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Abstract Vortex asymmetry, dynamics, and breakdown in the wake of an axisymmetric cone have been
investigated using direct numerical simulation for a wide range of angles of attack. The immersed boundary
method is employedwith pseudo-body-conformal grids to ensure the accuracy and resolution requirements near
the bodywhile being able to account for topology changes near the cone tip. The separated shear layer originated
from the surface of the cone swirls into a strong primary vortex. Beneath the primary vortex on the leeward
surface of the cone, a well-coherent counter-rotating secondary vorticity is generated. Beyond a particular
threshold of swirl, the attached vortex structure breaks and the flow undergoes a chaotic transformation.
Depending on the angle of attack, the flow shows different levels of instabilities and the topology of the
vortices changes in the wake. In addition to swirl, spiral vortices that revolve around the primary vortex core
often merge with the core and play a role in developing the double-helix mode of instability at the onset of
the vortex breakdown. At the angle of attack of 60◦, the time-averaged side force becomes asymmetric at
the stage where the drag overcomes the lift. At the angle of attack of 75◦, the primary vortex governs the
flow asymmetry and the side force. Flow asymmetry is independent of the vortex breakdown. Finally, the
contribution of primary vortices to the total forces is quantified using a force partitioning method.

Keywords Symmetry breaking · Vortex breakdown · Direct numerical simulation (DNS) · Axisymmetric
forebody · Force partitioning method

1 Introduction

Three basic phenomena that characterize the flow over bodies of revolution/axisymmetric bodies (e.g., a cone)
are the dynamics of primary and secondary vorticity [1–3], vortex breakdown [4–9], and flow asymmetry [10–
12]. Both from the perspective of understanding the fundamentals of aerodynamics and practical applications,
flow over an axisymmetric body and the effect of the angle of attack (AoA) have been studied for an extended
period of time [6,7,13]. Flow over an axisymmetric body at highAoA is associatedwith a separated shear layer,
which eventually leads to the roll-up of the concentrated vortices and formation of the primary vortex structures
(often have an axisymmetric conical/cylindrical shape) [13,14]. Because of freestreamflowentrainment created
by the primary vortices, the secondary reverse flow develops on the leeward side of the axisymmetric body.
This reversed flow can undergo separation on the leeward side of the cone surface, which is known as the
secondary separation and the associated vorticity is known as the secondary vorticity [11]. The characteristics
of the secondary vorticity are governed by the effective Reynolds number of the boundary layer generated by

Communicated by Vassilis Theofilis.

A. Shahriar · R. Kumar · K. Shoele (B)
Department of Mechanical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
E-mail: kshoele@eng.famu.fsu.edu

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



A. Shahriar et al.

the secondary flow. Based on AoA and Reynolds number, the primary and secondary vortices can be unsteady
and exhibit nonlinear instabilities. The primary separated shear layer (the vortex sheet) may contain smaller
concentrated vortices, which are referred to as “vortical substructure” [1,3].

Significant similarities exist between the flow fields over the delta wing and the axisymmetric cone. The
major exception is that for the delta wing, the primary vortex starts to curl from highly swept and sharp
leading edges of the wing [3,15–17], whereas, for an axisymmetric cone, the separation occurs over the
smooth curved surface and the zone between primary and secondary separation is comparatively larger. For
flow over an axisymmetric body, the vortex separation onset relates to the separating shear layer from a smooth
cylinder/ellipse cross section, reminiscent of the flow over a circular bluff body. This induces the primary wake
instability, known to be the result of a Hopf bifurcation, scaling with the diameter of the bluff body [18]. In
addition, the separated flow experiences shear-layer instabilities driven by the Kelvin–Helmholtz mechanism
over the thickness of the separating shear layer. In contrast, there is a separation at the edge for flow over the
delta wing, and the subsequent flow modifications are only associated with the shear-layer instability driven
[19]. The presence of both mechanisms in axisymmetric geometries creates a more complex vortex interaction
and wake structure and results in a higher tendency for the wake to become asymmetric.

A higher angle of attack and Reynolds number lead to a higher degree of swirl or circulation in the primary
vortex, which results in breaking the primary vortex into smaller rotational elements at some distance along
the axis of the vortex. This phenomenon, characterized by rapid changes in the axial direction, is referred to as
“vortex breakdown” and usually takes place in two forms: (1) formation of axisymmetric/bubble-type vortical
structures and (2) formation of spiral/helical vortical structures; [4–7,17,20]. It is often postulated that the
helical form of vortex breakdown is a consequence of the instability of the bubble type breakdown [8,16,20].
Looking at the time-averaged mean flow field, the vortex breakdown can be noticed as a rapid decrease of
both the axial and swirl components of velocity and a dramatic expansion of the vortex core [1]. The vortex
breakdown leads to a drop in the lift force and pitching moment and could drive unsteady buffeting of the
body [3]. If the angle of attack increases, the distance between the onset location of the breakdown and the
apex of the conical vortex decreases [21]. Escudier identified Reynolds number (Re), swirl number/parameter
(defined as � = �/LU , where L and U are the corresponding length and velocity scales), and swirling ratio
(radial-to-tangential velocity ratio) [8] as the major parameters for providing a global description of the flow
and showed that the onset of vortex breakdown was strongly correlated with these characteristic parameters.

