
Optimization

What is optimization about?

• Typical problems in process design or plant
operation have many (possibly infinite) solutions.

• Optimization is concerned with selecting the best
alternative among the entire set by efficient
quantitative methods.

• Computer methods are typically required to do the
necessary calculations.
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Optimization Problems Found in Industry

Problem 1: The rate of return on investment is given by

R = 100(1− t)
[S − (V + F/n)]

I/n
R = rate of return

t = tax rate

S = sales price

V = variable cost of production

F = fixed charge

n = number of units produced

I = total investment

What is the maximum rate of return as a function of n?
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Problem 2: A refinery has two crude oils that have
yields and maximum allowable production rates as
shown below:

Crude 1 Crude 2 Rate

Gasoline 70 31 6,000

Kerosene 6 9 2,400

Fuel oil 24 60 12,000

The profit on processing crude 1 is $1.00/bbl and on
crude 2 is $0.70/bbl.

What are the optimum daily feed rates of the two
crudes to this plant?
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Problem 3: A chemical company sells three products
and has found that its revenue function is
f = 10x + 4.4y2 + 2z where x, y and z are the monthly
production rates of each chemical. Furthermore, limits
on production rates are described by

x ≥ 2

z2 + 2y2 ≥ 3

x + 4y + 5z ≤ 32

x + 3y + 2z ≤ 29

What is the best production schedule for this company?
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Course Outline

• Unconstrained Optimization

• Constrained Optimization

• Numerical Methods

• Linear Programming
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UNCONSTRAINED OPTIMIZATION
Example 1: A non-elementary reaction A → B is
occurring in a CSTR with the following rate kinetics:

rA =
k1CA

(k2 + CA)(k3 + CA)
(1)

where
k1 = 0.25

k2 = 0.50

k3 = 500

It is possible to operate the reactor at any concentration
between CA = 10 and CA = 20 mol/l.
At what concentration should it be operated so that the
rate is maximum
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Brute Force Solution Strategy

• Choose different values of CA between 10 and 20
mol/l and calculate rA at each value of CA.

• Plot rA vs CA.

• Fit a curve through the points and find the CA that
corresponds to the maximum rA.
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CA rA × 106

10 466.85

12 468.75

14 469.61

16 469.81

18 469.58

20 469.04
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EXAMPLE 2

Suppose:

rA =
k1CACB

(k2 + CA)(k3 + CB)
(2)

What are the optimal values of CA and CB?
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Analysis of Brute Force Strategy

• Strategy is simple to use.

• However, it is tedious to use if there is more than
one variable involved.

• Constraints are not handled explicitly.
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Review of Material from Elementary Calculus

Given a function f(x) that is continuous and twice
differentiable, a stationary point x∗ is defined by:

∂f

∂x
|x=x∗ = 0 (3)

• x∗ is a minimum if
∂2f

∂x2
|x=x∗ > 0

• x∗ is a maximum if
∂2f

∂x2
|x=x∗ < 0

• x∗ is a saddle point if
∂2f

∂x2
|x=x∗ = 0
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EXAMPLE 1 REVISITED
A non-elementary reaction A → B is occurring in a
CSTR with the following rate kinetics:

rA =
k1CA

(k2 + CA)(k3 + CA)
(4)

where
k1 = 0.25

k2 = 0.50

k3 = 500

It is possible to operate the reactor at any concentration
between CA = 10 and CA = 20 mol/l.
At what concentration should it be operated so that the
rate is maximum
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rA =
k1CA

(k2 + CA)(k3 + CA)
(5)

∂rA

∂CA
= 0 => CA = 15.81 (6)

It can be easily shown that the second derivative is
negative and so CA = 15.81 is a maximum.
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Analysis of Analytical Approach

• Provides explicit formulae to determine optimal
values.

• However, it requires the funciton to be
differentiated twice.

• Constraints are not handled explicitly.
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Sign Convention

We will consider only minimization problems from now
on with the knowledge that maximizing a function is the
same as minimizing the negative of that function.

For example,
Max(−2x2 − 2x + 1) (7)

is the same as

Min(+2x2 + 2x− 1) (8)
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Multivariable Version of Analytical Approach

Problem without Constraints

Consider a scalar function f(x) where x is a vector.

x = [x1 x2 ... xn]T

Then, the necessary conditions for a local minimum are:

∂f

∂x
|x=x∗ = 0 (9)

The sufficient conditions for a local minimum are:

∂2f

∂x2
|x=x∗ > 0 (10)
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The necessary conditions for a local minima imply that
we need to solve:

∂f

∂x1
= 0

∂f

∂x2
= 0

.

.
∂f

∂xn
= 0

(11)

The solution of the above n nonlinear equations results
in the vector x∗.
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The sufficient conditions for a local minima imply that
the following matrix has all positive eigenvalues.




∂2f

∂x2
1

∂2f

∂x1∂x2
...

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

...
∂2f

∂x2∂xn

. . ...

. . ...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
...

∂2f

∂x2
n



|x=x∗

(12)
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If some eigenvalues are positive and some are negative,
the point x = x∗ is called a saddlepoint.

If one or more eigenvalues are zero, the point x = x∗ is
called a singular point and more information is needed
to determine if the point is a minimum point or not.
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EXAMPLE 2:

Find the stationary points for the following functions
and determine if the stationary points are a minimum,
saddlepoint or singular points.

1. f(x) = x2
1 − 2x1x2 + 4x2

2

2. f(x) = −x2
1 + 2x1x2 + 3x2

2

3. f(x) = x2
1 − 4x1x

2
2 + 3x4

2
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EXAMPLE 3

A chemical company produces two products and has
determined that its cost function is given by:

f(x) = x4
1 − 2x2

1x2 + x2
2 + x2

1 − 2x1 + 5

where x1 is the production rate of the first product and
x2 is the production rate of the second product.
Determine the production rates of x1 and x2 at which
the cost function is minimized.

22


