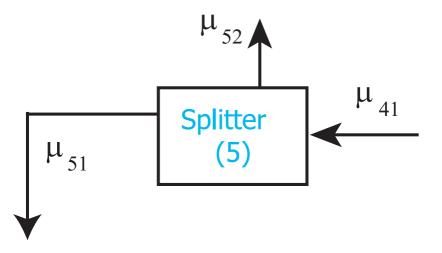
k	$\alpha_{k/n}$	A_k	eta_N	β_{N-1}	$\mu_{41}(k)$	$\mu_{42}(k)$
M	1854	0.0054	1	1	$\mu_{31}(M)$	0
EL	486.3	0.021	1.021	1.021	$0.979\mu_{31}(EL)$	$0.021\mu_{31}(EL)$
PL	99.5	0.101	1.11	1.10	$0.901\mu_{31}(PL)$	$0.099\mu_{31}(PL)$
DEE	7.24	1.38	4.17	2.30	$0.24\mu_{31}(DEE)$	$0.76\mu_{31}(DEE$
EA	1.0	10	98.92	9.79	$0.01\mu_{31}(EA)$	$0.99\mu_{31}(EA)$
IPA	0.79	12.66	153.2	12.02	$0.0065\mu_{31}(IPA)$	$0.993\mu_{31}(IPA)$

It can be shown that:

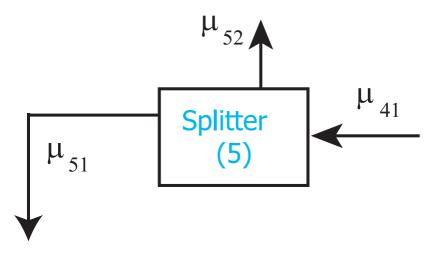
k	$\alpha_{k/n}$	A_k	eta_N	β_{N-1}	$\mu_{41}(k)$	$\mu_{42}(k)$
M	1854	0.0054	1	1	$\mu_{31}(M)$	0
EL	486.3	0.021	1.021	1.021	$0.979\mu_{31}(EL)$	$0.021\mu_{31}(EL)$
PL	99.5	0.101	1.11	1.10	$0.901\mu_{31}(PL)$	$0.099\mu_{31}(PL)$
DEE	7.24	1.38	4.17	2.30	$0.24\mu_{31}(DEE)$	$0.76\mu_{31}(DEE$
EA	1.0	10	98.92	9.79	$0.01\mu_{31}(EA)$	$0.99\mu_{31}(EA)$
IPA	0.79	12.66	153.2	12.02	$0.0065\mu_{31}(IPA)$	$0.993\mu_{31}(IPA)$

Note that the component balance of each component k in streams 41 and 42 can be written in terms of linear relation of stream 31.

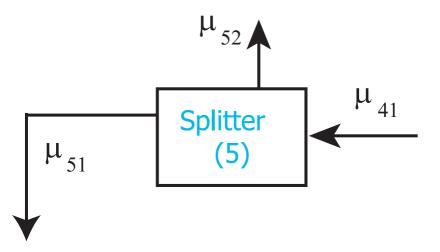




• We need to specify the purge rate ξ to avoid accumulation of inerts.



- We need to specify the purge rate ξ to avoid accumulation of inerts.
- Specifically, methane entering the reactor should be less than 10%.



- We need to specify the purge rate ξ to avoid accumulation of inerts.
- Specifically, methane entering the reactor should be less than 10%.

From mass balance:

$$\mu_{52} = \xi \mu_{41}$$

$$\mu_{51} = (1 - \xi)\mu_{41}$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\mu_{41}(EL) = 0.979\mu_{31}(EL)$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\mu_{41}(EL) = 0.979\mu_{31}(EL)$$

$$\mu_{31}(EL) = 0.985\mu_2(EL)$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\mu_{41}(EL) = 0.979\mu_{31}(EL)$$

$$\mu_{31}(EL) = 0.985\mu_2(EL)$$

$$\mu_2(EL) = 0.93\mu_1(EL)$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\mu_{41}(EL) = 0.979\mu_{31}(EL)$$