The pair of primary vortices often shows asymmetry in the wake of an axisymmetric body at high AoA
[22,23]. The flow asymmetry results in unpredictable side forces and yawing moments on the body. Small
imperfections near the apex of the body can cause vortex asymmetry and flow instabilities even at small
AoAs [12,24–26] where the initiation and growth of asymmetry in the vortices strongly correlate with the
relative size and shape of the imperfections, e.g., ratio of imperfection height to the local boundary-layer
thickness [11,25,27,28]. Zhu et al. [29] observed asymmetry in the vorticity and side forces even before any
apparent asymmetry in the primary separation. They concluded that the asymmetric shear layers, generated
due to asymmetric boundary layer disturbances created by artificial micro-imperfection, are continuously fed
into the primary vortex, which eventually causes flow asymmetry. When micro-imperfections are located
on the windward side, it delays the separation. On the other hand, leeward side imperfections promote the
separation/vortex roll-up [30]. Levy et al. identified the flow asymmetry as a convective instability by analyzing
the correlation between the imperfections near the apex and the asymmetric flow [31]. The symmetry breaking
on the axisymmetric body has many similarities to the asymmetric flow over the delta wing as well [32]. In
addition to the small surface perturbation, “hydrodynamic instability” resulting from the “crowding” together
of the vortices is also a common factor for the asymmetric response of both the slender axisymmetric body
and delta wing [33]. For flow over a delta wing, vortex asymmetry was seen on the time-averaged results for
higher values of the similarity parameter (K = tan α/ tan(90◦ − �), where α and � are the AoA and sweep
angle, respectively) [3]. It was shown that the vortex asymmetry is independent of the vortex breakdown [3].
At high AoA, the hydrodynamic instability is the main reason behind the asymmetric wake. It was previously
shown that the only source of the side-force asymmetry could be the flow structure around the forebody of
an axisymmetric object with both forebody and afterbody arrangements, such as a cone-cylinder or ogive-
cylinder [34]. It has been observed that the side vortex force can exceed the normal force acting on a slender
axisymmetric body [35].

The separated shear layer dynamics and secondary vorticity are other significant factors that characterize
theseflowfields. Separated shear layers have been found to exhibit discrete vortical substructures [1,36,37]. The
secondary separation undergoes a process of eruption and shedding [2,38]. Later, these packets of secondary
vorticity interact with the separated shear layer and divide it into segments. This strong interaction creates a
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zone of alternative negative and positive vorticity. A similar mechanism has been observed by Visbal et al. [38],
who identified an unsteady substructure on the separated shear layer. The suction in the secondary separation
suppresses the substructures and diminishes the shear-layer instability. This instability also diminishes at
low Reynolds numbers. These substructures have the tendency to be both spatially stationary (spatially fixed
around the outskirts of the primary vortex) [39,40] and temporally varying (spinning around the primary vortex)
[1,38]. One hypothesis is that the substructures are developed by the mechanism responsible for the Kelvin–
Helmholtz instability [39,41]. Another hypothesis suggests that the substructures originate from transversal
perturbations along the leading edge of the wing induced by the interaction between the separating shear
layer and the secondary vorticity [38,40]. The substructures also undergo severe straining, deformation, and
breakups which eventually cause the transition of the separated shear layer [37,42].

Nevertheless, the causal mechanisms of the formation of asymmetric flow over an axisymmetric body at
higher AoA still need to be better understood. The influence of secondary vorticity on vortex breakdown and
symmetry breaking has yet to be thoroughly studied. The cone, the most canonical axisymmetric shape, is
a perfect choice to study these effects. The flow structure over the cone progresses through different stages
in a self-similar fashion since the cone surface lacks a specific geometrical length scale that uniquely scales
the wake flow field. Instead, the formation of vortices and the growth of the boundary layer highly depend
on the geometry (cone angle) and the intrinsic length scale of the cone cross section parallel to the flow
direction. In this paper, we extend our previous study [43] and explore the role of AoA on vortex formation,
breakdown, and symmetry breaking. The study’s primary objective is to find potential characteristic parameters
that encompass the geometrical and flow dynamical aspects of the problem. The transition location and post-
transition aerodynamics of self-similar coherent structures are identified using such metrics (Fig. 1).

2 Numerical technique

2.1 Flow solver

The governing Navier–Stokes equations are solved using direct numerical simulations (DNS) on curvilin-
ear staggered grids with the immersed boundary method [44,45]. The transformed unsteady incompressible
governing equations can be evaluated for the chosen Eulerian generalized coordinate system (ξ1, ξ2, ξ3) as:

∂Ui

∂ξi
= 0, (1)

∂(J−1ui )

∂t
+ ∂Fi j

∂ξ j
= 0, (2)

where Fi j is the total flux defined as

Fi j = Ujui + J−1 ∂ξ j

∂xi
p − 1

Re
G jk ∂ui

∂ξk
. (3)

Here, xi , ui , p and Re denote the Cartesian coordinates, velocity, pressure, and Reynolds number, respec-
tively. J−1 is the inverse of Jacobian, J, or the volume of the cell. The Jacobian J is the geometric property of
the transformation from the Cartesian coordinate and the curvilinear coordinate, x1, x2, x3 → ξ1, ξ2, ξ3 and is
defined as J = ∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3). Here,Ui = J−1(∂ξi/∂x j )u j is the volume flux or the contravariant
velocity scaled by J−1 normal to the surface with constant ξi and Gi j = J−1(∂ξi/∂xk)(∂ξ j/∂xk) is the “mesh
skewness tensor.”

Here, a second-order accurate fractional step method and a central difference method are employed to
discretize the governing equations [46]. The Poisson equation is solved with an iterative solver with the
geometrical multigrid preconditioner. A staggered grid is employed, wherein the pressure is defined at the
control volume’s centers, and the velocity components are defined at the face centers to strongly enforce mass
for each grid cell.

