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Outlines

Compressible Flow Control Issues

Inherent noises and flow robustness

Relevant control parameters and flow physics

Sample Applications
Supersonic Impinging Jets

Compressible Dynamic Stall

Supersonic Cavity Flow
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Flow Amplifier
ε 1

Perceive - sensor, signal acquisition
Think - flow physics control strategies
Act - actuator, amplitude, frequency, phase

Resonance Vibration/noise control

Origin : sensitive position

Separation Vortex dominated flow

Instability Enhance mixing

Feedback-driven

Effective Flow Control
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• Frequencies - subharmonics
• Amplitude - background noise

- Ho and Huang 1982

Sensitive to initial perturbations

Resonance
• Strong coupling mechanism
• Insensitive to extrinsic perturbations

Kelvin-Helmholtz Instability
- high gain amplifier

Vorticity dominated flow
• Instabilities lead to the formation 
of vortex
• Vortex-induced interactions
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Microjet Array  as the Flow  Control Mechanism

• A distributed actuation system; could be placed at 
strategic locations 

• Readily controllable: on-demand activation with 
varying amplitude, orientation, phase, etc..

• Relatively economical: high pressure system 
available on most aerodynamic systems

• Robust: without delicate mechanical structures for 
high speed flow control, non-intrusive
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1. Control of Supersonic Impinging Jets
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Flow schematic for a  jet  STOVL aircraft in hover

WallWallWall

Motivation

Ground Erosion Region

Ground Plane

Ground Erosion Region

Ground Plane

-Jet Flow

Unsteady Structural

Ground Erosion Region

-Jet Flow

Unsteady Structural
Loads

-Jet Flow

Unsteady Structural Lift Loss

Lifting –jet flowJet Entrainment flow

Jet Impinging Region

Wall jet flow

Ground plane

Noise
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Feedback loop
Upstream propagating
acoustic waves

Mechanism

Larger Scale
Structures

Powell, Karamcheti, Tam & Ahuja, Krothapalli et al. 
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Test Model and Facility

Ground plate

Lift plate

Slots for KuliteMean pressure ports

Microjets
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With Control

Effect of Microjet Control
Shadowgraphs NPR = 3.7, h/d = 4

Streaks

No Control

Large-scale
Structures

Acoustic wave
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Effect of Microjet Control
NPR 3.7, h/D = 4
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Cross Section PLS & PIV Setup
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With ControlNo Control

NPR=5  h/D=4
PLS Images, Averaged
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3D PIV Setup

Camera 1
Camera 2

Calibration target
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Effect of Microjet Control on Streamwise Vorticity

No Control

NPR=3.7, h/d = 4, 90 deg. µjets
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Effect of Microjet Control on Streamwise Vorticity
NPR=5, h/d = 4, x/d = 1, 90 deg. µjets
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NPR = 3.7

Effect of Microjet Control on Streamwise Vorticity
h/d = 4, x/d = 1, 90 deg. µjets
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Streamwise Development of the Average Circulation
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Summary
• Microjet control successfully disrupts the feedback loop and

leads to:
Eliminate or significantly reduce the impinging tones 
Reduce the overall sound pressure level
Reduce the unsteady loads

• PIV measurement clearly show microjet control:
Reduce in the azimuthal vorticity
Increase in the streamwise vorticity
Thicken the shear layer at nozzle exit

• The plausible mechanism of microjet control -
Redirect the azimuthal vorticity into streamwise direction through:

Tilting 
Stretching
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2. Control of Compressible Dynamic Stall using Microjets
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Dynamic stall: a flow phenomenon when wings and rotors 
experience sudden changes of their operating conditions (angle 
of attack, inflow conditions, etc).  The flow response to these 
changes usually involves many adverse effects such as massive 
boundary flow separation, a loss of lift, drag surge, and 
buffeting.

lift drag

α α time

Stall Stall

Massive Separation

Flow/Structure Buffeting
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Experimental Setup
• NACA 0015 airfoil
• Blow-down wind tunnel

– Operate at Mach 0.3-0.4
• Pitch rate: k=0.05 & 0.1, pitch 

angle: 5 to 25 deg.
• Reynold’s number

– 1.06 - 1.40 x 106

• Point Diffraction Interferometry 
(PDI)
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Typical Results
M=0.3, k=0.05, a=20 deg.

