## **Internal Energy**

E=U(internal energy)+KE(kinetic energy)+PE(potential energy)
Extensive property since it depends on the mass of the system, U=mu, where m is the mass of the system, u is the specific energy of the system (an intensive property like temperature and pressure)
Unlike KE & PE, the internal energy is a form of energy measured on a molecular scale. It can consist of different modes: translational kinetic energy of individual molecules, rotational energy and vibrational energies associated with molecules, and intermolecular forces between molecules. The sum of all these molecular-level energies is called the **internal energy**.

• Internal energy is a property of the substance, thus, its change in value between two states is independent of the **process**.



## Enthalpy

- H=U+PV, defined as total enthalpy
- H=mh, h=u+Pv, specific enthalpy will be an intensive property
- It is an important property in many situations, for example, the steady flow process,  $h=u+P/\rho$  is a measure of the combined internal energy and the pressure work

• It is also useful when one considers phase transition: Example: when liquid water vaporizes into water vapor, its internal energy changes from  $u_f$  to  $u_g$ . At the same time, itsa specific volume also changes from  $v_f$  to  $v_g$ , going through an expansion process; and it does work. Therefore, the total combined change of the energy will be from  $h_f=u_f+pv_f$  to  $h_g$ . Their difference  $h_{fg}=h_g-h_f$  is called the latent heat of vaporization at the given temperature/pressure.

Latent heat=h<sub>g</sub>-h<sub>f</sub>=h<sub>fg</sub>

V

## **Specific Heats**

• The state of a pure, compressible substance can be determined by values of two thermodynamic properties. Ex: P=P(v, T)

• u=u(T,v): internal energy is a function of two variables T and v (or any other two independent properties such as P, h)

• The internal energy can be varied by altering these two properties:

$$du = (du)_v + (du)_T = \left(\frac{\partial u}{\partial T}\right)_v dT + \left(\frac{\partial u}{\partial v}\right)_T dv = c_v dT + \left(\frac{\partial u}{\partial v}\right)_T dv$$

• Define constant-volume specific heat  $c'_v$  (can sometimes be considered as heat capacity, the ability of a substance to absorb or store energy.

• Similarly, the enthalpy can be described by:

$$dh = (dh)_{p} + (dh)_{T} = \left(\frac{\partial h}{\partial T}\right)_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp = c_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp$$
  
• Define constant-pressure specific heat  $c_{p}$ 

## **Specific Heats (cont.)**

- $\bullet$  Both  $c_{\rm p}$  and  $c_{\rm v}$  can be considered as heat capacities but under different processes
- Their ratio k(specific heat ratio)  $k=c_p/c_v$  is also a property of the substance.
- Special cases: incompressible fluid (density and v is a constant)

u = u(T, v) = u(T) since v is a constant  $c_v(T) = \frac{du}{dT} \text{ ordinary differential equation is used}$  h(T,P)=u(T)+Pv  $c_p = \left(\frac{\partial h}{\partial T}\right)_p = \frac{du}{dT} + P\left(\frac{\partial v}{\partial T}\right)_p = \frac{du}{dT}, \text{ since v=constant}$   $c_P = c_v, \text{ for an incompressible substance}$ That is, for most of the compressed liquids and solids