In particular, intermediate volume fluxes are calculated at the surface centers and used to calculate the
pressure that satisfies the continuity equation in the projection step. To enhance the numerical stability, a
matrix-free Newton–Krylov method is used for solving the momentum equations [47]. A detailed description
of the numerical method can be found in [44].
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Fig. 1 a Indexing of volume center (i, j, k) and surface centers. b Representation of the sharp-interface immersed boundary
method. Open square: Lagrangian immersed boundary grid points; filled circle: immersed boundary nodes; triangle: boundary
nodes of the staggered grid points (filled and open triangles indicate u and v velocity); open circle: the last layer of nodes where
the discrete continuity equation is applied [45]

Fig. 2 a Curvilinear grid and the physical domain. Specific grid points were selected to illustrate the computational mesh in the
physical domain (D is the base diameter of the cone). b Schematic of the cone with flow direction and dimensions

The sharp interface curvilinear immersed boundary method framework is used to represent the cone struc-
ture in the Eulerian flow domain. The axisymmetric body is identified by unstructured triangular surface
meshes where the no-slip wall boundary conditions are enforced [45]. One potential technique to implement a
sharp-interface immersed boundary method is to extrapolate the values at the ghost cell inside the solid domain
to discretely satisfy the kinematic boundary conditions [48–50]. In another approach, the kinematic conditions
are interpolated from the surface to the closest Eulerian grid points in the fluid domain based on the minimum
distance from the fluid-solid interface [45]. The latter approach is adopted in the present study to impose flow
boundary conditions to the second order on the body at every instant in time.

2.2 Curvilinear semi-conformal grid generation

To improve the accuracy of the numerical solution of the field variables, finer grids are provided close to the
body surface. The curvilinear grids are semi-conformal to the surface of the body except for the zone close to
the apex of the cone. Typical non-uniform Cartesian grids on xy-plane pass through a specific transformation
to conform to the surface of the cone based on the cross-sectional diameter along the z-direction. The distance
between grid points near the surface gradually decreases along the cone’s axis, while the grid points far from
the surface adjust their position accordingly. A schematic of the grid arrangement (selected grid lines) is shown
in Fig. 2a on three planes perpendicular to the coordinate axis.
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Fig. 3 Instantaneous pressure on the surface for AoA = 45◦ with a base grid selected for the current study and b refined grid

2.3 Simulation parameters

Numerical simulations were conducted for flow over a conical shape with a fluid domain where the cone’s
centerline is aligned with the Eulerian z-axis as depicted in Fig. 2b. The half-angle of the cone is fixed at 11.9◦.
These geometrical parameters are selected from the experiments reported in [51]. The number of grid points in
each spatial direction is 227× 301× 540. The domain size in the direction of the cone axis is 4.3D, including
the buffer region with a thickness of 0.3D near the outflow. The cone’s diameter at the interface of the main
domain and buffer domain is used as the characteristic length in this study and is denoted as D. This choice
allows a consistent comparison between different AoA cases despite the fact that the flow is developing both
in the circumferential and axial directions on the surface of the cone. The computational domain is extended
to 1.4D from the cone tip to the inflow boundary condition. To avoid the effect of the outflow boundary
condition, the results are only processed for the net computational domain of 3.5D × 3.5D × 2.6D. The
numerical parameters are checked to ensure that simulation results are grid-converged and are domain size
independent.

In the rest of the paper, the Reynolds number (ReD) based on the base diameter (D) of the cone is set at
3500. As a sample test conducted to determine the convergence of the solution, simulation has been performed
for AoA = 45◦ with 453 × 601 × 504 grid points. The maximum pressure at the base of the cone and the
windward side is 0.48 (P − P∞)/ρU 2∞, within 5% of the results obtained for the selected grid. The sample
instantaneous surface pressure fields from both grids are shown in Fig. 3. The averaging time (tU∞/D) for
AoA = 45, 60, and 75◦ is 8.0, 14.5, and 21.5, respectively. After passing the transient phase, the time-averaged
surface pressure data was collected with a time interval of 0.057(tU∞/D) between each snapshot.

3 Results

Fully resolved flow simulations are done for the cross-flow over a cone at AoA of 0◦, 15◦, 30◦, 45◦, 60◦ 75◦.
At AoA = 0◦, the flow is completely steady for the chosen Reynolds number, and the flow is fully attached
with no vortex separation. Hence, the results of this case have not been discussed in the study. Similarly, for
AoA = 15◦, the flow field in the wake does not have well-defined structures in the wake, e.g., a clear roll-up of
primary vorticity and the presence of secondary vorticity. Because of this reason, some of the vortex dissection
analyses were not executed for this case. On the other limit, the highest limit of AoA of 75◦ is selected
since, at this AoA, the flow possesses all the necessary features on which this study focuses, including the
asymmetric side force and vortex breakdown. For the low AoA range, the flow predominantly develops in the
axial direction with weak primary vortices in the wake. As the AoA increases, the flow topology adjusts, and
the boundary layer develops in the circumferential direction. The geometrical effect now drives the separating
shear layer to roll and create stronger primary coherent vortex structures on the leeward side. The geometry of
the cone (mainly the cone angle) and the AoA are both important factors that specify the wake structure and
are responsible for the relative importance of the cross and longitudinal flow features.
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Fig. 4 Isosurface of the Q-criterion (light gray isosurface in the right half of the figure) and helicity (dark gray isosurface in the
left half) of the instantaneous flow field for AoA = 45◦. Contour slices showing the z-component of instantaneous vorticity (ωz)
at z/D ≈ 0.5, 1.4, and 2.25

3.1 Vortex dynamics of the wake and large flow coherent structures

An example instantaneous flow field for AoA = 45◦ is displayed in Fig. 4. The flow is associated with primary
(the red region on the left of the contour slices) and secondary (the blue region attached to the cone surface)
vortical structures in the wake, as indicated in Fig. 4. The boundary layer develops both in the circumferential
direction from the windward side and in the longitudinal direction progressively from the tip of the cone.
The favorable pressure gradient on the windward side of the cone helps to suppress any shear instabilities up
to the separation point [52]. Once the boundary layer reaches the leeward side of the cone and the adverse
pressure gradient becomes dominant, the boundary layer separates from the body. This separated concentration
of vorticity swirls into the coherent primary vortex structure. No shear layer instabilities are observed at this
AoA. The size of the primary vortex grows along the axial direction. Near the tip of the cone, the primary
vortices remain coherent and steady, along with a strong counter-rotating secondary vorticity.

