Entropy Change

- Property diagrams (T-s and h-s diagrams) from the definition of the entropy, it is known that $\delta Q=TdS$ during a reversible process. The total heat transfer during this process is given by $Q_{reversible} = \int TdS$
- Therefore, it is useful to consider the T-S diagram for a reversible process involving heat transfer

• On a T-S diagram, the area under the process curve represents the heat transfer for a reversible process

• Show the Carnot cycle on a T-S diagram and identify the heat transfer at both the high and low temperatures, and the work output from the cycle.

• 1-2, reversible isothermal heat transfer $Q_H = \int TdS = T_H(S_2-S_1)$ area 1-2-B-A • 2-3, reversible, adiabatic expansion isentropic process, S=constant (S₂=S₃) • 3-4, reversible isothermal heat transfer $Q_L = \int TdS = T_L(S_4-S_3)$, area 3-4-A-B • 4-1, reversible, adiabatic compression isentropic process, S₁=S₄

• Net work $W_{net} = Q_H - Q_L$, the area enclosed by 1-2-3-4, the shaded area

Mollier Diagram

- Enthalpy-entropy diagram, h-s diagram: it is valuable in analyzing steady-flow devices such as turbines, compressors, etc.
- Δh: change of enthalpy from energy balance (from the first law of thermodynamics)
- Δ s: change of entropy from the second law (a measure of the irreversibilities during an adiabatic process)

TdS Equations

• For a closed system containing a pure compressible substance undergoing a reversible process

 $dU = \delta Q_{rev} - \delta W_{rev} = TdS - PdV$

TdS = dU + PdV, or Tds = du + pdv (per unit mass)

> This is the famous Gibbsian equation

- Eliminate du by using the definition of enthalpy h=u+pv dh = du + pdv + vdp, thus du + pdv = dh - vdp Tds = du + pdv, also Tds = dh - vdp
- Important: these equations relate the entropy change of a system to the changes in other properties: dh, du, dp, dv. Therefore, they are independent of the processes. These relations can be used for reversible as well as irreversible processes. (Even their derivation is based on a reversible process.)

• Consider steam is undergoing a phase transition from liquid to vapor at a constant temperature of 20°C. Determine the entropy change $s_{fg}=s_g-s_f$ using the Gibbsian equations and compare the value to that read directly from the thermodynamic table.

 $ds = \frac{du}{T} + \frac{P}{T} dv$, change from liquid to vapor

$$s_{fg} = s_g - s_f = \frac{1}{T}(u_g - u_f) + \frac{P}{T}(v_g - v_f)$$

From table A-4, T=20°C, P=0.002338 MPa, v_f =0.001002(m³/kg), v_g =57.79(m3/kg), u_f =83.9(kJ/kg), u_g =2402.9(kJ/kg) s_{fg} =(1/293)(2402.9-83.9)+(2.338/293)(57.79-0.001002)=8.375(kJ/kg K) It compares favorably with the tabulated value s_{fg} =8.3715(kJ/kg K) Entropy change of an incompressible substance

• For most liquids and all solids, the density is not changed as pressure changes, that is, dv=0. Gibbsian equation states that Tds=du+pdv=du, du=CdT, for an incompressible substance $C_p=C_v=C$ is a function of temperature only. Therefore, ds=du/T=CdT/T

Integrate to determine the entropy change during a process

$$s_2 - s_1 = \int_{1}^{2} ds = \int_{1}^{2} C(T) \frac{dT}{T} \cong C_{avg} \ln(\frac{T_2}{T_1})$$

where C_{avg} is the averaged specific heat of the substance over the given temperature range

• Specific heats for some common liquids and solids can be found in thermodynamic tables such as Table A-14 to A-19

An 1-kg metal bar initially at 1000 K is removed from an oven and quenched by immersing in a closed tank containing 20 kg of water initially at 300 K. Assume both substances are incompressible and c(water)=4(kJ/kg K), c(metal)=0.4(kJ/kg K). Neglect heat transfer between the tank and its surroundings. (a) Determine the final temperature of the metal bar, (b) entropy generation during the process.

Solution

(a) Energy balance from the first law:

 $\Delta U = Q - W = 0$, no heat transfer and no work done

 $\Delta U_{\text{water}} + \Delta U_{\text{metal bar}} = 0, \text{ both bar and water reach final temperature } T_{\text{f}}$ $m_{w}c_{w}(T_{f} - T_{w}) + m_{m}c_{m}(T_{m} - T_{f}) = 0$ $T_{f} = \frac{m_{w}(c_{w}/c_{m})T_{w} + m_{m}T_{m}}{m_{w}(c_{w}/c_{m}) + m_{m}} = \frac{(20)(10)(300) + (1)(1000)}{(20)(10) + 1} = 303.5(K)$

(b) No heat transfer with the outside Q = 0, the entropy balance of the system $\Delta s = s(\text{generation}) = s_g$

$$s_g = \Delta s(\text{water}) + \Delta s(\text{bar}) = m_w c_w \ln \frac{T_f}{T_w} + m_m c_m \ln \frac{T_f}{T_m}$$

$$s_g = (20)(4) \ln \frac{303.5}{300} + (1)(0.4) \ln \frac{303.5}{1000} = 0.928 - 0.477 = 0.451(kJ / K)$$

The total entropy of the system increases, thus satisfy the second law

Entropy change of an ideal gas

• From the Gibbsian equations, the change of entropy of an ideal gas can be expressed as

$$ds = \frac{du}{T} + \frac{P}{T}dv = \frac{dh}{T} - \frac{v}{T}dP$$

For an ideal gas, u=u(T) and h=h(T), $du=c_v(T)dT$ and $dh=c_p(T)dT$ and Pv=RT

$$ds = c_v(T)\frac{dT}{T} + R\frac{dv}{v}$$
, and $ds = c_P(T)\frac{dT}{T} - R\frac{dP}{P}$

By integration, the change of the entropy is

$$s_2 - s_1 = \int_{1}^{2} c_v(T) \frac{dT}{T} + R \ln(\frac{v_2}{v_1}) \text{ or } s_2 - s_1 = \int_{1}^{2} c_P(T) \frac{dT}{T} - R \ln(\frac{P_2}{P_1})$$

we need to know the function $c_p(T)$ and $c_v(T)$ in order to complete the integration,

Cases with constant specific heats

• When specific heats are constant, the integration can be simplified:

$$s_{2} - s_{1} = c_{v} \ln(\frac{T_{2}}{T_{1}}) + R \ln(\frac{v_{2}}{v_{1}}) \text{ or}$$
$$s_{2} - s_{1} = c_{P} \ln(\frac{T_{2}}{T_{1}}) - R \ln(\frac{P_{2}}{P_{1}})$$

• If a process is isentropic (that is adiabatic and reversible), ds=0, $s_1=s_2$, then it can be shown that

$$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k-1}, \text{ and } \frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(k-1)/k}$$

and $\frac{P_2}{P_1} = (\frac{v_1}{v_2})^k$, where $k = \frac{c_p}{c_v}$

• Air is compressed from an initial state of 100 kPa and 300 K to 500 kPa and 360 K. Determine the entropy change using constant $c_p=1.003$ (kJ/kg K)

$$s_2 - s_1 = c_P \ln(\frac{T_2}{T_1}) - R \ln(\frac{P_2}{P_1})$$
 if c_P is constant
 $s_2 - s_1 = 1.003 \ln \frac{360}{300} - (0.287) \ln \frac{500}{100} = -0.279 (kJ / kg K)$

• Negative entropy due to heat loss to the surroundings