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Flow schematic of a STOVL aircraft in hover
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Feedback loop
Upstream propagating
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Goal

• To actively and efficiently control the jet behavior 
by disrupting the feedback loop

Reduce tones, OASPL and other related adverse 
effects
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Present control approach

Microjets (dm =400µm)

de =27.5 mm

Lift plate

Kulite

• Microjet angle- 90 deg. 
• Microjet pressure-100 psia
• Microjet diameter- 400µm
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Facility and Test Mode
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Effect of Microjet Control
Shadowgraphs NPR = 3.7, h/d = 4
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Effect of Microjet Control

NPR 3.7, h/D = 4
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NPR 3.7,  h/d=4
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Effect of Microjet ControlPressure Spectra
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General Observation

• Effective screen tone elimination, peak SPL reduction 
up to 26 dB (95% reduction)

• Suppression of the large scale structures

• OASPL reduction up to 14 dB (80% reduction) in 
selected cases (broadband noise reduction)

• Appearance of streak-like structures in shear layer –
emergence of streamwise vorticity
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Cross Section PIV Setup
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With ControlNo Control

NPR=5  h/D=4, x/d=1

PLS Images, Averaged
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Ensemble-averaged streamwise voriticity field 

No Control With Control

NPR=5, h/d=4, x/d=1, 90 deg. microjet
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Streamwise vorticity distribution vs. azimuthal angle
NPR=5, h/d=4, 90 deg. microjet
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Mean vorticity distribution in the central plane 
NPR=5, h/d=4, 90 deg. microjet.
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Streamwise Development of Vorticity Distribution,
NPR=5, h/d=4
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Streamwise Variation of Peak Vorticity
NPR=5, h/d=4
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Effect of Control on the Vorticity 
Distribution

• Emergence of strong streamwise vortical 
structures
– Organized counter-rotating vortex pairs

• Weakening of the primary azimuthal vorticity
– Decrease peak vorticity and increase shear layer 

thickness

Vorticity redistribution
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Vorticity Transportation Equation:

Streamwise Vorticity Formation Mechanism

the streamwise vorticity component 
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Generation of Streamwise Vorticity Due to the Tilting of 
Azimuthal Vorticity by the Microjet Blowing

xϖ xϖ
Radial direction (r)
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Azimuthal direction (θ)

Azimuthal shear layer vorticity line, ωθ
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Generation of radial vorticity, ωr

Microjet blowing along the radial direction

Strong velocity gradient across 
the shear layer, Uz(r)

Generation of streamwise 
vorticity by tilting the radial 
component
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Summary

• Supersonic microjets are very effective in reducing 
flow unsteadiness in supersonic impinging jets

• The velocity/vorticity field data clearly reveal the 
appearance of well-organized, strong, streamwise
vortices with the activation of microjets 

• This stronger streamwise vorticity appears to primarily 
come from the existing primary shear layer vorticity 
through:

Titling and Stretching


