
The best model for a cat is another cat or,

better, the cat itself

Norbert Wiener



General Form of Dynamic Process Models

A general representation of the dynamic process
models derived in the previous lecture is:

ẋ1 = f1(x1, x2, ..., xn, u1, u2, ..., um, p1, p2, ..., pr)

ẋ2 = f2(x1, x2, ..., xn, u1, u2, ..., um, p1, p2, ..., pr)

.

.

.

ẋn = fn(x1, x2, ..., xn, u1, u2, ..., um, p1, p2, ..., pr)
(1)



where

xi state variable

ui input variable

pi parameter

and the initial conditions of xi are known.

The above equations are

• first order

• nonlinear

• ordinary differential equations



Definitions

1. State Variable: A state variable is a variable
that arises naturally in the accumulation
term of a dynamic material or energy
balance. A state variable is a measurable (at
least conceptually) quantity that indicates
the state of system.

Examples of state variables include
concentrations (from mass balance) and
temperature (from energy balance).



2. Input Variable: An input variable is a
variable that normally must be specified
before a problem can be solved or a process
can be operated. Inputs are normally
specified by the engineer based on
knowledge of the system.

Input variables typically include flowrates of
streams entering or leaving the system.
Input variables are manipulated to achieve
desired performance.



3. Parameter: A parameter is typically a
physical or chemical property value that
must be specified or known to
mathematically solve a problem. Parameters
are often fixed by reaction chemistry,
molecular structure, vessel size, or
operation.

Examples of parameters include density,
viscosity, heat and mass transfer coefficients.



Vector Form

The set of equations described by eq. (1) can be
written more compactly in vector form as follows

dx

dt
= f(x, u, p)

x(0) = x0

(2)

where

x vector of state variables

u vector of input variables

p vector of parameters



Steady States

At steady state, ẋ = 0

If the steady state values of the input vector, us,
is specified, the steady state values of the states,
xs, can be computed from:

f(xs, us, p) = 0 (3)

Eq. (3) represents a set of n nonlinear equations
in n variables xs, which need to be solved
simultaneously.



Solution of Nonlinear Algebraic Equations

• If the dimension of the x vector is small
(n ≤ 2), eq. (3) can be solved analytically

• If the dimension of the x vector is large
(n ≥ 3), eq. (3) is solved numerically (e.g.
Newton’s Method)



Example 1

The following series reaction is occurring in a
CSTR

A −→ B −→ C

where the first reaction, with rate constant k1, is
second order and the second reaction, with rate
constant, k2, is first order. The parameter values
are as follows:

k1 = 2

k2 = 3
F

V
= 1



The initial conditions are CA = 1, CB = 0, CC = 0.

The steady state value of the input, CAin = 1.
Develop a mathematical model of the above
process, put it in vector form, and compute the
steady-state values.
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Linearization of Nonlinear Models

In general, we would like to know:
how do the states, x vary with time when the

input variables, u, and/or the initial conditions,

x(0), are perturbed?

This analysis can be done analytically if the
process model is linear. This provides the
motivation to linearize nonlinear models.

The analysis based on the linearized model is
valid only when the process is close to the steady
state value.



Consider the general nonlinear model:

dx

dt
= f(x, u) (4)

If (us, xs) denotes the reference steady state, this
must satisfy:

0 = f(xs, us) (5)

When x and u are close to the steady state values
xs and us, we can approximate the nonlinear
function f(x, u) by a truncated Taylor’s series:



f(x, u) ≈ f(xs, us)+
(

∂f

∂x
(xs, us)

)
(x−xs)+

(
∂f

∂u
(xs, us)

)
(u−us)

(6)

Substituting eq. (5) in eq. (6), and introducing
the deviation variables:

X = x− xs

U = u− us

(7)

we get the following system of equations:

dX

dt
= AX + BU (8)

where



A =
(

∂f

∂x
(xs, us)

)

=




∂f1
∂x1

(xs, us) ∂f1
∂x2

(xs, us) ... ∂f1
∂xn
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∂f2
∂x1

(xs, us) ∂f2
∂x2

(xs, us) ... ∂f2
∂xn

(xs, us)

. . .

. . .

. . .

∂fn

∂x1
(xs, us) ∂fn

∂x2
(xs, us) ... ∂fn

∂xn
(xs, us)




(9)



B =
(

∂f

∂u
(xs, us)

)

=




∂f1
∂u1

(xs, us) ∂f1
∂u2

(xs, us) ... ∂f1
∂um

(xs, us)
∂f2
∂u1

(xs, us) ∂f2
∂u2

(xs, us) ... ∂f2
∂um

(xs, us)

. . .

. . .

. . .

∂fn

∂u1
(xs, us) ∂fn

∂u2
(xs, us) ... ∂fn

∂um
(xs, us)




(10)



Example 2

Linearize the model developed in Example 1
around the steady state.


