## Energy Conservation(cont.)

Example: Superheated water vapor is entering the steam turbine with a mass flow rate of 1 kg/s and exhausting as saturated steamas shown. Heat loss from the turbine is 10 kW under the following operating condition. Determine the

power output of the turbine. From superheated vapor table: P=1.4 Mpa  $h_{in} = 3149.5 \text{ kJ/kg}$ T=350° C V=80 m/s $\frac{dQ}{dt} + \dot{m}(h + \frac{V^2}{2} + gz)_{in} = \dot{m}(h + \frac{V^2}{2} + gz)_{out} + \frac{dW}{dt}$ 10 kw  $\frac{dW}{dt} = (-10) + (1)[(3149.5 - 2748.7)]$  $+\frac{80^2-50^2}{2(1000)}+\frac{(9.8)(10-5)}{1000}$ P=0.5 Mpa =-10+400.8+1.95+0.049100% saturated steam = 392.8(kW)V=50 m/sz=5 m

From saturated steam table: h<sub>out</sub>=2748.7 kJ/kg

# Appendix C

#### **Saturated Steam**



# Thermodynamic Properties of Water (Steam Tables)

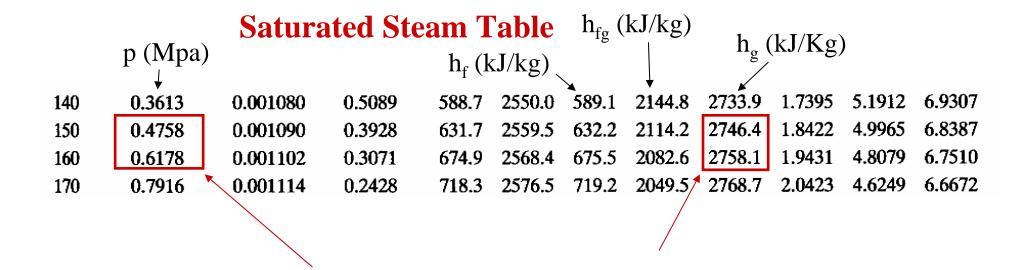
f-liquid phase

g-vapor phase

Table C-1 Properties of Saturated H<sub>2</sub>O—Temperature Table

|       |           | Volume, m <sup>3</sup> /kg |         | Energy, kJ/kg |        | Enthalpy, kJ/kg |          |        | Entropy, kJ/kg · K |          |        |
|-------|-----------|----------------------------|---------|---------------|--------|-----------------|----------|--------|--------------------|----------|--------|
| T,°C  | P, MPa    | $v_f$                      | $v_{g}$ | $u_f$         | ug     | $h_f$           | $h_{fg}$ | $h_g$  | $s_f$              | $s_{fg}$ | $S_g$  |
| 0.010 | 0.0006113 | 0.001000                   | 206.1   | 0.0           | 2375.3 | 0.0             | 2501.3   | 2501.3 | 0.0000             | 9.1571   | 9.1571 |
| 2     | 0.0007056 | 0.001000                   | 179.9   | 8.4           | 2378.1 | 8.4             | 2496.6   | 2505.0 | 0.0305             | 9.0738   | 9.1043 |
| 5     | 0.0008721 | 0.001000                   | 147.1   | 21.0          | 2382.2 | 21.0            | 2489.5   | 2510.5 | 0.0761             | 8.9505   | 9.0266 |
| 4.0   | 0.004000  | 0.004.000                  | 4004    | 40.0          | 0000 0 | 10.0            | ^ +SS S  | 2540 5 | 0.4540             | 0 9502   | 0.0047 |

- These properties are all dependent: specify one to determine all (because they are in a saturation state)
- Liquid and vapor phases coexist, the total mass of the mixture, m, is the sum of the liquid mass and the vapor mass:  $m=m_f+m_g$ , The ratio of the mass of vapor to the total mass is called the quality of the mixture:  $x=m_{o}/m$


Total volume is the sum of liquid volume and vapor volume:

 $V = V_f + V_g = m_f v_f + m_g v_g$ , where v is the specific volume or  $1/\rho$ .  $[V = m(1/\rho) = mv]$ 

$$\begin{aligned} V/m &= v = V_f/m + V_g/m = (m_f/m)v_f + (m_g/m)v_g \\ &= [(m-m_g)/m]v_f + (m_g/m)v_g \\ &= (1-x)v_f + xv_g = v_f + x(v_g-v_f) = v_f + xv_{fg}, \text{ where } v_{fg} = v_g-v_f \end{aligned}$$

Similarly, all other saturated thermodynamic properties can be expressed in the same manner:

Ex: internal energy: 
$$u = (1-x)u_f + xu_g = u_f + x(u_g - u_f) = u_f + xu_{fg}$$
  
since  $U = U_f + U_g = m_f u_f + m_g u_g$ 



$$h_g(p=0.5 \text{ Mpa}) = 2746.4 + (2758.1-2746.4)/(0.6178-0.4758)*(0.5-0.4758)$$
  
=2748.4 kJ/kg for 100% quality saturated vapor

Example: If the quality is 50% and the temperature is 150° C 
$$h_f = 632.2$$
,  $h_{fg} = 2114.2$ ,  $h_g = 2746.4$   $h = (1-x) h_f + x h_g = (1-0.5)(632.2) + 0.5(2746.4)$   $= 1689.3 \text{ (kJ/kg)}$ 

