
Problems with Equality Constraints

• Realistic optimization problems have constraints.

• If these constraints are equality constraints, then
the optimization methods developed in the previous
lecture can be modified to solve the problem with
constraints.
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Problem Formulation

minimize f(x1, x2, ..., xn, u1, u2, ..., um) (1)

subject to

g1(x1, x2, ..., xn, u1, u2, ..., um) = 0

g2(x1, x2, ..., xn, u1, u2, ..., um) = 0

.

.

gn(x1, x2, ..., xn, u1, u2, ..., um) = 0

(2)

Note that if m variables u1, u2, ..., um could be found,
the remaining n variables x1, x2, ..., xn are fixed by the
n constraints.
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In compact form, the above problem can be stated as:

minimize f(x, u) (3)

subject to
g(x, u) = 0 (4)

where x ∈ Rn and u ∈ Rm
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Approach # 1:

• Eliminate the constraint equations by substituting x

in terms of u in the function to the optimized.

• Use unconstrained optimization methods to
optimize the function in u.

Approach # 2:

• Develop necesary and sufficient conditions of
optimality from “scratch” for problems with
equality constraints.
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Example 1:
min f(x, u) = 4x2 + 5u2 (5)

subject to
2x + 3u = 6 (6)

1. Write x in terms of u in the constraint equation.

x =
6− 3u

2
(7)

2. Substitute x in terms of u in the function to be
minimized.

min f(u) = 4
(

6− 3u

2

)2

+ 5u2

= 14u2 − 36u + 36
(8)
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3. Use method developed for minimization of
unconstrained functions.

∂f

∂u
= 0 (9)

Solving for u, we get:

u∗ = 1.286 (10)

Substitute this value of u in the constraint equation
to get the optimal value of x.

x∗ = 1.071 (11)
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The minimum value of the function is

f(x∗, u∗) = 12.857 (12)

Note that if there was no equality constraint, the
minimum value of the function would have been ZERO.
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Example 2:

min f(x, u) = (u1−x1)2+(x1−u2)2+(u2−x2)4+(u2−x3)4

(13)
subject to

x1 + 3x2 + 2u1 − 6 = 0

2x2 + u1 + 3u2 − 6 = 0

x2 + 3x3 + 2u2 − 6 = 0

(14)

It is not so easy to use Approach # 1 here.
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Approach # 1

Advantages:

• Utilizes methods developed for unconstrainted
optimization.

Disdvantages:

• It is tedious to eliminate constraints if there are
many constraint equations.
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Approach # 2: Necessary Conditions

minimize f(x, u) (15)

subject to
g(x, u) = 0 (16)

where x ∈ Rn and u ∈ Rm

A stationary point is one where df = 0 for arbitrary du

while holding dg = 0 letting dx change as it will.

df =
∂f

∂x
.dx +

∂f

∂u
.du (17)
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and
dg =

∂g

∂x
.dx +

∂g

∂u
.du (18)

Since dg = 0, this implies that

dx = −
[

∂g

∂x

]−1
∂g

∂u
.du (19)

Substituting in the expression for df , we get

df =

[
−∂f

∂x

[
∂g

∂x

]−1
∂g

∂u
+

∂f

∂u

]
du (20)

If df has to be zero for arbitrary du, it is necessary that

∂f

∂u
− ∂f

∂x

[
∂g

∂x

]−1
∂g

∂u
= 0 (21)
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Thus, we need to solve simultaneously, the following
equations:

g(x, u) = 0 (n equations)
∂f

∂u
− ∂f

∂x

[
∂g

∂x

]−1
∂g

∂u
= 0 (m equations)

(22)

Can you solve Example 2 now?
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Example 3:

Find the stationary value of

f(x, u) =
1
2

(
x2

a2
+

u2

b2

)
(23)

subject to
g(x, u) = x + mu− c = 0 (24)
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Example 4:

A chemical company owns an elliptic piece of land
whose principle axes are of lengths 2a and 2b meters. It
is desired to build a rectangular tank that has the
largest possible perimeter that fits in this land. What
are the dimensions of this tank?

Hint: This problem can be mathematically formulated
as follows:

Maximize P = 4(x + y) (25)

with the constraint

x2

a2
+

y2

b2
= 1 (26)
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Approach # 2

Advantages:

• It is not necessary to eliminate the constraint
equations

Disdvantages:

• A large number (n + m) of nonlinear equations have
to solved simultaneously.
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The Case for Using Numerical Methods

• For both unconstrained as well as equality
constrained optimization problems, a set of
nonlinear algebraic equations have to solved
simultaneously.

• For all but the simplest problems, these equations
are tedious to solve by “hand calculations”.
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Numerical Problem Formulation

Given a set of n equations in n variables:

p1(x1, x2, ..., xn) = 0

p2(x1, x2, ..., xn) = 0

.

.

pn(x1, x2, ..., xn) = 0

(27)

to find a numerical solution for x starting from

x0 = [x10 x20 ... xn0]T (28)
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In compact form, we need to find the solution of

p(x) = 0 (29)

starting from x = x0
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Newton’s Method

Define H =
∂p

∂x
|x=xk

where xk is the value of x at the

kth iteration.

p(x) = p(xk) + H.(x− xk) + higher order terms

When x = x∗, p(x∗) = 0. Substituting above:

0 ≈ p(xk) + H(x∗ − xk)

Solving for x∗, we get:

x∗ ≈ xk − (H)−1
p(xk)
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The above expression is used to develop the Newton’s
method:

xk+1 = xk − (H)−1
p(xk) (30)

Can you solve Example 2 now?
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Example 5:

Use Newton’s method to solve the following system of
nonlinear equations:

3x1 − cos(x2x3)− 1
2

= 0

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0

e−x1x2 + 20x3 +
10π − 3

3
= 0

(31)

starting from the initial condition

x0 = [0.1 0.1 − 0.1]T (32)
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Using the formula

xk+1 = xk − (H)−1
p(xk) (33)

we get the following:

p(xk) =




3x1 − cos(x2x3)− 1
2

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06

e−x1x2 + 20x3 +
10π − 3

3




x=xk

H =




3 x3sin(x2x3) x2sin(x2x3)

2x1 −162(x2 + 0.1) cos(x3)

−x2e
−x1x2 −x1e

−x1x2 20




x=xk
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The results using Newton’s method are as follows:

k x1k
x2k

x1k
||xk+1 − xk||

0 0.10000000 0.10000000 -0.10000000 -

1 0.50003702 0.01946686 -0.52152047 0.422

2 0.50004593 0.00158859 -0.52355711 1.79× 10−2

3 0.50000034 0.00001244 -0.52359845 1.58× 10−3

4 0.50000000 0.00000000 -0.52359877 1.24× 10−5
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