Characterization of Droplet Injection Process of a Microinjector

F.-G. Tseng, C.-J. Kim and C.-M. Ho

Mechanical and Aerospace Engineering Department University of California, Los Angeles

C. Shih

Mechanical Engineering Department FAMU-FSU College of Engineering Florida A&M University and Florida State University

This Work is Partially Supported by the Office of Naval Research

Outline

□ MEMS/Micro-injector System Design Issues □ Virtue Chamber Neck Concept Droplet Characterization ➢ Visualization, PIV and PDPA **Summary**

Micro-Electro-Mechanical Systems

- Mechanical/Electrical Devices made by microfabrication techniques
- Miniature in Size (< 1mm)
- Readily Integrable with electronic control system
- Can be massively produced using batch process to lower per unit cost
- Successful examples
 - Air-bag release sensor
 - Inkjet printer

Applications of a Micro-Droplet Injector

Inkjet Printing

- Large array
- High frequency response
- High spatial resolution
- High droplet quality

Micro Drug Delivery Device

- Precise dosage control
- Integrated with MEMS
- Local treatment

Distributed Micro-injector Array

- Inject micro fuel droplets
- Reduce evaporation time
- Improve fine scale mixing
- Spatial & temporal perturbations
- Modify large scale vortices

Efficient combustion

Operational Principle of a Thermal Bubble Injector

- Electric current pulse vaporizes liquid to form bubble
- Bubble functions as a pump ejecting droplets
- Bubble collapses and chamber is refilled by capillary force

Design Issues of a Thermal Bubble Injector

□ Frequency response is restricted by the presence of chamber neck □ Heat loss to substrate □ Cross talk and overflow □ Satellite droplet formation □ Ink Puddle formation □ Multi-layer packaging is required

Satellite Droplets

Puddle Formation

HP Printhead

HP Printhead

Microinjector with 30 µm Nozzle

Droplet ejection sequence

Sample straight-line printing Puddle interferes droplet ejection

Fabrication Process Comparison

Microinjector

- Monolithic fabrication, accuracy ~ $1\mu m$
- No need of bonding process,
 Needs bonding Process,
- Can be fabricated in high spatial resolution, 1200 dpi

Commercial Inkjet Printhead

- 3 different substrates, accuracy > $5\mu m$
- Spatial resolution depends on bonding process~ now 300 dpi

Packaging

Front view of a microinjector array with temperature sensors

Microinjector array packaged on a PC board

Back side liquid entrance slot

Pipe connection at the backside of PC board

MEMS Fabricated Micro-injector Array

Top view of a completed micro-injector array

Chamber inner structure

• 300 nozzles in an array

• Integrated circuits for spatial and temporal injection sequence control

Virtue Chamber Neck Concept (patent pending)

- Reduced cross talk
- No satellite droplets
- High frequency response (>30 kHz)

Virtual chamber neck

Bubble collapses & liquid refills

Droplet Visualization

Satellite Droplet Formation

HP 51626A Printhead

Break-off of Droplet 10V (50-85µs)

Nozzle: 60 μm Droplet: 50 μm Frequency: 1 kHz Speed: 10 m/s

MEMS Micro-injector

Nozzle: 40 μm Droplet: 45μm Frequency: 1 kHz Speed: 6 m/s

Droplet Trajectory Visualization (using strobe-light back-illumination)

HP 51626A

Microinjector with 30 μm nozzle

Two streams

One stream

Particle Image Visualization/Velocimetry Setup

Multiply-exposed Particle Images

Splash ejection due to puddle formation?

Phase Doppler Particle Analyzer (PDPA)

PDPA Size/Velocity Correlation

	Avg. diameter	Avg. velocity
	(µm)	(m/s)
Main droplet	48.6	11.1
Satellite droplet	38.2	5.2

PDPA Data (Main droplet only, x=4.8 mm)

Size/Velocity Correlation

Velocity time variation

- Velocity distribution shows bi-stable mode
- Particle sizing distribution shows greater but random scatter

Summary

Microinjector with Virtual Neck & Embraced Heater Design

- No satellite droplets
- Fast frequency response (>30 kHz)
- Reduced cross talk
- Reduced heat loss to substrate

Characterization of the droplet injection process

- Injection splash near nozzle
- Bi-stable velocity distribution
- Detailed comparison between the inkjet printhead and the MEMS microinjector