

Using Microjets to Suppress Resonance in a Mach 2 Cavity Flow

N. Zhuang, F. S. Alvi and <u>C. Shih</u>

Fluid Mechanics Research Laboratory (*fmrl*) Florida A & M University and Florida State University Tallahassee, Florida

Outline

- Introduction & Background
- Experimental Setup
- Selected Results (L/D= 5.1)
 - Baseline Cases (No Control)
 - Flow Visualization
 - Acoustics/Unsteady pressures
 - Velocity Field
 - Effect of *Microjet Control*
- Summary

Background Supersonic Cavity Flows

M = 0.5

- Leads to a highly unsteady flowfield accompanied by
 - High dynamic loads inside cavity
 - Multiple cavity tones

M = 1.38

High Speed Cavity Visualization (Krishnamurti, 1955)

Background Supersonic Cavity Flows

Rossitor's model (feedback loop) $St = \frac{fU}{L} = \frac{(m-r)}{\left(M\left(1 + \frac{\gamma - 1}{2}M^2\right)^{-0.5} + \frac{1}{k}\right)}$

f – Frequency of \mathbf{m}^{th} mode r – Phase constant/lag k – Average convective speed vortical structures/U_{∞}

(Rossitor 1964)

>To better understand supersonic cavity flows

≻To control the unsteadiness of the flow

8th FluCome, Chengdu, China; Aug, 2005

Experimental Setup

8th FluCome, Chengdu, China; Aug, 2005

Pressure Spectra

8th FluCome, Chengdu, China; Aug, 2005

Instantaneous Velocity Field

Click to Play video file

8th FluCome, Chengdu, China; Aug, 2005

luid mechanics research laboratory

fmrl

Phase conditioned Velocity Field

Phase lock conditioned term

Periodica term

Click to Play video file

8th FluCome, Chengdu, China; Aug, 2005

Ensemble

averaged term

Microjet Actuators

- Flow Visualization
- Unsteady Pressures
- Velocity Field

12 microjet with diameter ϕ = 400 µm normal to the surface

Dominant tone attenuation $\sim 23 \text{ dB}$

 P_i / P_∞

Flow visualization

Instantaneous Shadowgraph comparison

L/D=5.1

Baseline case with microjets OFF

Fmrl

Microjets ON control pressure P_j=30psig P_j/P_s=11

Click to Play video file

8th FluCome, Chengdu, China; Aug, 2005

Fluctuating Velocity Field L/D = 5.1Effect of Control on V_{rms}

Control OFF

fmrl

id mechanics research laboratory

Control ON

Vorticity FieldL/D = 5.1Effect of Control on V_{rms}

Control OFF

rmrl

id mechanics research laboratory

- Microjets can effectively control the flow unsteadiness
 - The pressure/acoustical fluctuations inside the cavity are significantly attenuated
 - A reduction of velocity fluctuations with a weaker reversing flow
- Control approach is *simple*, *robust* and achieved with *minimal mass flow*.

id mechanics research laboratory

Fmrl

Control Effect Saturates ~ 70 psig OASPL reduction ~ 11dB Dominant tone attenuation ~ 13 dB

Effect of Control on Unsteady Pressures

L/D = 3

Ensemble-Averaged Velocity Field (L/D = 3)

luid mechanics research laboratory

P mrl

> As Control Becomes More Effective: Reverse flow vel. decreases Control pressure increased beyond saturation: Reverse Flow velocity increases

No control

30 psig

100 psig

8th FluCome, Chengdu, China; Aug, 2005