CAPCOST Illustration

TBWS, Chapter 6, Problem 1

Estimate the COM_d (cost of manufacturing) for the light gas plant given in Problem 5.4. The duties of the four heat exchangers are given below:

E-201	$Q = -3.80 \times 10^6 \text{kJ/h}$
E-202	$Q = 5.55 \times 10^6 \text{ kJ/h}$
E-203	$Q = -4.20 \times 10^6 \text{ kJ/h}$
E-204	$Q = 3.09 \times 10^6 \text{kJ/h}$

Assume a stream factor of 0.913 (8000 h/yr) for this process.

Why are we doing this example?

This particular problem features many elements common to manufacturing cost estimation.

Comments

Answer to be formula for COM_d as a function of raw material cost (C_{RM}).

Assume pump efficiency of 80%.

Solution using CAPCOST is attached.

Copy of Problem 5.4 and its solution is also attached, for the reader's convenience.

<u>Stream Factor</u> TBWS, 2nd Ed., page 212

A stream factor provides the expected "uptime" for a plant, i.e., the actual number of *operating* hours per year.

Maximum number of hours per year: 365 days × (24 hours/day) = 8760 hours

Actual number of operating hours per year: (stream factor) × 8760 hours

Always state flow rates on PFD in terms of stream hours, i.e., the *operating* hours.

<u>Unit Number</u>	200
<u>CEPCI</u>	397

TBWS Problem 5.4

User Added Equipment

		Shell Pressure	Tube Pressure		Area	(square	Equ	uipment	Ba	re Module
Exchangers	Type of Exchanger	(barg)	(barg)	MOC	met	ers)	(Cost		Cost
E-201	Floating Head	15	4	CS/CS	1:	55	\$	31,300	\$	105,000
E-202	Floating Head	4	15	CS/CS	4	5	\$	19,700	\$	65,500
E-203	Floating Head	5	4	CS/CS	8	5	\$	23,700	\$	78,100
E-204	Floating Head	5	4	CS/CS	2	0	\$	18,300	\$	60,300

					Discharge	Р	urchased	
Pumps		Power			Pressure	E	quipment	Bare Module
(with drives)	Pump Type	(kilowatts)	# Spares	MOC	(barg)		Cost	Cost
P-201	Centrifugal	1.3	1	Carbon Steel	16	\$	4,990	\$ 22,000
P-202	Centrifugal	1.2	1	Carbon Steel	6	\$	4,960	\$ 19,800

Towers	Tower Description	Height (meters)	Diameter (meters)	Tower MOC	Demister MOC	Pressure (barg)	Equ	uipment Cost	Bar	e Module Cost
T-201	36 Stainless Steel Sieve Trays	19	0.95	Carbon Steel		15	\$	45,000	\$	137,000
T-202	40 Stainless Steel Sieve Trays	21	1.1	Carbon Steel		5	\$	56,900	\$	149,000

Vessels	Orientation	Length/Height (meters)	Diameter (meters)	МОС	Demister MOC	Pressure (barg)	Eq	uipment Cost	Bar	e Module Cost
V-201	Horizontal	3.75	1.25	Carbon Steel		15	\$	7,020	\$	36,000
V-202	Horizontal	3.75	1.25	Carbon Steel		5	\$	7,020	\$	23,300

Sum 218,890 \$ 696,000

TBWS Prob	lem 5	.4			TBWS Problem 6.1				
Name	To	tal Module Cost	G	rass Roots Cost	Utility Used	Efficiency	Actual Usage	An	nual Utility Cost
E-201	\$	124,397	\$	176,000	Cooling Water		3800 MJ/h	\$	10,800
E-202	\$	77,000	\$	110,000	Low-Pressure Steam		5550 MJ/h	\$	270,000
E-203	\$	92,100	\$	131,000	Cooling Water		4200 MJ/h	\$	11,900
E-204	\$	71,100	\$	101,000	Low-Pressure Steam		3090 MJ/h	\$	150,000
P-201	\$	25,900	\$	34,000	Electricity	0.8	1.63 kilowatts	\$	786
P-202	\$	23,300	\$	31,300	Electricity	0.8	1.5 kilowatts	\$	726
T-201	\$	161,000	\$	205,000	NA				
T-202	\$	176,000	\$	232,000	NA				
V-201	\$	42,400	\$	53,000	NA				
V-202	\$	27,500	\$	38,100	NA				
Totals	\$	821,000	\$	1,110,000				\$	444,210

Material

Consumption (kg/h)

Material Costs (\$/y)

Economic Options

Cost of Land	
Taxation Rate	42%
Annual Interest Rate	10%
Salvage Value	\$ 82,100
Working Capital	\$ 82,100
FCIL	\$ 821,000
Total Module Factor	1.18
Grass Roots Factor	0.50

Economic Information Calculated From Given Information

Revenue From Sales	\$ -
C _{RM} (Raw Materials Costs)	\$ -
C _{UT} (Cost of Utilities)	\$ 461,080
C _{WT} (Waste Treatment Costs)	\$ -
C _{OL} (Cost of Operating Labor)	\$ 650,000

Factors Used in Calculation of Cost of Manufacturing (COM_d)

Comd = 0.18*FCIL + 2.73*COL + 1.23*	(CUT + CWT + CRM)	<u>)</u>	
Multiplying factor for FCIL	0.18		
Multiplying factor for C_{OL}	2.73		
Facotrs for $C_{\text{UT}},C_{\text{WT}},\text{and}C_{\text{RM}}$	1.23		
			TBWS Problem 6.1
COM _d \$	2,489,408	\leftarrow for CRM = 0	
		- For CRM ≠ 0:	COMd = 2,489,000 + 1.23*CRM

Factors Used in Calculation of Working Capital

Working Capital = $A^*C_{RM} + B^*FCI_L + C^*C_{OL}$

А	0.10	
В	0.10	
С	0.10	

Project Life (Years after Startup)

Construction period 2

Distribution of Fixed Capital Investment (must sum to one)

10

End of year One	60%
End of year Two	40%
End of year Three	
End of year Four	
End of year Five	

CAPCOST Illustration

TBWS, Chapter 5, Problem 4

The light gas separations unit of a certain refinery consists of two columns in series that are fed a mixture of propane, butanes, and higher hydrocarbons.