$$\mu_{31}(EL) = 0.985\mu_2(EL)$$

$$\mu_{2}(EL) = 0.93\mu_1(EL)$$

Thus
$$\mu_1(EL) = (1 - \xi)(0.979)(0.985)(0.93)\mu_1(EL) + 96$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

$$\mu_1(EL) = \mu_{51}(EL) + 96$$

$$\mu_{51}(EL) = (1 - \xi)\mu_{41}(EL)$$

$$\mu_{41}(EL) = 0.979\mu_{31}(EL)$$

$$\mu_{31}(EL) = 0.985\mu_2(EL)$$

$$\mu_2(EL) = 0.93\mu_1(EL)$$

Thus
$$\mu_1(EL)=(1-\xi)(0.979)(0.985)(0.93)\mu_1(EL)+96$$
 This implies that $\mu_1(EL)=\frac{96}{0.1+0.9\xi}$

We can write down similar component balances for ${\cal P}{\cal L}$ and ${\cal M}$.

We can write down similar component balances for PL and M.

PL Balance

$$\mu_1(PL) = \mu_{51}(PL) + 3$$

$$\mu_{51}(PL) = (1 - \xi)\mu_{41}(PL)$$

$$\mu_{41}(PL) = 0.901\mu_{31}(PL)$$

$$\mu_{31}(PL) = 0.932\mu_{2}(PL)$$

$$\mu_{2}(PL) = 0.993\mu_{1}(PL)$$

We can write down similar component balances for ${\cal PL}$ and ${\cal M}$.

PL Balance

$$\mu_1(PL) = \mu_{51}(PL) + 3$$

$$\mu_{51}(PL) = (1 - \xi)\mu_{41}(PL)$$

$$\mu_{41}(PL) = 0.901\mu_{31}(PL)$$

$$\mu_{31}(PL) = 0.932\mu_{2}(PL)$$

$$\mu_{2}(PL) = 0.993\mu_{1}(PL)$$

Thus
$$\mu_1(PL) = (1 - \xi)(0.901)(0.932)(0.993)\mu_1(PL) + 3$$

We can write down similar component balances for PL and M.

PL Balance

$$\mu_1(PL) = \mu_{51}(PL) + 3$$

$$\mu_{51}(PL) = (1 - \xi)\mu_{41}(PL)$$

$$\mu_{41}(PL) = 0.901\mu_{31}(PL)$$

$$\mu_{31}(PL) = 0.932\mu_{2}(PL)$$

$$\mu_{2}(PL) = 0.993\mu_{1}(PL)$$

Thus
$$\mu_1(PL)=(1-\xi)(0.901)(0.932)(0.993)\mu_1(PL)+3$$
 This implies that $\mu_1(PL)=\frac{3}{0.17+0.83\xi}$

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

Thus
$$\mu_1(M) = (1 - \xi)(0.996)\mu_1(M) + 1$$

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

Thus
$$\mu_1(M) = (1 - \xi)(0.996)\mu_1(M) + 1$$

This implies that $\mu_1(M) = \frac{1}{0.004 + 0.996\xi}$

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

Thus
$$\mu_1(M) = (1 - \xi)(0.996)\mu_1(M) + 1$$
 This implies that $\mu_1(M) = \frac{1}{0.004 + 0.996\xi}$ W Balance

$$\mu_1(W) = 0.6\mu_1(EL)$$

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

Thus
$$\mu_1(M)=(1-\xi)(0.996)\mu_1(M)+1$$
 This implies that $\mu_1(M)=\frac{1}{0.004+0.996\xi}$ W Balance

$$\mu_1(W) = 0.6\mu_1(EL)$$
 Assumed earlier

$$\mu_1(M) = \mu_{51}(M) + 1$$

$$\mu_{51}(M) = (1 - \xi)\mu_{41}(M)$$

$$\mu_{41}(M) = \mu_{31}(M)$$

$$\mu_{31}(M) = 0.996\mu_2(M)$$

$$\mu_{2}(M) = 0.93\mu_1(M)$$

Thus
$$\mu_1(M)=(1-\xi)(0.996)\mu_1(M)+1$$
 This implies that $\mu_1(M)=\frac{1}{0.004+0.996\xi}$ W Balance

$$\mu_1(W) = 0.6\mu_1(EL)$$
 Assumed earlier
$$= \frac{53.6}{0.1 + 0.9\xi}$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

we have:

