IEEE Southeast Con Hardware Challenge 2017

Group #1 EEL 4911C Advisor: Dr. Harvey Instructor: Dr. Hooker Reviewers: Dr. Roberts & Dr. Yu

SOUTHEASTCON TEAM

Michael Pelletier Computer Engineer Project Manager

Colin Fortner Electrical Engineer Financial Advisor

Hunter Fitch Electrical Engineer Lead Mechanical Designer

Nicole Perry Electrical Engineer Lead Electrical Designer

PROJECT DESCRIPTION

- 2017 IEEE Southeast Con Hardware Challenge
 - March 30

• Objective: Success

• Oct. 9, 2016 Rules

Autonomous robot

4 STAGES

Star Wars Themed

- "Uncovering the Unknown"
- "Lightsaber Duel"
- "Bring Down the Shields"
- "Launch a Proton Torpedo"

Task	1/9	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17
Rules and Research															
Testing and Design Implementation															
2017 IEEE Southeast Con Hardware Chall.															
Microcontroller															
Research															
Device Selection															
Coding															
Drive Train															
Drive Train Research															
Motor Controller Selection															
Platform Selection															
Platform Design															
Drive Train Build															
Power supply															
Power Research															
Power Supply Selection															
Parts Ordered															
Robot Chassis															
Chassis Design															
Chasssis Build															
Wiring/Electrical															

Navigation													
Navigation Research													
Sensor Selection													
Parts Ordered													
Sensor Coding													
Implementation													
Stage 1													
Circuit Design													
Parts Ordered													
Code writing													
Display Implementation													
Stage Build													
Stage Test													
Stage 2													
EMF Sensor Research													
Lightsaber Motor Research													
Motor Design													
Sensor Design													
Parts Selection													
Parts Ordered													
Motor Coding													
Sensor Coding													
Stage Build													
Stage Test													

Stage 3													
Motor Research													
Motor Controller Research													
Gripper/ Arm Selection and Design													
Design Selection													
Parts Ordered													
Motor Coding													
Stage Build													
Stage Test													
Stage 4													
Launch Mechanism Research													
Firing Mechanism Design													
Barrel Design													
Propulsion Design													
Part Selection													
Parts Ordered													
Fire Coding													
Stage Build													
Stage Test													

CURRENT PHASE

- Redesign and Implentation
- Movement and navigation
- Final construction

BOT CHASSIS DESIGN

- Starting size must not exceed 12"x12"x12" (as per official Rules)
- Preliminary Research has resulted in the following design aspects
 - Original allowance 2" for each dimension
 - Bot Size 11.5"x11"x10" to allow for possible expansion if needed
 - Perforated to reduce weight

DRIVETRAIN

- Vex Robotics Tank Tread Kit
- Vex Robotics 2-Wire Motor 393
- Vex Robotics Motor Controller
- Stair climbing capability
- 2 mph when powered at 5 volts
- Built & ready for navigation

NAVIGATION

Long Range

Short Range

GP2Y0A41SK0F 4-30cm

GP2Y0A02YK0F 20-150cm

LAYOUT

NAVIGATION CODING METHOD

- Basic algorithm for making complex decisions
- Starts with breaking down inputs from sensors into manageable information
- Information is then put into a rule matrix to determine output

STAGE I – DESCRIPTION

- Rotational dimensions for copper pads are:
 - I 0°
 - 2 72°
 - 3 144°
 - 4 216°
 - 5- 288°
- Center pad is common ground
- Capacitor is non polarized
- Diode can be forward or reversed

Code	Component type	Component value
1	Wire	N/A
2	Resistor	10K, 10% tolerance
3	Capacitor	0.1uF, non polarized
4	Inductor	500mH
5	Diode	IN4001–cathode/anode can be oriented in either direction

STAGE I – SCHEMATIC

• 5 digital pins

• I analog pin

STAGE I – PSUEDO CODE

Int Stage I (int pin)

Set pin to output

Read voltage

Wait I sec

Read voltage2

Return component

- If(voltage > voltage2)
 - Capacitor "3"
- Else If(voltage < voltage2)
 - Inductor "4"
- Else if(voltage = 5)
 - Wire"I"
- Else if (voltage = 2.5)
 - Resistor "2"
- Else
 - Diode "5"

CODE OUTPUT

STAGE 2 – "LIGHTSABER DUEL"

- Detect Electromagnetic Field induced
 - I amp supplied to a 40 turns of #20 copper wire wound around a 0.5" bobbin
 - Active for 2 seconds randomly during a 30 second round interval
 - Started by robot contact
 - 4 active periods during the round with the final activation at 28 seconds

Figure 1: Arena Stage 2 with Lightsaber

STAGE 2 – THE LIGHTSABER

• Lightsabers!

