Project

The objective of this project is to study the dynamics of a distillation column and to design a controller for getting a desired concentration of the top and bottom products.

For Report 1, the following tasks need to be done:

- 1. Design a distillation column in CHEMCAD using the specifications given for your group. The specifications for each group are listed in Table 1 in the next page.
- 2. Develop a dynamic nonlinear model for the column that you designed in Part 1. Use the handout given in class and the 5 step procedure to develop the model for the column.
- 3. The manipulated inputs to the column are the vapor and liquid flowrates. The vapor flowrate is used to control the bottom composition and the liquid flowrate is used to control the top composition. The states of the column are the compositions on each tray. Find the steady state values of the column by putting the time derivative terms equal to zero.
- 4. Linearize the nonlinear model around the steady state values.
- 5. Study the linear and nonlinear response of the column to changes in feed flowrate and the feed compositions (plus or minus 10%) using MATLAB.
- 6. Compare the nonlinear response to the response obtained from the linearized model.

Group 1: Kibler, Kochanowski, Duckworth

Feed: n-propane and n-butane

200 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.85 n-propane and 0.15 n-butane

Group 2: Bean, Anderson, Taylor

Feed: benzene and toluene

200 kmol of 50:50 mixture at 330 K and 14.7 psia

Specifications at top: 0.92 benzene and 0.08 toluene

Group 3: Alexander, Bouldin, Storr

Feed: n-hexane and n-methyl cyclohexane

200 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.90 n-hexane and 0.10 n-methyl cyclohexane

Group 4: Gilet, White, Campbell

Feed: toluene and o-xylene

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.88 toluene and 0.12 o-xylene

Group 5: Thompson, Bouie, Stroud

Feed: benzene and o-xylene

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.95 benzene and 0.05 o-xylene

Group 6: Richard, Allen, Hicks

Feed: methanol and isopropanol

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.87 methanol and 0.13 isopropanol

Group 7: Fails, Ayanwale, Wawrzyk

Feed: 3-methyl 1-butanol and isobutanol

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.95 3-methyl 1-butanol and 0.05 isobutanol

Group 8: Randell, Coppin

Feed: n-octane and n-tetradecane

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.98 n-octane and 0.02 n-tetradecane

Group 9: Dupuis, Murray, Mondrinos

Feed: n-heptane and methyl cyclohexane

300 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.70 n-heptane and 0.30 methyl cyclohexane

Group 10: Bell, Yoder, Achenbach

Feed: acetone and propionic acid

400 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.90 acetone and 0.10 propionic acid

Group 11: Alleyne, Laudat

Feed: acetone and cyclohexane

400 kmol of 50:50 mixture at 330K and 14.7 psia

Specifications at top: 0.90 acetone and 0.10 cyclohexane