On the leeward side, because of the swirling primary vortex and adverse pressure gradient, a strong near-
body reverse flow emerges. This reverse flowhas the vorticity componentwith the principal axes in the direction
opposite to the primary vortex, identified in the average z-vorticity (ωz) isosurface in Fig. 4. The secondary
flow also separates from the surface, and this separation is known as a secondary separation. The directions of
the rotation of the primary and secondary vorticity are opposite; therefore, the near-body secondary vorticity
results in the lift of the primary vortices from the cone surfaces. Once the secondary flow is separated, it curls
around the primary vortex and is then entrained into the primary vortex. Compared with the flow over the delta
wing, the interaction zone between primary separation and secondary separation is wider in Fig. 5. From the
tip to z/D ≈ 1.1, both separations happen almost at the same polar angle (θ ≈ 45). After z/D ≈ 1.1 along
the axial direction, the primary and secondary separations occur at different polar angles, and the angular gap
between the primary and secondary separation widens along the axial direction. In the zone between primary
and secondary separations, the near-wall velocity vector has an axial component in the opposite direction
of flow on the windward side of the cone. Consequently, the interaction of the secondary vorticity with the
incoming separated shear layer is delayed for flow over a cone. The shape of the secondary vorticity region
changes gradually in the axial direction from a slightly flat shape to a semi-circular shape. The center of the
primary and secondary vorticity is shown by the 3D curve in Fig. 6. In the appendix, a description has been
provided regarding the procedure to obtain the zone occupied by primary and secondary vorticity. The curve
color represents the circulation around the primary and secondary vorticity on the xy-plane.

Another relatively small-scale vortex in the shape of a helix develops around the primary vortex. These
vortices can be identified in the isosurface of the Q-criterion shown in the right part of Fig. 4 in the intermediate
region. The phrase “helical vortex” will be used here to refer to this separate and distinctly different coherent
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Fig. 5 Limit surface streamlines for AoA = 45◦ for view angle perpendicular to a front view (xy plane) and b top view (xz
plane). The red and green dashed line shows the primary and secondary separation locations, respectively. The blue dot shows
the location where the primary and secondary separation started to diverge (color figure online)

Fig. 6 The color of the 3D curves shows the magnitude of circulation around the primary and secondary vorticity. For the primary
vortex, the 3D curve is positioned at the center of the statistically determined core of the vortex. For the secondary vorticity, the
line is at the centroid of the secondary vorticity (color figure online)

structure. In the literature, these vortices are often called “substructures.” The helical vortices are three-
dimensional, stable, and deform in a helical shape around the primary vortex originating from the interaction
zone between primary and secondary separation. The three-dimensional reconfiguration of the secondary and
helical vorticity accounts for the irregularity of the conical shape of the primary vortex. At a low angle of
attack, this connection is weakened since the geometrical aspect has a constructive role in keeping the primary
vortex stabilized. The helical vortices are generated inside the zone between primary and secondary separation
and, later, interact with the separated shear layers after a partial spiral revolution. Once the helical vortex
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Fig. 7 Contour slices of the z-component of the vorticity at z/D ≈ a 0.06, b 0.75, c 1.5, and d 2.3 for AoA = 45◦. The black
closed path shows the zone for the primary vortex. e–h vorticity along the line drawn in the contour slices on the top row. The
line is drawn from the center of the cone to the center of the primary vortex

starts interacting with the separated shear layer, it undergoes severe straining. It was postulated that these
helical vertices are associated with secondary instabilities which clarify the fact that stationary and unsteady
substructures in the separated shear layer are two different representations of the same phenomenon [53]. The
surface streamlines, shown in Fig. 5, delineate the zone between the primary and secondary separations and
close observation of the instantaneous Q-criterion (Fig. 4) shows that the helical vortices originated mostly
from this zone.

For AoA = 45◦, the vorticity slices on the xy-plane at different z/D locations are shown in Fig. 7. At
z/D ≈ 0.06, both the primary and secondary vorticity are first visible in Fig. 7a where the separated shear
layer has not been able to curl into a well-defined primary vortex core and the thickness of secondary vorticity
is very small. At a larger z/D distance from the tip, the primary separated shear layers curl into a well-defined
vortex pair. Simultaneously, the secondary flow also grows underneath the primary vortex. Fig. 7e–h shows the
z-component of the vorticity along the line that connects the center of the cone and the primary vortex for the
corresponding slice on the top row. The plots show the relative variation in primary and secondary vorticity,
size of the primary vortex, and thickness of the secondary flow for different z/D.

