IEEE Southeast Con Hardware Challenge 2017

Group #1 EEL 4911C Advisor: Dr. Harvey Instructor: Dr. Hooker Reviewers: Dr. Roberts & Dr. Yu

SOUTHEASTCON TEAM

Michael Pelletier Computer Engineer Project Manager

Colin Fortner Electrical Engineer Financial Advisor

Hunter Fitch Electrical Engineer Lead Mechanical Designer

Nicole Perry Electrical Engineer Lead Electrical Designer

OBJECTIVE

IEEE SoutheastCon Hardware Challenge

- Star Wars Themed
- "Uncovering the Unknown"
- "Lightsaber Duel"
- "Bring Down the Shields"
- "Launch a Proton Torpedo"

ROBOT DESIGN

- Within 12 x 12 x 12 constraints
- L: 11.5"
- W: ||.8"

• H: I0"

Figure 2: Robot Design (Rear)

Figure 3: Robot Design (Left Side)

Figure I: Robot Design (Top Down)

Figure 4: Robot Design (Front)

STAGE I – DESCRIPTION

- Rotational dimensions for brass pads are:
 - I 0°
 - 2 72°
 - 3 144°
 - 4 216°
 - 5- 288°
- Center pad is common ground
- Capacitor is non polarized
- Diode can be forward or reversed

Figure I: Stage I Arena Design

Table 1: Component to Code Values

Code	Component type	Component value	
1	Wire	N/A	
2	Resistor	10K, 10% tolerance	
3	Capacitor	0.1uF, non polarized	
4	Inductor	500mH	
		IN4001–cathode/anode can	
5	Diode	be oriented in either	
		direction	

STAGE I - HARDWARE

• 6 Prongs to attach to each hole

 Tapered ends to allow more error

Figure I: Stage I Design

STAGE I – IMPLEMENTATION

• 5 digital pins

• I analog pin

• Series resistor in middle pad

Figure I: Stage I Arena Design

STAGE I – IMPLEMENTATION

• 5 digital pins

• I analog pin

• Series resistor in middle pad

CODE OUTPUT

STAGE 2 – "LIGHTSABER DUEL"

- Detect Electromagnetic Field induced
 - I amp supplied to a 40 turns of #20 copper wire wound around a 0.5" bobbin
 - Active for 2 seconds randomly during a 30 second round interval
 - Started by robot contact
 - 4 active periods during the round with the final activation at 28 seconds

Figure 1: Stage 2 Layout Front (Left); Stage 2 Back (Top)

STAGE 2 - "'THE FORCE IS STRONG WITH THIS ONCE' – OBI WAN"

- Allegro AI 302KUA-T Hall Effect Sensor
- 1.3 G/mV
- Implemented with Arduino Code

Test Data: No Active Field

	0 -5Gauss
	0 -7Gauss
	0 -5Gauss
	0 -7Gauss
	0 -5Gauss
	0 -7Gauss

Test Data: Active Magnetic Field

	0 -7Gauss
	0 -7Gauss
	0 -7Gauss
	0 -8Gauss
	0 -8Gauss
	0 -8Gauss

 $\Delta B \simeq 1-2$ Guass

Figure I: Stage 2 Sensor

VEX 3-Wire 180 deg Servo Motor

- Arduino Code to activate when magnet active
- Powered by robot Battery

Potential Improvements

- The original Servo motor was too slow and too weak
- Faster, Stronger Servo

Figure I: Stage 2 Design

STAGE 3 – "BRING DOWN THE SHIELDS"

- Implement Stage | Code
- Quadrature Encoder
 - Records direction and
 - number of turns
- 360° represents a value of one
- Number of turns =
 Digit
- Direction changes = Next Digit
- Five Digits

Component	Wire	Resistor	Capacitor	Inductor	Diode
Code	I	2	3	4	5
	\bigcirc	_			

Figure I: Stage 3 Arena Design

STAGE 3 - NEW APPROACH

- 2 Stepper Motors
 - Precise due to steps
 - Low speed torque
- Rubber Band
- Micro servo to hold band

Figure I: Stage 3 Design

- Update
 - Change gear to have a better turning ratio

STAGE 4 – DESCRIPTION

- 6"x 6", 3.5" above the top step
- The target area is roughly 7" from the starting arena area
- Launching Position

Figure 1: Stage 4 Arena Design

STAGE 4 – FIRING PLATFORM

Figure I: Side View

Figure 2: FrontView

PROJECT BUDGET

Product	Qty	Total
Rotary Encoder	I	\$3.95
Clear Plastic Knob	I	\$0.95
Continuous Servo	1	\$11.95
Drivetrain	I	\$78.93
Arduino Mega	2	\$73.98
Magnetic Sensor	Ι	\$2.00
IR Sensors	8	\$108.20
Hardware	I	\$34.19
Chassis	I	\$32.25
Hall Effect Sensors	4	\$10.27
Misc.Vex	I	\$98.99
Misc. RobotShop	I	\$79.92
Misc. Hardware	I	\$191.90
Shipping	1	\$21.15

PROJECT RESULTS & CHANGES

- Successful at completing stages
- Short circuit during competition
- Changes
 - Drivetrain
 - Original design: tank treads for stair climbing
 - Omni-directional wheels
 - Navigation

Figure I: Track Design