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Dynamic stall: a flow phenomenon when wings and rotors 
experience sudden changes of their operating conditions (angle 
of attack, inflow conditions, etc).  The flow response to these 
changes usually involves many adverse effects such as massive 
boundary flow separation, a loss of lift, drag surge, and 
buffeting.
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Program Objectives

• Eliminate or minimize these adverse effects using microjets

• Devise control strategy to achieve the optimum efficacy

Previous control efforts

• Boundary layer blowing & suction, synthetic jets, pulsed 
vortex generator jets

• Nose modification

• Mechanical devices: vortex generators, flaps & slats
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Experimental Setup
• NACA 0015 airfoil
• Blow-down wind tunnel

– Operate at Mach 0.3-0.4

• Pitch rate: k=0.05 & 0.1, 
pitch angle: 5 to 25 deg.

• Reynold’s number
– 1.06 - 1.40 x 106

• Point Diffraction 
Interferometry (PDI)
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Experimental Setup - Airfoil
• 424 microjets (8 rows) on  

upper surface for 10% chord
– 400 µm in diameter
– Continuous blowing 

straight up
• Mass Flow Rate: 0.03 kg/s 

@ 22 psia Plenum pressure
• Blowing momentum ratio 

(Cµ): 0.01 to 0.02

Airfoil Leading Edge



fmrl
luid mechanics research laboratory

Advantages of using the microjet control as compared to 
other existing control techniques

• Non-intrusive: no external mechanical device is required; 
provide no disturbance to the flow.

• Adaptive: can be turned on and off as needed.

• Easy to implement: mass bleeding flow is generally 
available in helicopters and airplanes.

• Simple and in-expensive: no complicated 
hydraulic/mechanical mechanisms are necessary.
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• Modified Z-shaped Schlieren system with coherent laser source
• Passing through flow field of interest, re-focus expanded laser 

column into spot through a semi-transparent holographic plate 
with a pinhole
– Separates light source into Signal and Reference beams
– “Cleans up” Reference beam through pinhole

sample
image
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Interferogram Images
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M=0.3, k=0.05, a=20 deg.

No control With control

Massive Separation

Flow remains attached

microjets

• With control, the buffeting noise due to 
the wake shedding is drastically reduced.
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Flow Sequence, M=0.3, k=0.05

α=11.5o upward α=15.9o upward α=19.9o upward
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Flow Sequence, M=0.3, k=0.1

α=15.9o upward α=18.0o upward α=20.0o (apex)
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Pressure DistributionM=0.3, k=0.10, α=20.0 deg upward
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Recovery of the leading edge peak 
suction pressure with control

Surface Pressure Distribution 
M=0.3, k=0.1, α=20 deg.
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Min Cp versus angle of attack
M=0.3, k=0.10, NC & WC (21.7psia)
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Peak Suction Pressure
M=0.3, k=0.1

Reduce hysteresis due to control

Loss of lift at low AOT 
due to control More drastic drop in lift

without control at high AOT
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M=0.4, k=0.05

α=10.4o

α=12.5o

α=14.5o

Periodic λ shock structure Thickening boundary layer

Triggering
separation
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No Control                                   Microjet Control 

Release of dynamic 
stall vortex

No massive separation
No vortex

Effect of Microjet Control
M=0.4, k=0.05, α=20 deg.



fmrl
luid mechanics research laboratory

Shock Elimination
M=0.4, k=0.05

“λ”-shocks
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Leads to the Formation of a 
Dynamic Stall Vortex ⇒
Catastrophic Breakdown, Lift Loss, 
Drag Surge, Moment Stall

Vorticity Accumulation and the Initiation of 
the Unsteady Separation Process (Van 
Dommelen & Shen) and/or Shock-Induced 
Separation  ⇒ Explosive Vorticity Eruption

Physical Mechanism

• Mismatch of time scales
• Vorticity accumulation due to an unbalanced vorticity generation, 
diffusion, and convection
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Controlled, distributed ejection of surface 
vorticity ⇒ redistribution of the vorticity 
through ejection

Increase downstream convection of 
vorticity ⇒ No accumulation ⇒ More 
manageable breakdown process

Tradition Schemes on Separation Control
• Relieve the adverse pressure gradient (nose modification..)
• Re-energize the boundary layer (suction, blowing, vortex generators..)

Our Approach: Controlled Separation
• Eject vorticity away from the surface at a controllable manner using 
distributed microjets
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Dynamic stall has been significantly reduced or 
eliminated ⇒ improve aerodynamic performance

Pressure recovery ⇒ an increase of lift

Elimination of the shocks at the leading edge ⇒
alleviating the possibility of the shock-induced separation

Suppression of the periodic shedding of the dynamic stall 
vortices ⇒ reduce buffeting noise and associated vibration

Summary
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• Obtain pressure distribution, lift, and drag 
measurements to quantify the effectiveness of control

• Reduce control mass flow rate: consider activation of 
control on an “as needed” basis

• Optimize flow control parameters: pressure, 
distribution pattern, jet angle, pulsating blowing

• Apply control to scaled-down helicopter rotor blades

Future Work
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Thank You