The results suggest that thewake behind a cone at higherAoA can be divided into threemain regions: steady
(consisting of primary and secondary vorticity only), intermediate (contains both primary and helical vortex),
and unsteady region (small-scale irregular vortical structures). Helicity is found to be a suitable indicator of
the coherent vortex core by separating it from the vortex sheets, which can be noticed in the vorticity contour
plots. The flow is essentially steady up to the local Reynolds number (ReDL) of approximately 1750, where
DL is the diameter of the cone at L distance from the tip. Up to this distance from the tip, the Q-criterion in
Fig. 4 shows a strong and stable vortex core and the wake poses complete symmetry. From ReDL of 1750 to
approximately 2900, an intermediate region emerges where the flow is predominantly steady and the core of the
vortex is accompanied by the surrounding coherent helical vortices. Beyond the ReDL of 3300, the separated
shear layer, primary vortex, helical vortices, and secondary separation show significant unsteadiness. At a high
angle of attack (AoA = 60 and 75◦), this zone is associated with vortex breakdown. The separated part of the
secondary flow shows unsteady behavior, while the attached part of the secondary flow stays steady.

3.2 Effect of the angle of attack

In this section, we investigate the effect of AoA on the flow over a cone and the vortical structure in the wake.
The Reynolds number (ReD) is fixed at 3500 for the rest of the discussion in this section.
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Fig. 8 Instantaneous flow fields for AoA = a 15◦, b 30◦, c 60◦ and d 75◦. For caption, see Fig. 4

3.2.1 Effects on the vortical coherent structures

At a low AoA of 15◦, the wake is only associated with the partial roll-up of the separated shear layer as shown
in Fig. 8a. Both primary and secondary vortices can be seen in Fig. 8b for AoA of 30◦. No helical vortex was
observed in these two AoA cases. At AoA = 45◦, 60◦ and 75◦, shown in Figs. 4 and 8c, d, a similar response
is observed near the tip. In terms of the unsteady behaviors, the characteristics of the flow field in this study
match the classification by Degani [34] for flow over the slender ogive-cylinder body: (1) steady (AoA< 40◦),
(2) transitional (40◦ < AoA < 60◦), and (3) non-stationary (AoA > 60◦).

For AoA = 60 and 75◦, at some distance from the tip in the axial direction, the strong primary vortex core
cannot maintain its coherent shape. The core of the primary vortex breaks into small-scale vortical elements.
The wake no longer has the predictable configuration of the primary, secondary, and helical vorticity. The
reported phenomenon of ejection of concentration of secondary vorticity [2,53,54] is observed after the vortex
breakdown.

To investigate the impact of helical vorticity on the vortex breakdown, the instantaneous flow field before
and after the location of vortex breakdown is closely inspected in Fig. 9. At first, four helical vortices are
identified (HV1, HV2, HV3, and HV4) that revolve around the primary vortex core (Fig. 9a). Two more
images of the isosurface are also shown in Fig. 9b, c (view from the +x and −x directions) for a better
visual representation of the 3D configuration of the vortices. On the first slice in Fig. 9d, the same vortices
are identified again. The helical vortex HV1 is very close to the core of the vortex. On the second slice at
z/D ≈ 0.86, HV1 shifts closer to the core. HV2 and HV3 attain a new position after a slight revolution around
the core. In the next downstream location shown in Fig. 9f, HV1 merges with the core and HV2 moves closer
to the core. However, unlike the helical vortices HV1 and HV2, the third helical vortex (HV3) moves away
from the vortex core and becomes weaker. In the next slice at z/D ≈ 0.98, significant topological changes
have been noticed, and this point can be considered as the location of the vortex breakdown. At this stage on
slice-4 in Fig. 9g, no distinct core of the primary vortex can be identified; instead, two new vortices (DH1
and DH2) are observed, which can be considered as the representation of the double helix mode of vortex
breakdown as described in [20]. While HV1 merges with one part of the double helix (DH2), HV3 becomes
weaker, undergoes severe straining, and almost diminishes at this stage. A sharp rise in pressure and a drop
in vorticity were observed at the same location. In the later stage at z/D ≈ 1.05, the double helix sustained
its shape, and the generation of new vortical elements is noticed. Downstream of this point, the flow becomes
chaotic and shows wake-like behaviors.

The location of vortex breakdown obtained by inspecting the average flow field is given in Table 1. The
vortex breakdown location is identified by a steep rise in the average turbulent kinetic energy (TKE) at the core
of the vortex, shown in Fig. 10. At z/D ≈ 2.1, a sharp rise has been observed in TKE in Fig. 10a for both the
left and right vortex. For AoA = 75◦, asymmetric vortex breakdown (sharp rise in TKE) at z/D ≈ 0.9 and
z/D ≈ 1.1 is noticed. As the flow experiences a higher degree of swirl at higher AoA, the vortex breakdown
occurs earlier (similar behavior reported in Ref. [21]).

In Table 1, the axial-averaged polar angle (θ ) of the center of the primary vortex is documented. The
difference between the polar angle of the left and right primary vortex center also increases as the AoA
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Fig. 9 Isosurface of Q-criterion: a isometric view; b and c side view from +x and −x direction, respectively. d–h Contour slices
of Q-criterion at different z/D locations before and after the vortex breakdown for AoA = 75◦. Abbreviations: helical vortex
(HV), double helix (DH). The locations of the slices are shown by the corresponding outline color in the isosurface images

Table 1 Effects of AoA on vortex core location and breakdown location (zvb/D)

Type Vortex Angle of attack
15◦ 30◦ 45◦ 60◦ 75◦

zvb/D Left – – – 2.1 0.9
Right – – – 2.1 1.1

〈θ〉 Left – 74.69 74.00 72.81 71.10
Right – 74.68 74.03 73.07 70.69

|∇〈θ〉| – – 0.01 0.03 0.26 0.41

The polar angle of the vortex center averaged in the axial direction (〈θ〉) (left: anti-clockwise polar angle, right: clockwise).
Difference between left and right axial-averaged vortex center angle (∇〈θ〉)

