Energy Conservation(cont.)

Example: Superheated water vapor is entering the steam turbine with a mass flow rate of 1 kg/s and exhausting as saturated steamas shown. Heat loss from the turbine is 10 kW under the following operating condition. Determine the power output of the turbine.

Appendix C

Saturated Steam

Thermodynamic Properties of Water (Steam Tables) g-vapor phase

f-liquid phase

 Table C-1
 Properties of Saturated H₂O—Temperature Table

		Volum	e, m ³ /kg	Energ	y, kJ∕kg	Enthalpy, kJ/kg			Entropy, kJ/kg · K		
T,°C	P, MPa	v _f	υ _g	u _f	ug	h_f	h _{fg}	h _g	s _f	s _{fg}	s _g
0.010	0.0006113	0.001000	206.1	0.0	2375.3	0.0	2501.3	2501.3	0.0000	9.1571	9.1571
2	0.0007056	0.001000	179.9	8.4	2378.1	8.4	2496.6	2505.0	0.0305	9.0738	9.1043
5	0.0008721	0.001000	147.1	21.0	2382.2	21.0	2489.5	2510.5	0.0761	8.9505	9.0266
	A AA4 AA A	A 444 444	1011	10 0	0000 0		<u>. 188 8</u>	0540 F	04640	A BEAZ	0.0047

• These properties are all dependent: specify one to determine all (because they are in a saturation state)

• Liquid and vapor phases coexist, the total mass of the mixture, m, is the sum of the liquid mass and the vapor mass: $m=m_f+m_g$, The ratio of the mass of vapor to the total mass is called the quality of the mixture: $x=m_g/m$

Total volume is the sum of liquid volume and vapor volume:

 $V = V_f + V_g = m_f v_f + m_g v_g$, where v is the specific volume or $1/\rho$. [V = m(1/ ρ) = mv]

$$V/m = v = V_{f}/m + V_{g}/m = (m_{f}/m)v_{f} + (m_{g}/m)v_{g}$$

= [(m-m_{g})/m]v_{f} + (m_{g}/m)v_{g}
= (1-x)v_{f} + xv_{g} = v_{f} + x(v_{g}-v_{f}) = v_{f} + xv_{fg}, where $v_{fg} = v_{g}-v_{f}$

Similarly, all other saturated thermodynamic properties can be expressed in the same manner:

Ex: internal energy: $u = (1-x)u_f + xu_g = u_f + x(u_g - u_f) = u_f + xu_{fg}$

since
$$U = U_f + U_g = m_f u_f + m_g u_g$$

 $h_g(p=0.5 \text{ Mpa}) = 2746.4 + (2758.1-2746.4)/(0.6178-0.4758)*(0.5-0.4758)$ =2748.4 kJ/kg for 100% quality saturated vapor

Example: If the quality is 50% and the temperature is 150° C $h_f = 632.2, h_{fg} = 2114.2, h_g = 2746.4$ $h = (1-x) h_f + x h_g = (1-0.5)(632.2) + 0.5(2746.4)$ = 1689.3 (kJ/kg)

THERMODYNAMIC PROPERTIES OF WATER (STEAM TABLES)

[AP]

Superheated Steam

Table C-3 (Continued)

P. MPa		Temperature ^o C											
(T _{sat} , °C)		150	200	250	300	350	400	450	500	550	600	700	800
1	v, m ³ /kg		0.2060	0.2327	0.2579	0.2825	0.3066	0.3304	0.3541	0.3776	0.4011	0.4478	0.4943
(179.9)	u, kJ/kg		2621.9	2709.9	2793.2	2875.2	2957.3	3040.2	3124.3	3209.8	3296.8	3475.4	3660.5
	h, kJ/kg		2827.9	2942.6	3051.2	3157.7	3263.9	3370.7	3478.4	3587.5	3697.9	3923,1	4154.8
	s, kJ∕kg · K		6.6948	6.9255	7.1237	7.3019	7.4658	7.6188	7.7630	7.8996	8.0298	8.2740	8.5005
1.5	v, m ³ /kg		0.1325	0.1520	0.1697	0.1866	0.2030	0.2192	0.2352	0.2510	0.2668	0.2981	0.3292
(198.3)	u kJ/kg		2598.1	2695,3	2783.1	2867.6	2951.3	3035.3	3120.3	3206.4	3293.9	3473.2	3658.7
	h, kJ/kg		2796.8	2923.2	3037.6	3147.4	3255.8	3364.1	3473.0	3582.9	3694,0	3920.3	4152.6
	s, kJ/kg · K		6.4554	6.7098	6.9187	7.1025	7.2697	7.4249	7.5706	7.7083	7.8393	8.0846	8.3118

h(p=1MPa, T=350°C)=3157.7 kJ/kg

h(p=1.5MPa, T=350°C)=3147.4 kJ/kg

h(p=1.4MPa, T=350°C)=3157.7+(3147.7-3157.7)*(0.4/0.5) =3149.7 (kJ/kg)

Compressed Liquid

Table C-4 Compressed Liquid

	P =	= 5 MPa	(263.99)		P = 10 MPa (311.06)					
Т	v	и	h	S	v	и	h	S		
0	0.000 997 7	0.04	5.04	0.0001	0.000 995 2	0.09	10.04	0.0002		
20	0.000 999 5	83.65	88.65	0.2956	0.000 997 2	83.36	93.33	0.2945		
40	0.001 005 6	166.95	171.97	0.5705	0.001 003 4	166.35	176.38	0.5686		
60	0.001 014 9	250.23	255.30	0.8285	0.001 012 7	249.36	259.49	0.8258		
80	0.001 026 8	333.72	338.85	1.0720	0.001 024 5	332.59	342.83	1.0688		
100	0.001 041 0	417.52	422.72	1.3030	0.001 038 5	416.12	426.50	1.2992		
120	0.001 057 6	501.80	507.09	1.5233	0.001 054 9	500.08	510.64	1.5189		

• Similar to the format of the superheated vapor table

• In general, properties are not sensitive to pressure, therefore, can treat the compressed liquid as saturated liquid at the given TEMPERATURE.

• Given: P and T: $v \cong v_{f@T}, u \cong u_{f@T}, s \cong s_{f@T}$

• But not h, since h=u+pv, and it depends more strongly on p. It can be approximated as $h \cong h_{f_{ext}} + v_f(p - p_{sat})$