## **Superheated Steam**

Table C-3 (Continued)

| P, MPa                 |                | Temperature °C |               |        |        |              |                                                 |        |             |        |        |        |        |
|------------------------|----------------|----------------|---------------|--------|--------|--------------|-------------------------------------------------|--------|-------------|--------|--------|--------|--------|
| $(T_{sat}, ^{\circ}C)$ |                | 150            | 200           | 250    | 300    | 350          | 400                                             | 450    | 500         | 550    | 600    | 700    | 800    |
| 1                      | $v, m^3/kg$    | -              | 0.2060        | 0.2327 | 0.2579 | 0.2825       | 0.3066                                          | 0.3304 | 0.3541      | 0.3776 | 0.4011 | 0.4478 | 0.4943 |
| (179.9)                | u, kJ/kg       |                | 2621.9        | 2709.9 | 2793.2 | 2875.2       | 2957.3                                          | 3040.2 | 3124.3      | 3209.8 | 3296.8 | 3475.4 | 3660.5 |
|                        | h, kJ/kg       |                | 2827.9        | 2942.6 | 3051.2 | 3157.7       | 3263.9                                          | 3370.7 | 3478.4      | 3587.5 | 3697.9 | 3923.1 | 4154.8 |
|                        | s, kJ/kg·K     |                | 6.6948        | 6.9255 | 7.1237 | 7.3019       | 7.4658                                          | 7.6188 | 7.7630      | 7.8996 | 8.0298 | 8.2740 | 8.5005 |
| 1.5                    | $v$ , $m^3/kg$ |                | 0.1325        | 0.1520 | 0.1697 | 0.1866       | 0.2030                                          | 0.2192 | 0.2352      | 0.2510 | 0.2668 | 0.2981 | 0.3292 |
| (198.3)                | и kJ/kg        |                | 2598.1        | 2695,3 | 2783.1 | 2867.6       | 2951.3                                          | 3035,3 | 3120.3      | 3206.4 | 3293.9 | 3473.2 | 3658,7 |
|                        | h, kJ/kg       |                | 2796.8        | 2923.2 | 3037.6 | 3147.4       | 3255.8                                          | 3364.1 | 3473.0      | 3582.9 | 3694,0 | 3920.3 | 4152.6 |
|                        | s, kJ/kg · K   |                | 6.4554        | 6.7098 | 6.9187 | 7.1025       | 7.2697                                          | 7.4249 | 7.5706      | 7.7083 | 7.8393 | 8.0846 | 8.3118 |
|                        |                |                | <del></del> - |        |        | <del> </del> | <del> \                                  </del> |        | <del></del> |        |        |        |        |

h(p=1MPa, T=350°C)=3157.7 kJ/kg

 $h(p=1.5MPa, T=350^{\circ}C)=3147.4 \text{ kJ/kg}$ 

$$h(p=1.4MPa, T=350^{\circ}C)=3157.7+(3147.7-3157.7)*(0.4/0.5)$$
  
=3149.7 (kJ/kg)

### **Compressed Liquid**

| Table C-4 | Compressed | Liquid |
|-----------|------------|--------|
|-----------|------------|--------|

|     | P =         | = 5 MPa ( | (263.99) |        | P = 10  MPa (311.06) |        |        |        |  |
|-----|-------------|-----------|----------|--------|----------------------|--------|--------|--------|--|
| T   | υ           | и         | h        | s      | v                    | и      | h      | s      |  |
| 0   | 0.000 997 7 | 0.04      | 5.04     | 0.0001 | 0.000 995 2          | 0.09   | 10.04  | 0.0002 |  |
| 20  | 0.000 999 5 | 83.65     | 88.65    | 0.2956 | 0.0009972            | 83.36  | 93.33  | 0.2945 |  |
| 40  | 0.001 005 6 | 166.95    | 171.97   | 0.5705 | 0.001 003 4          | 166.35 | 176.38 | 0.5686 |  |
| 60  | 0.001 014 9 | 250.23    | 255.30   | 0.8285 | 0.001 012 7          | 249.36 | 259.49 | 0.8258 |  |
| 80  | 0.001 026 8 | 333.72    | 338.85   | 1.0720 | 0.001 024 5          | 332.59 | 342.83 | 1.0688 |  |
| 100 | 0.001 041 0 | 417.52    | 422.72   | 1.3030 | 0.001 038 5          | 416.12 | 426.50 | 1.2992 |  |
| 120 | 0.001 057 6 | 501.80    | 507.09   | 1.5233 | 0.001 054 9          | 500.08 | 510.64 | 1.5189 |  |

- Similar to the format of the superheated vapor table
- In general, properties are not sensitive to pressure, therefore, can treat the compressed liquid as saturated liquid at the given TEMPERATURE.
- Given: P and T:  $v \cong v_{f@T}, u \cong u_{f@T}, s \cong s_{f@T}$
- But not h, since h=u+pv, and it depends more strongly on p. It can be approximated as  $h \cong h_{f@T} + v_f(p p_{sat})$