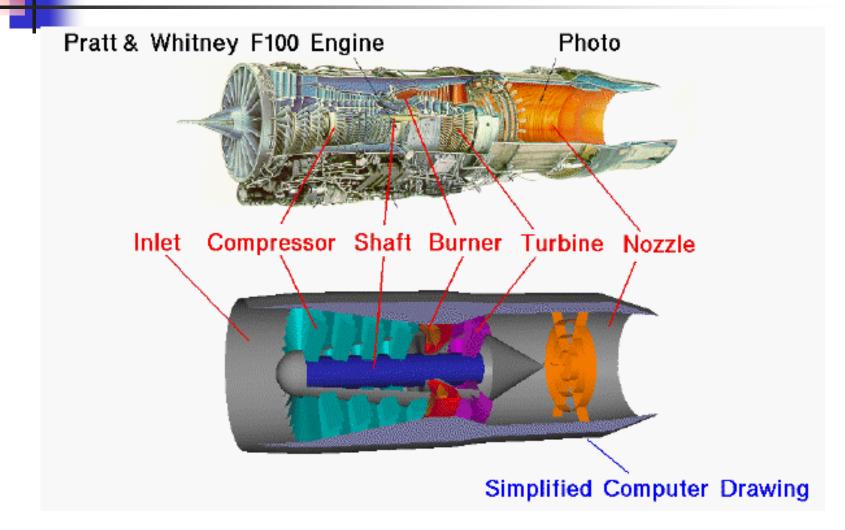
Turbine and Compressor Design

Eric Myers Daniel Mammolito

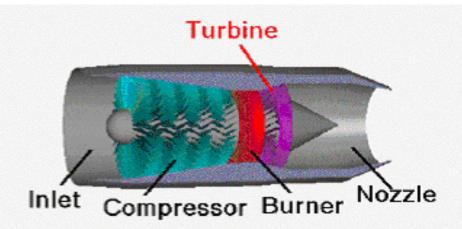
Overview

- History of gas turbine engines
- Modern Gas turbine engine
- Types of turbines and basics of design
- Types of compressors and basics of design
- Design of axial compressors
- Multistage axial compressor
- Axial compressor Design example


History of gas turbine engines

- 1903 first gas turbine was built; had three cylinders; multistage compressor combustion chamber; impulse turbine
- 1903 Stolze Aegidus Elling of Norway, built successful gas turbine engine that had 80% efficiency for both the turbine and compressor and could withstand inlet temperatures up to 400 C

History of Gas turbine engine


- 1930's Sir Frank Whittle headed a group at the Royal Aircraft Establishment whose goal was to produce an efficient gas turbine engine for jet propulsion
- Their first successful jet took flight May 15 1941
- Dr Hans P. von Ohain had similar progress in Germany which led to the first ever flight of a jet aircraft on August 27, 1939

Modern Gas turbine engine

Turbines

- Consists of rotating members (rotors) and stationary members (stators)
 - 2 types: radial flow and axial flow
 - Axial flow turbines are most common in gas turbine engines

Turbines

- The purpose of a turbine is to extract energy from the hot flow and turn the compressor
- Stators redirect the flow back parallel with the axis
- Generally have multiple stages. A single turbine stage can drive several compressor stages.

Turbines

Turbine Pressure Ratio (TPR) $\frac{\gamma}{\gamma-1}$ TPR := $\frac{p_{T5}}{P_{T4}}$ TPR := $\left(\frac{T_5}{T_4}\right)^{\gamma-1}$ Turbine Work (TW) TW := $\mathbf{h}_{T4} - \mathbf{h}_{T5}$ TW := $\mathbf{\eta}_{t} \cdot \mathbf{c}_{p} \cdot \mathbf{T}_{4} \cdot \left(1 - \mathrm{TPR}^{\frac{\gamma-1}{\gamma}}\right)$

Where 4 – turbine entrance 5 – turbine exit

Turbine Compressor Matching

- Ideally, the compressor work is equal to the turbine work
- Since the turbine drives the compressor, the TPR (turbine pressure ratio) is related to and is a function of the CPR (compressor pressure ratio)

$$TPR^{\gamma-1/\gamma} = 1 - \frac{T_{t_2}}{\eta_c(\eta_t)(T_{t_4})} * (CPR^{\gamma-1/\gamma} - 1)$$

Turbine Environment

- Because the turbine is located behind the combustor, it experiences extremely high temperatures. Oftentimes, such temperatures are more than 1000 F.
- Special materials are needed to withstand such temperatures or the blades can be actively cooled.

