
Model Development for Optimization

• The methods described in the previous three
lectures require an objective function as well as the
constriants.

• This requires the development of a mathematical
model for the process under consideration.

A mathematical model provides quantitative expressions
that enable us to use optimization techniques to extract
useful information about process design and operation.
Two types of models may be developed:

1. Fundamental Models

2. Empirical Models
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Fundamental Models:

• These models are developed from fundamental
principles (e.g. mass and energy balances).

• Typically simplifying assumptions are made to keep
the size of the model small.

• Model parameters are obtained from independent
experiments and are physically meaningful
quantities (e.g density, viscosity).

• The model expressions have predictive capabilities.

• The accuracy of the model predictions depend on
how good the assumptions are.
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• A lot of process experience is required to develop
good models. The challenge is to convert a word
problem into a mathematical description.

• Optimization methods used on the model give the
optimal solution of the model. Whether this is the
optimal solution of the process depends on how
accurately the model depicts the process.
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Example 1:

P1=100 kPa
T1=300K

P2=? P3=? P4=1000 kPa

Consider a three stage compressor with intercooling.
The following process data is given:

P1 = 100 kPa P4 = 1000 kPa T1 = 300 K

Assume that the compressor is used to compress air.
What should be the values of P2 and P3 so that the
total work is minimized?
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Solution:

• Assume that the flow is ideal compressible adiabatic
flow.

• Since the gas is assumed to be ideal, k =
Cp

Cv
= 1.4

and does not change in the pressure range P1 to P4.

• The equation describing the work done for ideal
compressible adiabatic flow can be found in
standard text-books.
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• The work done for each stage is given as follows:

W1 =
kRT1

k − 1

[(
P2

P1

) k−1
k

− 1

]

W2 =
kRT1

k − 1

[(
P3

P2

) k−1
k

− 1

]

W3 =
kRT1

k − 1

[(
P4

P3

) k−1
k

− 1

] (1)
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• The total work done W is given by:

W = W1 + W2 + W3

=
kRT1
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(2)

• The above equation gives us the objective function
to minimize, as a function of P2 and P3.

• Clearly P2 and P3 will take values between
P1 = 100 kPa and P4 = 1000 kPa. We first try to
find the optimal values by posing the problem as an
unconstrained minimization problem. If the solution
is not in the range 100 − 1000 kPa, we will add
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inequality constraints.

• To minimize W w.r.t. P2 and P3, the necessary
conditions of optimality are:

∂W

∂P2
= 0

∂W

∂P3
= 0

(3)

• This leads to the following algebraic equations that
need to be solved simultaneously:[
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(4)
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• Substitute

k = 1.4 P1 = 100 kPa P4 = 1000 kPa

• Solving the two equations simultaneously for P2 and
P3, we obtain:

P ∗
2 = 215.44 kPa

P ∗
3 = 464.17 kPa

(5)

• The sufficient conditions of optimality can be
checked to ensure that the solution obtained is
indeed a minimum and not a maximum or a
saddle-point.
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Example 2:

Consider the following distillation problem:

The objective is to minimize Q1 by selecting F1, F2, F3,
F4, Q1.
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The feed conditions are as follows:

Total feed = 100 lbmol/hr liquid

hf = 4000 Btu/lbmol

x1 = 0.05 (C3H8)

x2 = 0.15 (i − C4H10)

x3 = 0.25 (n − C4H10)

x4 = 0.20 (i − C5H12)

x5 = 0.35 (n − C5H12)

(6)
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The desired distillate product specifications are:

10 lbmol/h liquid

with x5 ≤ 0.07
(7)

The reflux ratio used is 1.5 times the minimum reflux.

Equality Constraints

• Total material balances (one for each stage k,
k = 1, 2, 3, 4)

FL
k + FV

k + Vk−1 + Lk+1 = Vk + Lk (8)
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• Component material balance (one for each
component i for each stage k)

xF
i,kFL

k +yF
i,kFV

k +yi,k−1Vk−1+xi,k+1Lk+1 = yi,kVk+xi,kLk

(9)

• Energy balance (one for each stage)

Qk + hF
k Fk + Hk−1Vk−1 + hk+1Lk+1 = HkVk + hkLk

(10)

• Equilibrium relations for liquid and vapor at each
stage (one for each stage)

yi,k = Ki,kxi,k (11)
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• Relation between equilibrium constant and p, T , x,
y (one for each stage)

Ki,k = Ki(pk, Tk, xk, yk) (12)

• Relation between enthalpies and p, T , x, y (one for
each stage)

hk = h(pk, Tk, xk)

Hk = H(pk, Tk, yk)
(13)
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There are other implicit equalities that must be
satisfied.

• Overall liquid mole fraction at each stage:
m∑

i=1

xi,k = 1

m∑
i=1

yi,k = 1
(14)

• Sum of all the feeds is given in the problem
statement:

m∑
i=1

Fk = 100 (15)
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Inequality Constraints

Q1 ≥ 0

Q4 ≤ 0

xi,k ≥ 0

yi;k ≥ 0

Fk ≥ 0

x5,4 ≤ 0.07 (given in problem statement)

(16)

16



Results of Optimization

Variable Initial Guess Optimal Value

F1 25 23.7

F2 25 0.0

F3 25 0.0

F4 25 76.3

Q1 5.0 × 106 3.38 × 105

The optimal solution suggests that it is possible to use
some of the cold feed as reflux in the top stage without
voiding the product composition specification. This
outcome is not an obvious choice for the problem
specification.
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