Problems with Equality Constraints

e Realistic optimization problems have constraints.

e If these constraints are equality constraints, then
the optimization methods developed in the previous

lecture can be modified to solve the problem with
constraints.



Problem Formulation

minimize f(T1,Xo, ..., Tn, UL, U, -y U ) (1)
subject to
gl(xlax27°"7xn7u17u27---7um) = 0
g2($17x27'“733n7u17u27---7um) = 0

In(T1, T, ey Ty UL, Uy ooy Upy) = O
Note that if m variables wy, ug, ..., u,, could be found,
the remaining n variables z1, 9, ..., T, are fixed by the

n constraints.



In compact form, the above problem can be stated as:
minimize f(x,u) (3)

subject to
g(z,u) =0 (4)
where x € R™ and u € R™



Approach # 1:

e Eliminate the constraint equations by substituting x

in terms of v in the function to the optimized.

e Use unconstrained optimization methods to

optimize the function in w.

Approach # 2:

e Develop necesary and sufficient conditions of
optimality from “scratch” for problems with
equality constraints.



Example 1:

min f(x,u) = 42° + bu? (5)
subject to
2x 4+ 3u =06 (6)
1. Write = in terms of u in the constraint equation.

_6—3u

7
v = (7
2. Substitute x in terms of u in the function to be
minimized.
2
6 — 3u
min f(u) = 4 + 5u?
o = 4(55) (5)

14u? — 36u + 36



3. Use method developed for minimization of

unconstrained functions.

of
— =0 9
> (9)
Solving for u, we get:
u* = 1.286 (10)

Substitute this value of u in the constraint equation

to get the optimal value of x.

z* = 1.071 (11)



The minimum value of the function is

f(x™,u™) = 12.857 (12)

Note that if there was no equality constraint, the

minimum value of the function would have been ZERO.



Example 2:

min f(x,u) = (u1—x1)2+(a?1—u2)2+(uz—$2)4+(u2—$3)4

(13)
subject to
r1+3x0o+2u1—6 = 0
200 +u1 +3uo —6 = 0 (14)
To+3r3+2us—06 = 0

It is not so easy to use Approach # 1 here.



Approach # 1

Advantages:

e Utilizes methods developed for unconstrainted

optimization.

Disdvantages:

e It is tedious to eliminate constraints if there are

many constraint equations.



Approach # 2: Necessary Conditions

minimize f(x,u) (15)

subject to
g(@,u) =0 (16)

where x € 'R™ and u € R™

A stationary point is one where df = 0 for arbitrary du

while holding dg = 0 letting dx change as it will.

df = %.dm + %.du (17)
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and 3 3
_ 99 Y9
dg = ax.dx + au.du (18)

Since dg = 0, this implies that
dg - dg
de = — | == —.d 19
v lé‘x] ou" (19)

Substituting in the expression for df, we get

f 89]_1 99 of

i = Oz [(9:1:‘ ou ' Ou

du (20)

If df has to be zero for arbitrary du, it is necessary that

of _of [39]_1@_

ou Ox | Ox 5’u_0 (21)
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Thus, we need to solve simultaneously, the following

equations:

g(x,u)
of Of [ag]‘l dg

ou Ox |0z ou

Can you solve Example 2 now?
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0

0

(n equations)

(m equations)

(22)



Example 3:

Find the stationary value of

1 2 2
flz,u) =3 <%+Z—2>

subject to

glx,u)=x+mu—c=0
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(23)

(24)



Example 4:

A chemical company owns an elliptic piece of land
whose principle axes are of lengths 2a and 2b meters. It
is desired to build a rectangular tank that has the
largest possible perimeter that fits in this land. What

are the dimensions of this tank?

Hint: This problem can be mathematically formulated

as follows:
Mazimize P = 4(x + y) (25)

with the constraint

e (26)



Approach # 2

Advantages:

e [t is not necessary to eliminate the constraint

equations

Disdvantages:

e A large number (n 4+ m) of nonlinear equations have

to solved simultaneously.
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The Case for Using Numerical Methods

e For both unconstrained as well as equality
constrained optimization problems, a set of
nonlinear algebraic equations have to solved

simultaneously.

e For all but the simplest problems, these equations

are tedious to solve by “hand calculations”.
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Numerical Problem Formulation

Given a set of n equations in n variables:

pl(ﬂfl,l'g,...,:l?n) = 0
pg(xl,xg,...,xn) = 0
(27)
pn(xlaxZV"axn) = 0
to find a numerical solution for x starting from
__ T
o — [5131() L20 .- Clin()] (28)
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In compact form, we need to find the solution of

p(z) =0

starting from x = xg
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(29)



Newton’s Method
dp

Define H = —|,—,, where xj is the value of x at the

ox

kEth iteration.

p(x) = p(xr) + H.(x — xx) + higher order terms
When z = z*, p(z*) = 0. Substituting above:
0= p(zg) + H(x™ — xi)
Solving for x*, we get:

¥~ ap — (H) ' play)
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The above expression is used to develop the Newton’s
method:

Tpr1 =2 — (H) ' play) (30)

Can you solve Example 2 now?
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Example 5:

Use Newton’s method to solve the following system of

nonlinear equations:

3x1 — cos(xax3) — % =
19 — 81(xgy +0.1)% + sin(x3) +1.06 = 0 (31)
e~ 4 2y + 1o7r3— SO
starting from the initial condition
o = [0.10.1 —0.1]" (32)
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Using the formula

iy =z, — (H) " play)

we get the following:

- 1
3x1 — cos(xor3) — 5
p(rr) = | 2% — 81(we +0.1)? + sin(x3) + 1.06
B 10m — 3
e~ “1%2 + 20x3 +
i 3
i 3 r3sin(xrexs)  xosin(rars)
H = 211 —162(z2 4+ 0.1) cos(zs)
I —xoe” F1¥2 —xpe Tre2 20
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(33)




The results using Newton’s method are as follows:

kw1, T, T, ka1 — il
0 0.10000000 0.10000000 -0.10000000 -

1 0.50003702 0.01946686 -0.52152047 0.422

2 0.50004593 0.00158859 -0.52355711 1.79 x 102
3 0.50000034 0.00001244 -0.52359845 1.58 x 1073
4 0.50000000 0.00000000 -0.52359877 1.24 x 10™°
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