Turbine Material Limits

Material

- Aluminum
- Titanium alloys
- Polymer matrix composites
- Nickel-based alloys
- Ceramic matrix composites

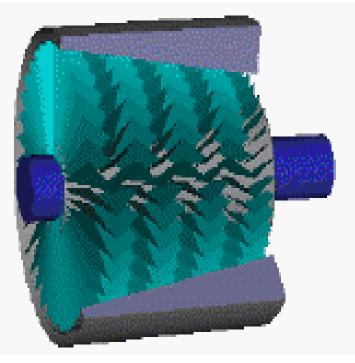
Temperature

- **500 F**
- **800 F**
- 450 500 F
- 1000 1200 F
- 2200 2400 F

Turbine Cooling Methods

- Convection cooling:air flows outward from the base of the blade to the end through internal airways within the blade
- Impingement cooling:air is brought radially through a center core of the blade, turned normal to the radial direction, and passed through a series of holes

Cooling Methods (cont'd.)


- Film cooling:protects the surface from the hot fluid by injecting cool air into the boundary layer which provides a protective, cooling film on the surface.
- Transpiration cooling:involves the use of a porous material through which cooling air is forced into the boundary layer to form an insulating film.

Types of Compressors

- Axial Compressors
 - Fluid flow is parallel to axis of rotation
 - Used in modern aircraft
 - Have several stages to increase compressor pressure ratio
 - Used in modern gas turbine engines
- Centrifugal Compressor
 - Fluid flow is perpendicular to the axis of rotation
 - Used in first jet turbine engines
 - Have a larger CPR per stage

Types of compressors

Axial

Centrifugal

Centrifugal Compressors

Advantages

Larger CPR per stage Simple and rugged Shorter in length

Disadvantages

Cannot be used in stages

Axial Compressors

Advantages

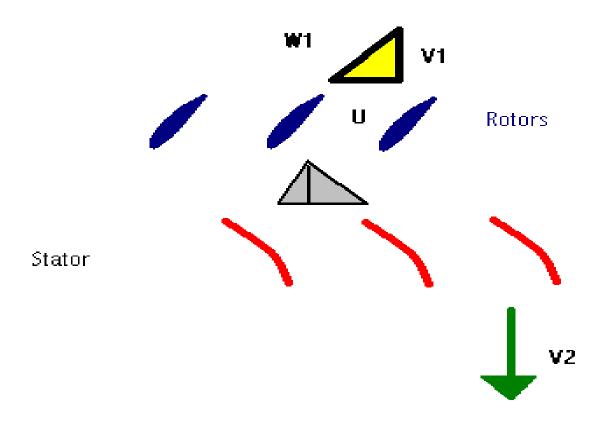
- High peak efficiency
- Small frontal area for given airflow
- Multistaging allows for increase in CPR

Disadvantages

- High weight
- High manufacturing costs
- High starting power requirements

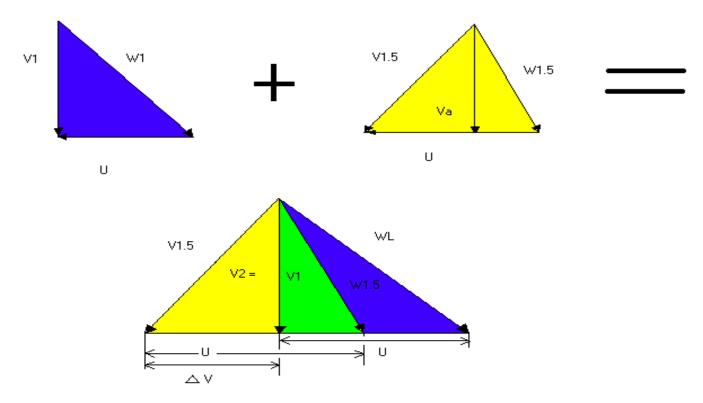
Basic Design of Axial Compressor

- The axial compressor produces small increases in pressure per stage
- Each stage consists of first a revolving rotor followed by a stationary stator
- The rotor gives the energy to the fluid flow
- The stator increases pressure and keeps the flow from spiraling around the axis


