Qualitative Effect of P, Pi, PID parameters So far in this course, we have done the following: - Developed dynamic models for chemical processes - Studied the effect of changing inputs on the outputs and states - Developed a procedure for interconnection of $\operatorname{systems}$ controller (which we can tune), affect the outputs. particular, we will study how the parameters of the In this lecture, we will address the issue of what happens when we connect a controller to a process. In #### P Controller Consider the following process: $$\begin{bmatrix} d \\ dt \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 10 & -10 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ $$Y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$ ## and the P controller $$U = k_c E$$ $$= k_c (Y_{sp} - Y)$$ $$- \underbrace{\mathsf{F}}_{\mathsf{Controller}} \underbrace{\mathsf{F}}_{\mathsf{process}} \mathbf{Y}$$ 2 The closed-loop system is given by $$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -k_c \\ 1 & -1 & 0 \\ 0 & 10 & -10 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} k_c \\ 0 \\ 0 \end{bmatrix} Y_{sp}$$ $$Y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$ (3) setpoint as soon as possible. Suppose Y_{sp} undergoes a step change from 0 to 1. Clearly, we would like Y to reach the new value of the What is the effect of the value of k_c on the output Y? - For small k_c , response is smooth and stable, but there is a large off-set. - For medium k_c , response is oscillatory and stable, but the off-set is small - For large k_c , the response is oscillatory and unstable #### PI Controller Consider the following process: $$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 10 & -10 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ $$Y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ # and the PI controller 5 The closed-loop system is given by $$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -k_c & \frac{k_c}{\tau_I} \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 10 & -10 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} + \begin{bmatrix} k_c \\ 0 \\ 0 \\ 1 \end{bmatrix}$$ $$Y = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_4 \end{bmatrix} \begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$$ $$(6)$$ Suppose Y_{sp} undergoes a step change from 0 to 1. setpoint as soon as possible. Clearly, we would like Y to reach the new value of the output Y? What is the effect of the value of k_c and τ_I on the • Integral action eliminates off-set. As τ_I is decreased (=> $\frac{1}{\tau_I}$ is increased), the range of values for k_c which lead to stable output response, decreases. ### PID Controller Consider the following process: $$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 10 & -10 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} U$$ $$Y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ # and the PID controller $$\frac{dX_4}{dt} = E$$ $$\frac{dX_5}{dt} = -\frac{1}{\alpha \tau_D} X_5 + \frac{1}{\alpha \tau_D} E$$ $$U = k_c (1 + \frac{1}{\alpha}) E + \frac{k_c}{\tau_I} X_4 - \frac{k_c}{\alpha} X_5$$ 8 setpoint as soon as possible. Clearly, we would like Y to reach the new value of the Suppose Y_{sp} undergoes a step change from 0 to 1. output Y? What is the effect of the value of k_c , τ_I , and τ_D on the The value of α is set to 0.1 for most commercial controllers. Thus there are only three parameters to vary $(k_c, \tau_I, \text{ and } \tau_D)$ - Integral action eliminates off-set. - Derivative action has a stabilizing effect on the the use of higher values of k_c as compared to the PI controller. process. Thus, the presence of the τ_D term allows #### Summary - Proportional action alone is not sufficient to tightly control the output to the desired set-point. process. Increasing k_c reduces offset but destabilizes the - Integral action eliminates offset. However as the the response is destabilized integral term becomes larger (τ_I becomes small), - Derivative action has a stabilizing effect on the making the response faster. proportional and integral terms to be used, thereby closed-loop system. This allows for higher values of