- 3" tall Field attached lightsaber
- Adafruit Medium Vibration Sensor Switch to detect contact made
- Adafruit LED array to visually indicate contact
 - Red for Points Deducted, Blue for Points Awarded

Figure 2: Lightsaber and Bobbin

STAGE 2 - "'THE FORCE IS STRONG WITH THIS ONCE' – OBI WAN"

Magnetic Field .5cm from Bolt

Magnetic Field behind

STAGE 2 - "'THE FORCE IS STRONG WITH THIS ONCE' – OBI WAN"

- Allegro A I 302KUA-T Hall Effect Sensor
- 1.3 G/mV
- Implemented with Arduino Code

Test Data: No Active Field

	-0	-5Gauss
	-0 -	-7Gauss
	-0 -	-5Gauss
	-0 -	-7Gauss
	-0	-5Gauss
· 	-0	-7Gauss
1	× 1	100000

Test Data: Active Magnetic Field

(0 -7Gauss
(0 -7Gauss
(0 -7Gauss
(0 -8Gauss
(0 -8Gauss
	0

 $\Delta B \simeq 1-2$ Guass

VEX 3-Wire 180 deg Servo Motor

- Arduino Code to activate when magnet active
- Powered by robot Battery

Next Steps:

- Fabricate "Lightsaber"
- Fabricate PCB for sensor
- Finalize and "clean-up" code
- Finalize wiring

STAGE 3 – "BRING DOWN THE SHIELDS"

- Implement Stage | Code
- Quadrature Encoder
- 360° represents a value of one
- Number of turns =
 Digit
- Direction changes = Next Digit
- Five Digits

Component	Wire	Resistor	Capacitor	Inductor	Diode
Code	I	2	3	4	5

STAGE 3 – PAST DESIGN

- Continuous Rotation Servo
 - Rotates 360°
 - Easy to implement
 - Not precise enough
- Foam gripper
 - Easy to design
 - No coding
 - Lacks room for error

Micro Continuous Rotation Servo

STAGE 3 - NEW APPROACH

- Stepper Motor
 - Precise due to steps
 - Low speed torque
 - 2-phase bipolar motor with 4 wires
 - H-bridge to reverse current
 - 200 steps

No feedback for position

Stepper Motor (Top View)

https://www.arduino.cc/en/Reference/Stepper

Made with 🚺 Fritzing.org

• Two Stepper Motors • Rubber band • Servo for tension

STAGE 3 – FUTURE

- Ordered second motor
- Adding servo
- Prototype testing -> Real testing

STAGE 4 – DESCRIPTION

- 6"x 6", 3.5" above the top step
- The target area is roughly 7" from the starting arena area
- Launching Position

Top Front View

Front View

BUDGET UPDATE

- Current Spent: \$556.73
- Budget Left: \$193.27

Product	Qty	Total
Rotary Encoder	1	\$3.95
Clear Plastic Knob	I	\$0.95
Continuous Servo	1	\$11.95
Drivetrain	1	\$78.93
Arduino Mega	2	\$73.98
Magnetic Sensor	1	\$2.00
IR Sensors	8	\$108.20
Hardware	1	\$34.19
Chassis	I	\$32.25
Hall Effect Sensors	4	\$10.27
Misc. Vex	1	\$98.99
Misc. RobotShop	1	\$79.92
Shipping	1	\$21.15

NEXT PHASE

Spring Break:

Stage to stage movement – March 4th All stages finished – March 10th Wiring (80%) & Coding (90%) – March 17th

After Break: Wiring (100%) & Coding (100%) Minor adjustments – March 17th to competition