The first column, the depropanizer, separates the propane (and small amounts of propylene) from the heavier material.

The second column, the debutanizer, separates the butanes from the remaining hydrocarbons.

A PFD and equipment summary table are given in Figure P5 and Table P5.4, respectively.

Using the CAPCOST program, estimate the total module cost and grass roots cost of this process unit.

Why are we doing this example?

This particular problem features many elements common to capital cost estimation.

Figure P5.4 PFD for Unit 200-Light Gas Separations Plant

Equipment	E-201	E-202	E-203	E-204	T-201	T-202	P-201A/B	P-202A/B	V-201	V-202
Туре	Floating head	Floating head	Floating head	Floating head	Tower	Tower	Centrifugal pump	Centrifugal pump	Horizontal vessel	Horizontal vessel
Area	155 m ²	45 m ²	85 m ²	20 m ²	-	-	-		-	_
Shell pressure*	15 barg	4 barg	5 barg	4 barg	-	-	-	-	-	-
Tube pressure*	4 barg	15 barg	4 barg	5 barg	-	-	-	-	-	-
MOC	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel
Diameter	-	-	-	-	0.95 m	1.00 m	-	-	1.25 m	1.25 m
Length or height	-	-	-	-	19.0 m	21.0 m	-	-	3.75 m	3.75 m
Design pressure*	-	-	-	-	15 barg	5 barg	-	-	15 barg	5 barg
Internals	-	-	-	-	36 sieve trays	40 sieve trays	-	-	-	-
MOC	-	-	-	-	,	,				
					Stainless steel	Stainless steel	-	-	-	-
Power	-	-	-	-	-	-	1.3 kW	1.2 kW	-	-
Discharge pressure*	-	-	-	-	-	-	16 barg	6 barg	_	-

Table P5.4 Equipment Summaries for Problem 4

*all pressures are entered as bar gauge, 0.0 barg = 1.0 bar.

Total Module Cost = \$821,000 Grass Roots Cost = \$1,110,000

TBWS Problem 5.4 - Summary

User Added E	Equipment						
Compressors	Compressor Type	Power (kilowatts)	# Spares	MOC		Purchased Equipment Cost	Bare Module Cost
Drives	Drive Type	Power (kilowatts)	# Spares			Purchased Equipment Cost	Bare Module Cost
		Area (square	Pressure		Volume (cubic	Purchased	Bare Module
Evaporators	Туре	meters)	(barg)	MOC	meters)	Equipment Cost	Cost

Exchangers	Type of Exchanger	Shell Pressure (barg)	Tube Pressure (barg)	мос	Area (square meters)	Purchased Equipment Cost	Bare Module Cost
E-201	Floating Head	15	4	Carbon Steel / Carbon Steel	155	\$ 31,300	\$ 105,000
E-202	Floating Head	4	15	Carbon Steel / Carbon Steel	45	\$ 19,700	\$ 65,500
E-203	Floating Head	5	4	Carbon Steel / Carbon Steel	85	\$ 23,700	\$ 78,100
E-204	Floating Head	5	4	Carbon Steel / Carbon Steel	20	\$ 18,300	\$ 60,300

Fans /		Gas Flowrate			Pressure Rise	Purchased	Bare Module
Blowers	Туре	(cubic meters/s)	# Spares	MOC	Across Fan (barg)	Equipment Cost	Cost

Fired Heaters	Туре	Heat Duty (MJ/h)	Steam Pressure Purchased Heat Duty (MJ/h) Superheat (°C) MOC (barg) Equipment Co				Bare Module Cost
Pumps		Power			Discharge Pressure	Purchased	Bare Module
(with drives)	Pump Type	(kilowatts)	# Spares	MOC	(barg)	Equipment Cost	Cost
P-201	Centrifugal	1.3	1	Carbon Steel	16	\$ 4,990	\$ 22,000
P-202	Centrifugal	1.2	1	Carbon Steel	6	\$ 4,960	\$ 19,800

Storage		Volume	Volume Purchased	Bare Module
Tanks	Tank Type	(cubic meters)	(gallons) Equipment Cost	Cost

Towers	Tower Description	Height (meters)	Diameter (meters)	Tower MOC	Demister MOC	Pressure (barg)	Pur Equipi	chased ment Cost	Bar	e Module Cost
T-201	36 Stainless Steel Sieve Trays	19	0.95	Carbon Steel		15	\$	45,000	\$	137,000
T-202	40 Stainless Steel Sieve Trays	21	1.1	Carbon Steel		5	\$	56,900	\$	149,000

		Power			Purchased	Bare Module
Turbines	Type of Turbine	(kilowatts)	# Spares	MOC	Equipment Cost	Cost

		Length/Height	Diameter			Pressure	Pur	chased	Bar	e Module
Vessels	Orientation	(meters)	(meters)	MOC	Demister MOC	(barg)	Equip	ment Cost		Cost
V-201	Horizontal	3.75	1.25	Carbon Steel		15	\$	7,020	\$	36,000
V-202	Horizontal	3.75	1.25	Carbon Steel		5	\$	7,020	\$	23,300

Sum Bare Module Cost \$ 696,000