Fig. 10 Turbulent kinetic energy (TKE = 0.5(u′2)) along the core of the primary vortex for AoA = a 60◦ and b 75◦. Dashed
and solid lines are for left and right vortices, respectively
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Fig. 11 Limit surface streamlines for AoA = a 15◦, b 30◦, c 60◦, d 75◦. For detailed caption, see Fig. 5 (color figure online)

Fig. 12 Circulation around a primary vortex and b maximum z-component of vorticity inside the primary vortex. Dashed and
solid lines are for left and right vortices, respectively

increase. Both of these differences in vortex breakdown and vortex core location are responsible for the
asymmetric side force on the body. In Fig. 11, as the AoA increases, the primary separation happens earlier
(the red dashed lines move toward the windward side). Since the primary separation point moves toward the
windward side, it allows more space for secondary flow to grow on the leeward side of the cone (the separation
point moves towards the windward side). For all the AoAs, the primary and secondary separation happens
almost at the same location (over a very small region) up to some distance from the tip (blue dots in Fig. 11),
and the locations where primary and secondary separation diverge move closer to the tip as the AoA increases.

The time-averaged circulation around the primary vortices is depicted in Fig. 12a. The circulation has been
calculated on the xy plane by taking the line integral of the x and y-components of velocity over a selected
region for the primary vortex. A discussion has been provided in the “Appendix Section A” about the selection
procedure. For AoAs = 30 and 45◦, circulation around the primary vortex can be calculated very accurately
since the flow remains stable and predictable. At low AoAs, the primary vortex circulation changes linearly
along the cone axis. At higher AoAs, the profile does not maintain the linear relationship, and asymmetry
started to appear on the circulation profiles. For AoAs = 60 and 75◦, the circulation does not maintain the
linear relationship after some distance from the tip. Due to the vortex asymmetry, the corresponding curves
showing left and right circulations do not overlap for AoA = 75◦ as shown in Fig. 12a. The asymmetry is
observed even before the vortex breakdown which suggests that the vortex breakdown is not solely the source
of the asymmetric flow features, an observation consistent with the findings for flow over delta wing by Ma
et al. [3]. Figure12b depicts the maximum z-component of the vorticity inside the primary vortex along the
cone axis. For higher AoA, the z-component of vorticity becomes stronger in the wake compared to x and
y-components. At low AoAs, the profile shows exponential decay behavior along the axial direction. If the
AoA increases, the magnitude of the z-component of the vorticity increases, and hence, the decay starts from
a higher value. However, at AoA = 75◦, the drop in maximum vorticity does not follow an exponential decay
curve. A higher magnitude of z-vorticity leads to higher circulation since the circulation can be represented as
the surface integral of the vorticity.
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Fig. 13 Average pressure on the surface for AoA = a 15◦, b 30◦, c 45◦, d 60◦. e Instantaneous, f average, and g standard deviation
of the surface pressure for AoA = 75◦

3.2.2 Surface pressure and aerodynamic forces

Figure 13 displays the average pressure on the cone surface for AoAs = 15, 30, 45, and 60◦, and Fig. 13e–g
present the instantaneous, average, and standard deviation of the surface pressure for AoA of 75◦, respectively.
The major sources of the unsteadiness in a swirling flow are the hydrodynamic instabilities, helical mode
instabilities, and vortex breakdown location oscillation [55]. The most unsteady surface pressure was seen for
AoA = 75◦ on the leeward side, whereas, on the windward side, the pressure is mostly steady. The frequency
spectrum of the unsteady pressure is shown in Fig. 14 at selected (z/D) distances for three AoAs = 45,
60, and 75◦. Only a very low-frequency oscillation is observed for all the cases up to z/D ≈ 1.0. Higher
frequency pressure fluctuations are concentrated on the leeward side of the cone at z/D ≈ 1.85 location. For
AoA = 75◦ at z/D ≈ 1.85, the frequencies ( f D/U∞) of the magnitude of 3-−5.5 are bounded within the
secondary separation (dashedmagenta vertical lines). This separation location has been obtained by identifying
the change of sign of the near-wall velocity component projected in the direction of the flow.

For flow over delta wing, the corresponding non-dimensional frequencies ( f C/U∞, where C is chord
length) of helical mode instabilities is in the range of 1.76-−3.5 and vortex breakdown location oscillation
frequency is in the range of 0.02-−0.1 for a range of angle of attack of 26–37◦ [55]. For flow over an
axisymmetric slender body at a high angle of attack, the dominant frequency ( f D/U∞) of the wake is
approximately 0.19 [56]. The dominant rotational frequency of the helical mode of breakdown is reported as
0.2 in Ref. [20]. In this study, at z/D ≈ 1.85, frequencies—same as the order of helical mode instabilities for
delta wing—are observed on pressure fluctuations spectrum for AoA = 45, 60 and 75◦ both on the windward
and a part of the leeward side of the cone. Along with these low-frequency oscillations, for AoA = 75◦ at
z/D ≈ 1.85 distance, a range of high frequencies from f D/U∞ ≈ 5.5-−8.25 can be identified in Fig. 14c
which are boundedwithin the separation point of the secondary flow. These frequencies are only seen in the case
with a vortex breakdown region, it can be asserted that they arise from the interaction of small-scale vortical
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Fig. 14 Frequency content of the surface pressure at z/D ≈ 0.2, 0.5, 1.0 and 1.85 for AoA = a 45, b 60 and c 75◦. The x-axis
is the polar angle of the circle on the surface of the cone. The colorbar shows the range of power spectrum density (PSD)

structures (originating from the vortex breakdown) and the secondary vorticity. Please note that the frequencies
associated with hydrodynamic instabilities are in the range of f C/U∞ = 6–30 for delta wing [55]. However,
for AoA of 45 and 60◦, these frequencies are absent at z/D = 1.85. Since the vortex breakdown occurs further
downstream of this point, it reconfirms that these high frequencies originate from the aerodynamic instabilities
associated with the vortex breakdown.

