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T-F Lecture 10.  Reversibility and the Carnot Cycle 
 
As we compare efficiencies of various cycles, we observe that some cycles are more efficient 
than others in converting thermal to mechanical energy.  One might ask the question: what is the 
most efficient cycle and what are its attributes? 
 
Clearly, a given cycle (system) becomes more efficient as one reduces the various energy 
dissipating modes.  For example, one would expect the efficiency to increase as the amount of 
friction is reduced.  In particular, the efficiency should be maximum in the absence of friction.   
 
Our analysis of processes and cycles always excluded friction and any other dissipative effects.  
Such a process is considered reversible.  Since friction is generally internal to the system, we 
will call such a process internally reversible.   
 
A process is reversible between states 1 and 2 
if it can be retraced identically from 2 to 1.  
Such processes are shown as solid lines on p-
v diagrams.  
 
A reversible process is an idealization that 
cannot be realized in any real process.   
 
Reversible expansion will thus produce the 
maximum amount of work, while reversible 
compression will require the minimum 
amount of work.   
 
The above reversibility refers to mechanical interactions such as work and accompanying friction.  
What about heat interaction?  Can heat interaction be reversible? 
 
Note that heat flows from a high to low temperatures over some finite temperature difference.  
Such heat flow however is not reversible, i.e. heat does not, of its own accord, flow from a low to 
a high temperature.  Reversible heat flow is defined as heat flow over an infinitesimal, or 
differential temperature difference dT → 0.   
 
As dT → 0 it takes an infinite amount of time to transfer a finite amount of heat.  Since time is not 
a factor here, this is not a problem conceptually. In a real heat transfer, however we need a finite 
temperature difference that renders such heat transfer irreversible.   
 
A process wherein heat transfer occurs over a finite temperature difference ∆T is called an 
externally irreversible process, and one in which heat transfer occurs over a differential 
(infinitesimal) temperature difference dT is called externally reversible.    
 
A cycle that is both internally and externally reversible therefore should have the highest 
efficiency possible.  
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The cycles we have been analyzing have all been internally reversible but not externally 
reversible.  How might an externally reversible cycle be configured?   
 
Since heat must be added to the system from some high temperature reservoir and rejected to 
some low temperature reservoir (typically the surroundings), there should be two such processes.  
Furthermore for theses processes to be externally reversible, the temperature difference between 
the system and the high temperature reservoir, and the system and its low temperature reservoir 
cannot be larger that dT.   
 
An isothermal heat addition process at the temperature of the high temperature reservoir, and an 
isothermal heat rejection process at the temperature of the low temperature reservoir can meet 
such requirements.  Processes that link these two isothermal processes to complete a cycle must 
not have any heat transfer, they must be adiabatic.  Thus a simple internally and externally 
reversible cycle will have two isothermal and two adiabatic processes.  Such a cycle is called a 
Carnot cycle.    
 
 
A Carnot cycle configured in a piston-cylinder arrangement  
 
The cylinder has insulated sidewalls and a thermally conducting endwall.   The endwall can be in 
contact with either an insulated endwall or a thermal reservoir for heating or cooling the gas 
inside the cylinder.  The piston is frictionless. 
 
 
 
 
 
 
   
 
 
 
 
 
Isothermal Heat Addition Process.   
 
The cylinder is at its minimum volume and 
the endwall is in contact with the high 
temperature thermal reservoir at the 
temperature TH.  As the gas inside the 
cylinder is heated the gas begins to expand 
and the piston moves out.  The expansion is 
such that the gas in the piston remains at the 
hot reservoir temperature TH.  The process is 
an isothermal expansion process.  
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Adiabatic Expansion Process.    
 
After the heat addition, the hot reservoir is 
removed form the conducting endwall and 
replaced with an insulating endwall.  The 
gas is allowed to expand and cool to some 
low temperature TC.  The process is an 
adiabatic expansion process. 
 
 
Isothermal Heat Rejection Process.   
 
The cylinder is now at its minimum volume, 
the insulating endwall is replaced with the 
low temperature thermal reservoir at the 
temperature TC.  As the gas inside the 
cylinder is cooled the gas begins to compress 
as the piston moves inward.  The 
compression is such that the gas in the piston 
remains at the low reservoir temperature TC.  
The process is an isothermal compression 
process.  
 
 
Adiabatic Compression Process.    
 