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

we have:

$$0.1 = \frac{\frac{1}{0.004 + 0.996\xi}}{\frac{1}{0.004 + 0.996\xi} + \frac{3}{0.17 + 0.83\xi} + \frac{96}{0.1 + 0.9\xi} + \frac{53.6}{0.1 + 0.9\xi}}$$

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

we have:

$$0.1 = \frac{\frac{1}{0.004 + 0.996\xi}}{\frac{1}{0.004 + 0.996\xi} + \frac{3}{0.17 + 0.83\xi} + \frac{96}{0.1 + 0.9\xi} + \frac{53.6}{0.1 + 0.9\xi}}$$

Solving for ξ by trial and error, we get $\xi = 0.0019$.

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

we have:

$$0.1 = \frac{\frac{1}{0.004 + 0.996\xi}}{\frac{1}{0.004 + 0.996\xi} + \frac{3}{0.17 + 0.83\xi} + \frac{96}{0.1 + 0.9\xi} + \frac{53.6}{0.1 + 0.9\xi}}$$

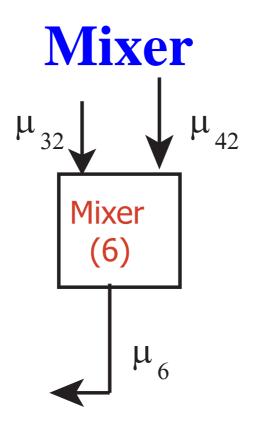
Solving for ξ by trial and error, we get $\xi = 0.0019$. We need to choose ξ to be greater than 0.0019 to ensure that M entering the reactor is less than 10%.

$$\begin{bmatrix} Mole\ fraction\ of\ M \\ entering\ reactor \end{bmatrix} = \frac{\mu_1(M)}{\mu_1(M) + \mu_1(PL) + \mu_1(EL) + \mu_1(W)}$$

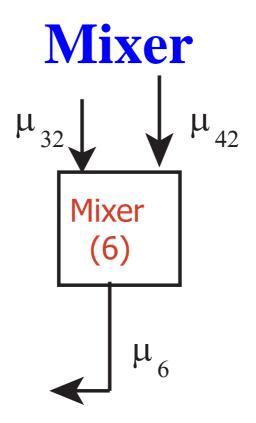
we have:

$$0.1 = \frac{\frac{1}{0.004 + 0.996\xi}}{\frac{1}{0.004 + 0.996\xi} + \frac{3}{0.17 + 0.83\xi} + \frac{96}{0.1 + 0.9\xi} + \frac{53.6}{0.1 + 0.9\xi}}$$

Solving for ξ by trial and error, we get $\xi = 0.0019$. We need to choose ξ to be greater than 0.0019 to ensure that M entering the reactor is less than 10%. Let us choose $\xi = 0.005$.



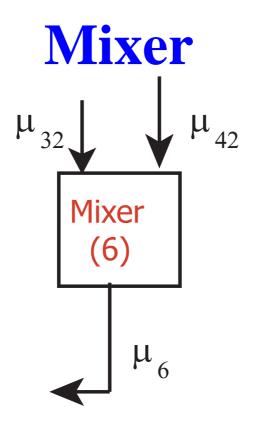
We can write down a mass balance for each component as follows:



We can write down a mass balance for each component as follows:

$$\mu_{42}(k) + \mu_{32}(k) = \mu_6(k)$$

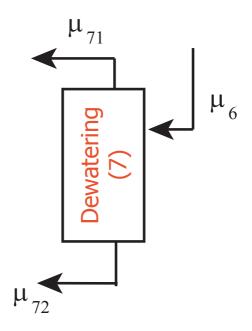
where k = M, EL, PL, DEE, EA, IPA, W

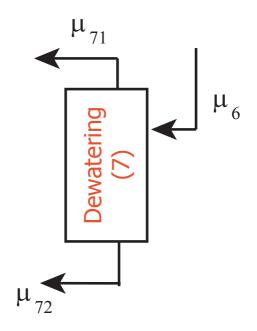


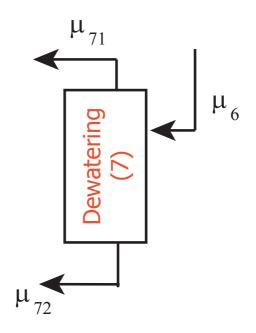
We can write down a mass balance for each component as follows:

