
Entropy Change

• Property diagrams (T-s and h-s diagrams)                     
from the definition of the entropy, it is known that 
δQ=TdS during a reversible process.                               
The total heat transfer during this process is given by
Qreversible = ∫ TdS

• Therefore, it is useful to consider the T-S diagram for a 
reversible process involving heat transfer

• On a T-S diagram, the area under 
the process curve represents the heat 
transfer for a reversible process
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Example

• Show the Carnot cycle on a T-S diagram and identify the 
heat transfer at both the high and low temperatures, and the 
work output from the cycle.
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• 1-2, reversible isothermal heat transfer
QH = ∫TdS = TH(S2-S1) area 1-2-B-A
• 2-3, reversible, adiabatic expansion
isentropic process, S=constant (S2=S3)
• 3-4, reversible isothermal heat transfer
QL = ∫TdS = TL(S4-S3), area 3-4-A-B
• 4-1, reversible, adiabatic compression
isentropic process, S1=S4

• Net work Wnet =  QH - QL, the area enclosed by 1-2-3-4, the 
shaded area



Mollier Diagram

• Enthalpy-entropy diagram, h-s diagram: it is valuable in 
analyzing steady-flow devices such as turbines, 
compressors, etc.

• ∆h: change of enthalpy from energy balance (from the 
first law of thermodynamics)

• ∆s: change of entropy from the second law ( a measure of 
the irreversibilities during an adiabatic process)
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TdS Equations

• For a closed system containing a pure compressible 
substance undergoing a reversible process

dU = δQrev - δWrev = TdS - PdV
TdS = dU + PdV, or Tds = du + pdv ( per unit mass)

Ø This is the famous Gibbsian equation

• Eliminate du by using the definition of enthalpy h=u+pv

dh = du + pdv + vdp,  thus du + pdv = dh - vdp

Tds = du + pdv, also Tds = dh - vdp

• Important: these equations relate the entropy change of a 
system to the changes in other properties: dh, du, dp, dv.  
Therefore, they are independent of the processes.  These 
relations can be used for reversible as well as irreversible 
processes.  ( Even their derivation is based on a reversible 
process.)



Example

• Consider steam is undergoing a phase transition from 
liquid to vapor at a constant temperature of 20°C.  
Determine the entropy change sfg=sg-sf using the Gibbsian
equations and compare the value to that read directly from 
the thermodynamic table.
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From table A-4, T=20°C, P=0.002338 MPa, vf=0.001002(m3/kg), 
vg=57.79(m3/kg), uf=83.9(kJ/kg), ug=2402.9(kJ/kg)
sfg=(1/293)(2402.9-83.9)+(2.338/293)(57.79-
0.001002)=8.375(kJ/kg K)
It compares favorably with the tabulated value sfg=8.3715(kJ/kg K)



Entropy change of an incompressible substance

• For most liquids and all solids, the density is not changed 
as pressure changes, that is, dv=0. Gibbsian equation states 
that Tds=du+pdv=du, du=CdT, for an incompressible 
substance Cp=Cv=C is a function of temperature only.  
Therefore, ds=du/T=CdT/T
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Integrate to determine the entropy change during a process
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where C  is the averaged specific heat of the substance 

over the given temperature range
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• Specific heats for some common liquids and solids can be 
found in thermodynamic tables such as Table A-14 to A-19



Example
• An 1-kg metal bar initially at 1000 K is removed from an oven and 

quenched by immersing in a closed tank containing 20 kg of water
initially at 300 K.  Assume both substances are incompressible 
and c(water)=4(kJ/kg K), c(metal)=0.4(kJ/kg K).  Neglect heat 
transfer between the tank and its surroundings.  (a) Determine the 
final temperature of the metal bar, (b) entropy generation during 
the process. Tm=1000 K, mm=1kg, 

cm=0.4 kJ/kg K

Tw=300 K, mw=20 kg,
cw=4 kJ/kg K



Solution

water metal bar f

(a) Energy balance from the first law:

U Q-W 0, no heat transfer and no work done

U U 0,  both bar and water reach final temperature T
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The total entropy of the system increases, thus satisfy the second law



Entropy change of an ideal gas

• From the Gibbsian equations, the change of entropy of an 
ideal gas can be expressed as
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For an ideal gas, u=u(T) and h=h(T), du=cv(T)dT and dh=cp(T)dT 
and Pv=RT

2 2
2 2

2 1 2 1
1 11 1

p v

( ) , ( )

By integration, the change of the entropy is
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Cases with constant specific heats

• When specific heats are constant, the integration can be 
simplified:

2 2
2 1

1 1

2 2
2 1

1 1

ln( ) ln( ) or 

ln( ) ln( )

v

P

T v
s s c R

T v

T P
s s c R

T P

− = +

− = −

• If a process is isentropic (that is adiabatic and reversible), ds=0, 
s1=s2, then it can be shown that
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Example

• Air is compressed from an initial state of 100 kPa and 300 
K to 500 kPa and 360 K.  Determine the entropy change 
using constant cp=1.003 (kJ/kg K)
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• Negative entropy due to heat loss to the surroundings