After the heat rejection, the low temperature 
reservoir is removed form the conducting 
endwall and replaced with an insulating 
endwall.  The gas is compressed and heats 
up to the high temperature TH.  The process 
is an adiabatic compression process. 
 
 
 
Representation of the Carnot cycle on a p-v diagram: 
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Analysis of the Carnot cycle:   
 
 
Isothermal Heat Addition, Process 1-2.   
 
T2 = T1 and p2v2 = p1v1    (process) 
 

v
RTp =   (Ideal gas law) 

du = δq - δw  (First Law) 
 
du = cvdT = 0            (constant specific heat) 
 
δq = δw = pdv   (reversible work) 
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Adiabatic Expansion, Process 2-3.    
 
δq = 0  (process) 
 
du = δq - δw  = - δw   
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Using the ideal gas law we obtain the following relationship between p and v 
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    Note that cp = cv + R  and  k = cp/cv 
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and p3(v3)k = p2(v2)k = constant.  This is the same result we obtained earlier for a reversible 
adiabatic process.  Since we have a relation ship between T and v, and p and v, we can evaluate 
both the change in internal energy and the work for this process.   
 
 ∆u23 = cv (T3 – T2)   and from the work integral we obtain an alternative expression: 
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Note that on the p-v diagram we have drawn the adiabatic process (process 2-3) steeper than the 
isothermal process (process 1-2).  Can you show why it is steeper? 
 
Solving for the slope at a given point on the p-v 
diagram for each of the processes can 
demonstrate this.   
 
The p-v relationship for the isothermal process 
passing through the point at p0 and v0 is:  
  
 pv = p0v0 = constant 
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The p-v relationship for the adiabatic process 
passing through the point at p0 and v0 is:  
 
 pvk = p0(v0)k = constant 
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The ratio of the adiabatic to isothermal slopes is  
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since k > 1, and each of the slopes is negative, the adiabatic process slope is greater than the 
isothermal process slope. 
 

Isothermal,  
 pv = constant 

 Adiabatic,  
 pvk = constant 

v 

 p 

 v0 

  p0 



 6

Isothermal Heat Rejection, Process 3-4. 
 
This process is similar to the heat addition 
process. 
 
T4 = T3 and p4v4 = p3v3    (process) 
 

v
RTp =   (ideal gas law) 

du = δq - δw  (First Law) 
 
du = cvdT = 0            (constant specific heat) 
 
δq = δw = pdv   (reversible work) 
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Adiabatic Compression, Process 4-1. 
 
This process is similar to the adiabatic 
expansion process. 
 
δq = 0 and  pvk = constant (process) 
 
du = δq - δw  = - δw   
 
du = cvdT = - δw  = - pdv             
 
∆u41 = cv (T1 – T4)    
 
and from the work integral we obtain an 
alternative expression: 
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Summary of Process Energy Calculations 
 

Isothermal heat addition, process 1-2:  
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Thermal Efficiency 
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Recall that T1 = T2 = TH and T4 = T3 = TC, hence cv (T1 – T4) = cv (T2 – T3) = - cv (T3 – T2).  Thus 
the third and fourth terms in the numerator of the efficiency expression cancel.  Recall also that 
for a reversible and adiabatic process  
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equation will cancel and the final expression for the thermal efficiency becomes: 
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The Carnot thermal efficiency is usually expressed in terms of the hot or high temperature 
thermal reservoir temperature TH , and the cold or low temperature thermal reservoir temperature 
TC. 
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Recall the conditions under which the above thermal efficiency is valid. 
 

• The system is both internally and externally reversible 
• Heat addition to the system is from a single thermal reservoir at the temperature TH and 

the temperature difference between the system and the thermal reservoir is no 
greater than dT. 

• Heat rejection from the system is to a single thermal reservoir at the temperature TC  and 
the temperature difference between the system and the thermal reservoir is no 
greater than dT. 

 
 
Important conclusions:   
 

• The above thermal efficiency does not depend on the nature of the fluid medium or any 
details of the heat engine.   

• This efficiency is a general result for heat engines operating between two single thermal 
reservoirs. 

• This is the highest efficiency that can be attained for a heat engine operating between a 
single hot and a single cold thermal reservoir. 

 
From the general definition of thermal efficiency we observe the following: 
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Hence we observe that  
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The ratio of the heat rejected from the 
system to the heat added to the system is in 
the ratio of the corresponding temperatures 
of the thermal reservoirs.  Note also that 
these temperatures are absolute 
temperatures, in units of K or oR and not  
oC or  oF. 
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