$$\mu_{42}(k) + \mu_{32}(k) = \mu_6(k)$$

where k = M, EL, PL, DEE, EA, IPA, WNote that we wrote component balances for $\mu_{32}(k)$ and $\mu_{42}(k)$ earlier.

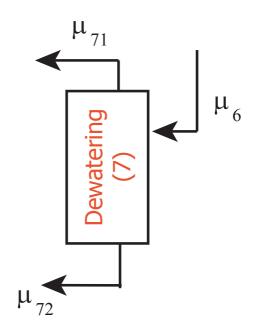




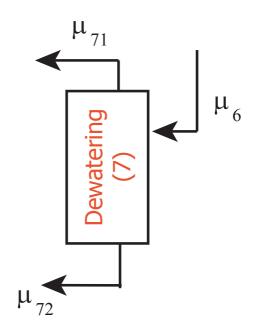


Specifications:

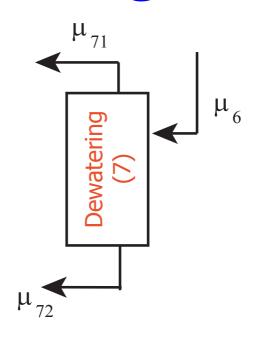
90% of the water goes to the bottom product.



- 90% of the water goes to the bottom product.
- \bullet 99.5% of the EA goes as the top product.



- 90% of the water goes to the bottom product.
- \bullet 99.5% of the EA goes as the top product.
- We operate this column at low pressure so that all the DEE goes out in the top.



- 90% of the water goes to the bottom product.
- \bullet 99.5% of the EA goes as the top product.
- We operate this column at low pressure so that all the DEE goes out in the top.
- We want to recycle as much of the DEE as possible.

$$lk = EA$$

$$lk = EA \qquad \xi_{EA} = 0.995$$

$$lk = EA \xi_{EA} = 0.995$$
$$hk = W$$

$$lk = EA$$
 $\xi_{EA} = 0.995$
 $hk = W$ $\xi_{W} = 0.1$

$$lk = EA$$
 $\xi_{EA} = 0.995$
 $hk = W$ $\xi_{W} = 0.1$

 \blacksquare EL, PL, and DEE are lighter than the light key.

$$lk = EA$$
 $\xi_{EA} = 0.995$
 $hk = W$ $\xi_{W} = 0.1$

- ightharpoonup EL, PL, and DEE are lighter than the light key.
- IPA is distributed between EA and W.

$$lk = EA \qquad \xi_{EA} = 0.995$$
$$hk = W \qquad \xi_{W} = 0.1$$

- ullet EL, PL, and DEE are lighter than the light key.
- IPA is distributed between EA and W.
- If we run this column with cooling water (at T=310~K), a partial condenser may be needed to remove trace low boiling components of EL and PL.

$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

From Fenske Equation:

$$N = \frac{ln \left[\frac{\xi_{lk}(1 - \xi_{hk})}{\xi_{hk}(1 - \xi_{lk})} \right]}{ln \left[\alpha_{lk/hk} \right]} = 8.4 \ stages$$

$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

From Fenske Equation:

$$N = \frac{ln \left[\frac{\xi_{lk}(1 - \xi_{hk})}{\xi_{hk}(1 - \xi_{lk})} \right]}{ln \left[\alpha_{lk/hk} \right]} = 8.4 \ stages$$

$$\xi_{IPA} = \frac{\alpha_{IPA/W}^{N} \xi_{W}}{1 + (\alpha_{IPA/W}^{N} - 1)\xi_{W}} = 0.96$$