The time-averaged local forces acting on the body are shown in Fig. 15, where the forces are scaled by the
local length scale. The following equation calculates all three components of the local forces.

cD,L,S = dFD,L,S

0.5ρU 2∞DL
, (4)

where dF is the force per unit length along the cone axis and can be either the drag (dFD), lift (dFL), or side
force (dFS). The local diameter along the cone axis, DL is employed in the denominator of Eq. 4. The total
forces are normalized using the base diameter of the cone as follows

CD,L,S = FD,L,S

0.5ρU 2∞D2 , (5)

where FD,L,S refers to the the total forces. For AoA = 30, 45, 60, and 75◦, the local lift has a gradual decrease
along the cone axis in Fig. 15b–e. In Fig. 15d, even though the time-averaged local side force is almost zero,
significant oscillations have been observed near the base which is shown by the dotted lines. At AoA = 75◦,
the local side force gradually increases in the axial direction, and local drag is higher than the lift along the
whole length of the cone.

The total time-averaged side force, drag, and lift are shown in Fig. 16a for all cases. The range of fluctuations
(maximum and minimum value) is shown by the dotted lines. Both the lift and drag increase as the AoA
increases. The lift is higher than the drag at low angles of attack. The lift reaches its peak at AoA = 60◦. As
soon as the AoA crosses 60◦ (where drag and lift are almost the same), the drag overcomes the lift. At 45 and
60◦ AoA, even though a small instantaneous side force has been observed (dotted blue lines in Fig. 16a), the
time-averaged side force is almost zero. However, at AoA = 75◦, a relatively large side force is seen in the
time-averaged curve in Fig. 16a. From AoA = 15◦ to 30◦, the side force always stays zero. With artificial
imperfections, Degani [34] observed that the side force started to appear at AoA = 50◦ which closely matches
our results.
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Fig. 15 Local drag, lift, and side-force (normalized by local surface area) for AoA = a 15◦, b 30◦, c 45◦ d 60◦ and e 75◦. The
dotted lines show the range of fluctuations of the forces

Fig. 16 a Total time-averaged side force, drag, and lift for different AoA (the dotted line shows the range of fluctuations). b Force
coefficient (Fi/(0.5ρU2∞D2) described in Eq. 6 for the zone bounded by the primary vortex. Dashed and solid lines are for left
and right vortices, respectively

The aerodynamic force contribution from the primary vortex can be quantified as follows [57,58],

Fi =
∫
VP

(u × ω) · ∇φi dVP (6)

where VP is fluid volume bounded by the primary vortex and φi is the auxiliary potential in i-th direction. A
detailed description of the procedure to obtain this force is provided in “Appendix B.” Figure17 provides a
qualitative description of force contributed by the primary vortex onto the side force, lift and drag where the
values of (u × ω) · ∇φi dV are shown on the different helicity isosurfaces. For side forces at AoA = 45◦, the
force from the left vortex is neutralized by the force of the right vortex (equal and opposite distribution of the
red and blue zone on both sides). However, at AoA = 75◦, the counterbalance was not possible because of
the flow asymmetry which results in a net side force. At AoA = 45◦, the isosurface of the lift has a darker
color than the drag which means the primary vortex has more influence on the lift at this AoA. On the other
hand, at AoA = 75◦, the opposite behavior has been observed, i.e., contribution of (u × ω) · ∇φi on the drag
increases. With the increment of AoA, the reduction in lift contribution and rise in drag contribution explain
the drop in lift in Fig. 16a from 60◦ to 75◦. At very high AoA, the primary vortex becomes the driving factor
for the side forces and partially contributes to the variation of lift and drag.

The aerodynamic force that is coming from the primary vortex (zone identified in Fig. 18) is quantified in
Fig. 16b. Time-averaged quantity (u × ω) are used for calculating the forces. The primary vortex is responsible
for almost 40% of the total side force acting on the body at AoA = 75◦. Among all three forces, if compared
to the corresponding total force, the drag is least impacted by the changes in the primary vortex. However, the
primary vortex provides approximately 13% of the total lift at AoA = 75◦.

4 Conclusion

The vortex dynamics in the wake of an axisymmetric cone are studied and the effects of angle of attack (AoA)
on the vortex formation, symmetry breaking of the wake, surface forces, and unsteady pressure on the surface
of the cone are quantified for a wide range of AoAs from 15◦ to 75◦.

For flow over axisymmetric bodies, the wake is characterized by twomajor vortices: primary and secondary
vorticity. Helical vortices, spiraling around the core of the primary vortex, were observed at the angle of attack
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Fig. 17 Instantaneous helicity isosurfaces are extracted at HD/U 2∞ = ± 10, ± 25 and ± 35 for AoA = 45◦, 60◦ and 75◦,
respectively. The color is showing the value of (u × ω) · ∇φi dV calculated based on the instantaneous flow field where a side
force (i = 1), b lift (i = 2) and c drag (i = 3) (color figure online)

of 45◦. This vortical structure is generated from the zone between primary and secondary separation. At a
sufficiently high AoA, the vortex breakdown phenomenon is observed where the primary vortex disintegrates
into small-scale vortical structures without any distinct vortex core. As expected, the degree of swirl plays
an important role in the vortex breakdown. The helical vortex also takes part in the vortex breakdown and
promotes the double-helix mode of the vortex breakdown mechanism. The cone wake becomes asymmetric at
high AoA which is also independent of the vortex breakdown. High-frequency surface pressure fluctuations
(originating from vortex breakdown instabilities) have been observed only on the leeward side for high AoA.
The side forces start to appear around AoA = 60◦; coincidentally, at the same angle, the drag force starts
to overcome the lift. At AoA = 75◦, any changes in the side force, drag, and lift are governed by the forces
coming from the primary vortex. The main source of asymmetric side force is the asymmetry in the primary
vortex.

