

Adaptive Flow Control Of Supersonic Impinging Jets

C. Shih, F. S. Alvi, H. Lou, G. Garg and A. Krothapalli

Fluid Mechanics Research Laboratory (*fmrl*) Florida A & M University and Florida State University Tallahassee, Florida

> 31st AIAA Fluid Dynamics Conference June 2001, Anaheim, CA

Research Sponsored by AFOSR, Boeing & NASA

Background

 The feedback loop leading to self-sustained flow oscillations and high amplitude acoustic tones occurs in a number of flows

> Impinging Tones, Jet screech, Edge Tones

 Leads to a number of performance diminishing effects.
Increased Noise, Sonic Fatigue and Ground Effects (STOVL Aircraft)

• To actively and efficiently control the jet behavior by disrupting the feedback loop.

> Reduce: Tones, OASPL and other related adverse effects

Experimental Details

Parametric Space

NPR (Po/Pa)	= 3.7 & 5.0
h/d	= 2.0 - free
Nozzle	= Mach 1 & 1.5
Microjet Press.	= 80 - 120 psi

DIAGNOSTICS

- Unsteady Pressures
 - Ground & Lift Planes
- Acoustic
- •Flow visualization Shadowgraph Planar Laser Scattering (PLS)
- Mean Pressures Ground & Lift Planes
- PIV

Test Model and Facility

Lift plate

Ground plate

mrl

Instantaneous Shadowgraphs Uncontrolled Jet

 Upstream-propagating acoustic waves

Downstream-travelling instability structure

NPR=3.7, h/d=4, No Control

Experimental Results Unsteady Pressure Spectra

NPR = 3.7 h/d=4.0 No Control NPR = 5.0 h/d=3.5 No Control Unsteady Pressure Loads: Ground Plane ~ 185-195 dB Lift Plate ~ 165-175 dB

fmrl

Lift Loss

Prior Attempts at Feedback Control

- Karamcheti et al. (1969) : Edge tone suppression using baffles/plates
- Sheplak & Spina (1994): Impinging tone suppression via coflow
- Shih et al. (1999): Screech tone suppression using counterflow
- Elavarasan et al. (1999): Impinging tone suppression via baffles

Present Approach

- Use supersonic microjets to disrupt the coherent flow-acoustic coupling.
 - High momentum, small, low mass flow, relatively simple, can be actively manipulated to provide on-demand control.

Test Model with Microjets

Impinging Jet With and Without Control

NPR 5.0 h/d=3.5

With Control

No Control

Effect of Microjet Control Noise and Pressure Spectra

NPR 3.7, h/d=4.0 (20°, 100 psi, 16 microjets)

Ground Plane

mr

Lift Plate

Effect of Microjet Control Noise and Pressure Spectra

NPR 5.0, h/d=3.5 (20°, 100 psi, 16 microjets)

Ground Plane

mr

Lift Plate

mr

Effect of Microjet Control

NPR 3.7, h/d=3.5

Ground Plate

mr

Effect of Microjet Control OASPL For Different h/d

mr

Effect of Microjet Control OASPL For Different h/d

OASPL reduction

mrl

Paramteric Effects on Suppression Efficiency

- Microjet Pressure
- Microjet Angle
- Micro-Tabs vs Microjets
- Microjet Distribution/Spacing
- Microjet Size/Number

Effect of Microjet PressureNPR = 3.7, 16 microjets

Systematic increase in OASPL reduction up to 100 psi → Beyond 100 psi, the gains are smaller

Effect of Microjet Pressure NPR = 5, 16 microjets

50-OASPL-deltadB-LP-809010.la 50-OASPL-deltadB-LP-101112.lay NPR 5.0 Delta dB Lift Plate NPR 5.0 Delta dB Lift Plate 100 psi 110 psi 80 psi 90 psi 100 psi 120 psi delta dB delta dB h/D h/D

• As NPR increases:

- >Overall reductions are higher
- Less sensitive to microjet pressure.

mr

Effect of Microjet Angle

luid mechanics research laboratory

mr

20° vs. 90°

Effect of Microjet Angle

luid mechanics research laboratory

mr

20° vs. 90°

90° Tabs vs. 90 ° Microjets

mrl

luid mechanics research laboratory

90° Tabs vs. 90 ° Microjets

mrl

luid mechanics research laboratory

mrl

Phase-Averaged Shadowgraphs M = 1.5 nozzle, NPR = 3.7

No Control

With Control

Cross flow visualization, PLS Images, Instantaneous

luid mechanics research laboratory

mrl

NPR=5 h/D=4

No Control

With Control

PLS Images, Averaged

luid mechanics research laboratory

mr

NPR=5 h/D=4

No Control

With Control

Resonance Disruption and

luid mechanics research laboratory

Noise Reduction Mechanism ?

Microjets thicken the nozzle shear layer, receptivity to acoustic

Microjets disrupt the axisymmetric coherent coupling between the instability & acoustic waves.

> Microjets introduce significant streamwise vorticity which efficiently extracts energy from large scale disturbances.

> Vortex tilting and stretching

SUMMARY

- Control/disruption of feedback using supersonic microjets enhanced performance
- Microjet control eliminated or significantly attenuated
 - Large-scale structures & acoustic waves (tones)
- Unsteady loads on nearby surfaces reduced for ideally expanded and under-expanded jets
- Performance gains not uniform over the entire operating range.
 - Need for adaptive microjet control.
 - Number of microjets, azimuthal distribution, pressure, orientation and pulsed actuation are possible control inputs for adaptive control
- Microjet control mechanism appears to be different than passive tabs.