$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

From Fenske Equation:

$$N = \frac{ln \left[\frac{\xi_{lk}(1 - \xi_{hk})}{\xi_{hk}(1 - \xi_{lk})} \right]}{ln \left[\alpha_{lk/hk} \right]} = 8.4 \ stages$$

$$\xi_{IPA} = \frac{\alpha_{IPA/W}^{N} \xi_{W}}{1 + (\alpha_{IPA/W}^{N} - 1)\xi_{W}} = 0.96$$

Thus we have:

k M EL PL DEE EA IPA W ξ_k

$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

From Fenske Equation:

$$N = \frac{ln \left[\frac{\xi_{lk}(1 - \xi_{hk})}{\xi_{hk}(1 - \xi_{lk})} \right]}{ln \left[\alpha_{lk/hk} \right]} = 8.4 \ stages$$

$$\xi_{IPA} = \frac{\alpha_{IPA/W}^{N} \xi_{W}}{1 + (\alpha_{IPA/W}^{N} - 1)\xi_{W}} = 0.96$$

k	M	EL	PL	DEE	EA	IPA	W
ξ_k	1.0	1.0	1.0	1.0	0.995	0.96	0.1

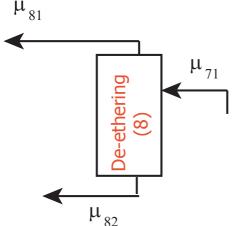
$$\alpha_{EA/W} = \frac{P_{EA}^0}{P_W^0} = \frac{114}{47.1} = 2.43$$

From Fenske Equation:

$$N = \frac{ln\left[\frac{\xi_{lk}(1-\xi_{hk})}{\xi_{hk}(1-\xi_{lk})}\right]}{ln\left[\alpha_{lk/hk}\right]} = 8.4 \ stages$$

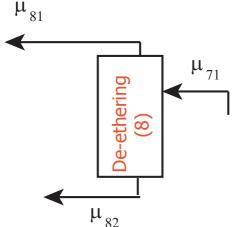
$$\xi_{IPA} = \frac{\alpha_{IPA/W}^{N} \xi_{W}}{1 + (\alpha_{IPA/W}^{N} - 1)\xi_{W}} = 0.96$$

De-ethering Column μ_{g_1}

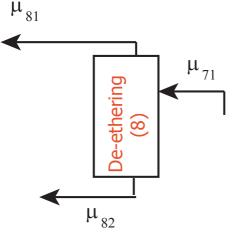


De-ethering Column μ_{g_1}

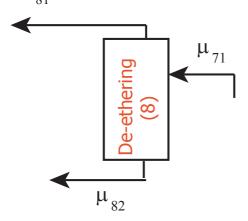
DEE is removed overhead and recycled.



- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).

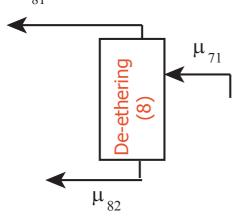


- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).



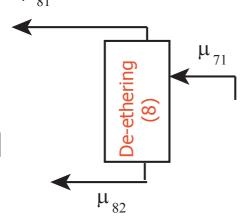
• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key.

- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).



• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key. There are no distributed components.

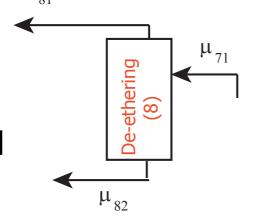
- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).



• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key. There are no distributed components.

$$k$$
 M EL PL DEE EA IPA W ξ_k

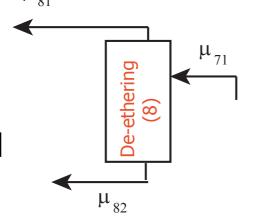
- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).



• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key. There are no distributed components.

\overline{k}	M	EL	PL	DEE	EA	IPA	\overline{W}
ξ_k	1.0	1.0	1.0	0.995	0.005	0.0	0.0

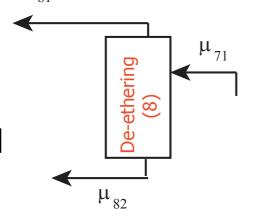
- DEE is removed overhead and recycled.
- Specify $\xi_{DEE}=0.995$ (light key) and $\xi_{EA}=0.005$ (heavy key).



• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key. There are no distributed components.

			•				
\overline{k}	M	EL	PL	DEE	EA	IPA	\overline{W}
ξ_k	1.0	1.0	1.0	0.995	0.005	0.0	0.0
$\mu_{81}(k) = \xi_k \mu_{71}(k)$							

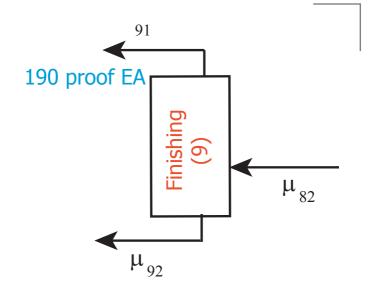
- DEE is removed overhead and recycled.
- Specify $\xi_{DEE} = 0.995$ (light key) and $\xi_{EA} = 0.005$ (heavy key).



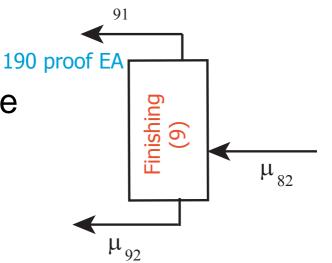
• M, EL and PL are lighter than the light key. IPA and W are heavier than the heavy key. There are no distributed components.

$$k$$
 M EL PL DEE EA IPA W ξ_k 1.0 1.0 1.0 0.995 0.005 0.0 0.0

$$\mu_{81}(k) = \xi_k \mu_{71}(k)$$
 $\mu_{82}(k) = (1 - \xi_k) \mu_{71}(k)$
where $k = M, EL, PL, DEE, EA, IPA, W$



This last column is used to obtain the ethanol product at the azeotropic composition



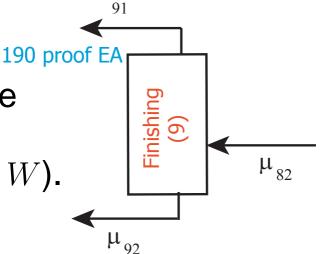
190 proof EA

 μ_{92}

• This last column is used to obtain the ethanol product at the azeotropic composition (85.5% *EA* and 14.5% *W*).

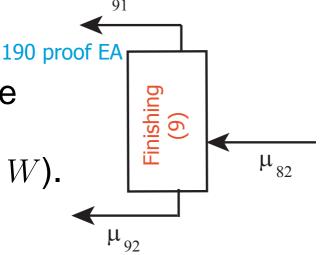
■ This last column is used to obtain the ethanol product at the azeotropic composition (85.5% EA and 14.5% W).

• Specify $\xi_{az} = 0.995$

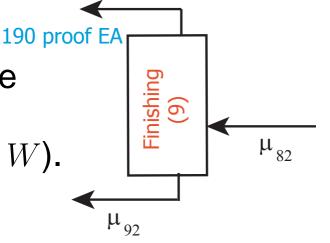


■ This last column is used to obtain the ethanol product at the azeotropic composition (85.5% EA and 14.5% W).

• Specify $\xi_{az} = 0.995$ No more than 0.1% IPA.

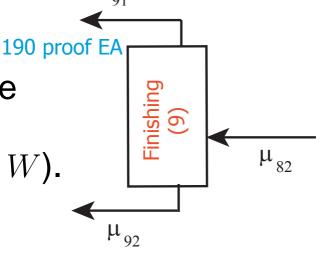


This last column is used to obtain the ethanol product at the azeotropic composition (85.5% EA and 14.5% W).



- Specify $\xi_{az} = 0.995$ No more than 0.1% IPA.
- To follow these specifications, it is necessary to know the molar flow rate μ_{82} .

This last column is used to obtain the ethanol product at the azeotropic composition (85.5% EA and 14.5% W).



- Specify $\xi_{az} = 0.995$ No more than 0.1% IPA.
- To follow these specifications, it is necessary to know the molar flow rate μ_{82} .
- Once μ_{82} is known, a simple mass balance can be used to calculate μ_{91} and μ_{22} .