This study also explains how the flow field forms over the axisymmetric body and how the flow evolves
following gradual changes in the body shape. The asymmetric forces result from an asymmetric vortex structure
in the wake of the body which itself is a manifestation of vortex-body and vortex-vortex interactions around
the cone. Given the tight connection between the wake of axisymmetric bodies and the geometry of the
system, further studies are required to investigate the formation and subsequent dynamics of vortical structures
in other axisymmetric forebodies and forebody-afterbody configurations such as ogive, cone-cylinder. and
ogive-cylinder bodies.
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Appendix A Identification procedure of the primary and secondary vorticity

The selected region and the location of the core of the vortex have been evaluated from the average flow field
data. The velocity gradient eigenmodes are found to be insufficient for identifying the vortex core once the
vortex breakdown happens. First, an anisotropic Gaussian filter is applied to remove any small-scale structures.
Based on the spatial characteristics of the small-scale vortical structures in the flow, the size and strength of the
filter are determined [59]. This filtered field allows systematic identification of the primary vortex core. The
selected points were obtained by using user-defined threshold values (changes along the axis of the primary
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Fig. 18 Zone identified for primary and secondary vorticity for different AoAs

vortex core) for helicity and vorticity. A procedure has also been applied for the identification of the zone for
the secondary vorticity. If a point on the left of the domain has vorticity opposite the primary vorticity, the
radial distance is less than the center of the primary vortex, and situated on the left side of the domain (i.e.,
x < 0), that point is considered in the region of the left secondary vorticity. The zones that are identified by
the algorithm discussed above is shown in Fig. 18.

Appendix B Partitioning of the surface force

According to Ref. [57,58,60], for fluid of volume (V ) around an immersed fixed object with the surface (S0),
multiplying the Navier–Stokes equations by ∇φ yields

−
∫
S0

Pn · ∇φ dA = −ρ

∫
V

(u × ω) · ∇φ dV + μ

∫
S0

(n × ω) · ∇φ dA (B1)

where, n, φ, ω and μ are the unit normal pointing outward on the surface (S0), auxiliary potential, vorticity,
and dynamic viscosity, respectively. Isolating the second term on the right-hand side, the vortex force on a
stationary immersed body with a selected fluid volume V bounded by the surface S can be represented as

Fi =
∫
V
(u × ω) · ∇φi dV (B2)

where φi is the auxiliary potential governed by the following equations and boundary conditions.

∇2φi = 0 (B3)

and boundary conditions for φ is

∇φi · n =
{
ni (on body surface S)

0 (on outer boundary �)
(B4)

where ni is the i component of the unit normal pointing outward on the surface S, and � is the far-field
boundary.
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Fig. 19 Auxiliary potential function (φ) on the surface of a sphere a BEM and b analytical solution

B.1 Boundary element method (BEM) for solving auxiliary potential function

The governing Laplace’s equation for auxiliary potential function can be solved for any arbitrary surface
by boundary element method (BEM). The Green’s functions of Laplace’s equation constitute a special class
of harmonic functions that are singular at an arbitrary point x0. By definition, Green’s function satisfies the
singularly forced Laplace’s equation

∇2G(x, x0) + δ(x, x0) = 0 (B5)

By applying Green’s second identity ∇ · (g∇φ − φ∇g) = 0 for a non-singular harmonic function φ(x) and
using a Green’s function G(x, x0) in place of g(x), and using the above definition, we obtain

φ(x) δ(x, x0) = ∇ · [G(x, x0)∇φ(x) − φ(x)∇G(x, x0) ] = 0 (B6)

We can select a control volume V bounded by a closed surface or a collection of surfaces denoted by C . When
the pole of Green’s function x0 is placed outside V , the left-hand side of the above equation is non-singular
throughout V . Integrating both sides of the equation over V , and using the divergence theorem, we find∫

C
[G(x, x0)∇φ(x) − φ(x)∇G(x, x0) ] · n dS = 0 (B7)

where dS is the differential area on C . In contrast, when x0 is placed inside V , the left-hand side exhibits a
singularity at the point x0. Using the distinctive properties of the delta function to perform the integration, we
find

φ(x0) = −
∫
C
G(x, x0) [ n · ∇φ(x)] dS +

∫
C

φ(x) [ n · ∇G(x, x0)] dS (B8)

where the unit normal vector n points into the control area enclosed by C . Above equation provides us with
a boundary-integral representation of a harmonic function in terms of the boundary values and the boundary
distribution of the normal derivative of the harmonic function. A similar approach can be made if the point x0
approaches the surface C . To compute the value of φ(x) at a particular point x0 located on a selected control
area, we can evaluate the two boundary integrals on the right-hand side of the last equation and solve the first
type kernel equation for φ(x0).

B.1.1 Validation of BEM

To verify the solution convergence of the BEM method described above, the results obtained in the BEM
method are compared with the analytical solutions (obtained by the equation below in the spherical coordinate
system) to Laplace’s equation for potential flow over a sphere in the z-direction.

φ = −U∞a3 cos θ

2r2
, r ≥ a (B9)
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Fig. 20 Comparison of auxiliary potential function (φ) in the domain for BEM and analytical solution

where a is the radius of the sphere. Figure19 shows both the analytical and BEM solution of the auxiliary
function on the surface of the sphere.

The contour lines of the analytical solution and the BEM solution of φ inside the domain are shown in
Fig. 20.
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