No control With control

Massive Separation

Flow remains attached

microjets

• With control, the buffeting noise due to 
the wake shedding is drastically reduced.
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Flow Sequence, M=0.3, k=0.1

α=15.9o upward α=18.0o upward α=20.0o (apex)
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Pressure Distribution
M=0.3, k=0.10, α=20.0 deg upward
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Min Cp versus angle of attack
M=0.3, k=0.10, NC & WC (21.7psia)
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without control at high AOT
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Shock-Induced Separation
M=0.4, k=0.05

α=10.4o

α=12.5o

α=14.5o

Periodic λ shock structure Thickening boundary layer

Triggering
separation
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No Control                                   Microjet Control 

Release of dynamic 
stall vortex

No massive separation
No vortex

Effect of Microjet Control
M=0.4, k=0.05, α=20 deg.



fmrl
luid mechanics research laboratory

Shock Elimination
M=0.4, k=0.05

“λ”-shocks
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Leads to the Formation of a 
Dynamic Stall Vortex ⇒
Catastrophic Breakdown, Lift Loss, 
Drag Surge, Moment Stall

Vorticity Accumulation and the Initiation of 
the Unsteady Separation Process (Van 
Dommelen & Shen) and/or Shock-Induced 
Separation  ⇒ Explosive Vorticity Eruption

Physical Mechanism

• Mismatch of time scales
• Vorticity accumulation due to an unbalanced vorticity generation, 
diffusion, and convection
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Controlled, distributed ejection of surface 
vorticity ⇒ redistribution of the vorticity 
through ejection

Increase downstream convection of 
vorticity ⇒ No accumulation ⇒ More 
manageable breakdown process

Tradition Schemes on Separation Control
• Relieve the adverse pressure gradient (nose modification..)
• Re-energize the boundary layer (suction, blowing, vortex generators..)

Our Approach: Controlled Separation
• Eject vorticity away from the surface at a controllable manner using 
distributed microjets
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Dynamic stall has been significantly reduced or 
eliminated ⇒ improve aerodynamic performance

Pressure recovery ⇒ an increase of lift

Elimination of the shocks at the leading edge ⇒
alleviating the possibility of the shock-induced separation

Suppression of the periodic shedding of the dynamic stall 
vortices ⇒ reduce buffeting noise and associated vibration

Summary
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3. Aeroacoustic Properties of Supersonic Cavity Flows 
and Their Control

3. Aeroacoustic Properties of Supersonic Cavity Flows 
and Their Control
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Motivation

To understand the supersonic cavity flow

To control the unsteadiness of the flow



fmrl
luid mechanics research laboratory

Cavity Dimensions
L=12.2 cm; 
L/D=5.1, L/W=5.9

FMRL Cavity Facility

M=2.0

Re=23 X 106 /m

CavityCavity

Test SectionTest Section

4-way 
optically accessible 
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Shadowgraph movie w/o control

M=2
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Spectra at different locations
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Result—PIV image

Large Scale Structure
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Flow realization (PIV)
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Summary of Baseline

• The uncontrolled cavity flow is highly unsteady
– Very high unsteady pressure levels, dominated 

by large amplitude discrete tones
– Spatially coherent large scale structures are 

clearly present
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Control Effort on Shadowgraph

Control OFF

Control On
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baseline with control

sound file
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Control OFF

Control On

Control Effect on Vrms
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Control OFF

Control On

Control Effect on Vorticity Field

X/L
Y

/L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
VORT*L/U∞: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 101112131415161718

Microjets OFF

X/L

Y
/L

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
O /U 5 3 0 3 5 6 8 9 0 3 5 6 8

Microjets ON 100psig



fmrl
luid mechanics research laboratory

Comparison of the center of shear layer
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• Microjets are very effective in significantly 
reducing flow unsteadiness
– Cavity tones reduced by 20 dB or more
– OASPL or Prms reduced by 9 dB or more
– Velocity fluctuations significantly reduced.

• Microjets control achieved with minimal mass 
flux, less than 0.2%

Summary
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Summary

• Microjet system has been shown to be very 
effective in controlling various compressible flow 
applications, generally considered difficult using 
conventional control schemes

• Three US patents had been filed; 1 approved, two 
under provisional review

• Other applications include: noise reduction for 
supersonic hot jet, separation control of engine 
inlet 


