Normal and tangential coordinates (polar coordinates for a circular path):

Sometimes, it is convenient to define the coordinate system based on the motion of the particle in such a way that one coordinate is tangent to the particle path and the other coordinate is normal to the path.  This is called the normal and tangential coordinate system.  The representation of velocity in this system has the simplest form: 
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The acceleration can then be determined by differentiating the velocity vector:
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From the directional change diagram, one can easily recognize the relation between the magnitude of the change of velocity due to the direction change, 
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.  From the textbook derivation 
[image: image7.wmf]2

n

V

, where  is the radius of curvature of t

he particle path, and a=.

dV

dt

q

r

rr

=


Mathematical expression





Physical interpretation
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Graphical interpretation
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