Basic Design of Axial Compressor

- Fluid enters compressor where the blades are longer and exits where blades are shorter, opposite of the turbine
- Must be designed in such a way as to prevent stall
- Use of velocity diagrams will determine blades angles

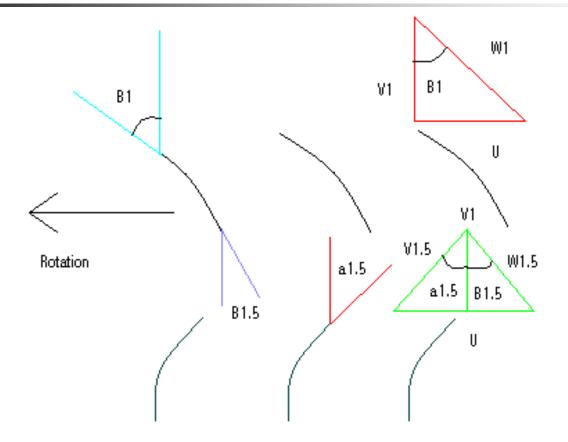
Multistage axial compressors


- Multistage axial flow compressors will produce much larger CPR then single stage compressors
- Largest pressure ratio is in first stage
- To calculate the average pressure ratio needed per stage for a set pressure ratio
- ASPR = $PR_{total}^{1/n}$
- Where n is the number of stages needed

Compressor design: Using Velocity Diagrams

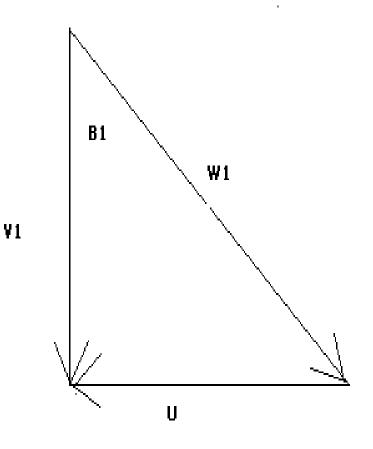
Compressor design: Using Velocity Diagrams

This velocity diagram can be simplified from two triangles into one triangle


Compressor design: Using Velocity Diagrams

- Velocity diagram shows single stage of axial compressor
- V=W+U
- Where:
 - V is the inlet velocity
 - W is the relative velocity of the flow to the rotor blade
 - U is the velocity of the rotor in m/s
 - ∎ U=rω
 - Where r is the representative radius halfway in between the tip and the hub and ω is in rad/sec

Compressor Design: example


- Assume:
- P_{in}=101.3 kPa T_{in}=288K
- V_{in}=170.0 m/s
- Rotor has D_{tip} =66.0 cm and D_{hub} =45.7
- Rotor speed of 8000 rpm
 - Construct velocity diagrams
 - Calculate the stage pressure ratio

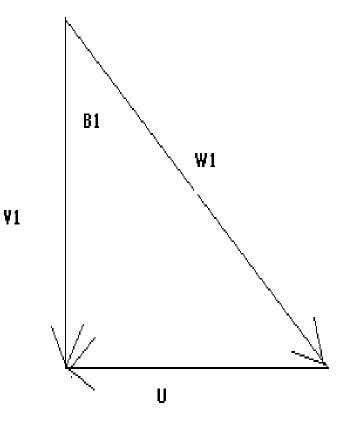
Compressor Design: example

 $U = r\omega$ $U = \frac{1}{2} \left(\frac{.457 + .66}{2} \right) \left(\frac{2\pi}{60} \right) (8000)$ $U = 233.9 \frac{m}{s}$ $W_x = -U$

$$W_x = -233.9 \frac{m}{s}$$

$$\beta_{1} = \tan^{-1} \left(\frac{W_{x}}{V_{1}} \right)$$

$$\beta_{1} = \tan^{-1} \left(\frac{-233 \cdot 9}{170 \cdot 0} \right)$$


$$\beta_{1} = -54 \cdot 0 \text{ deg}$$

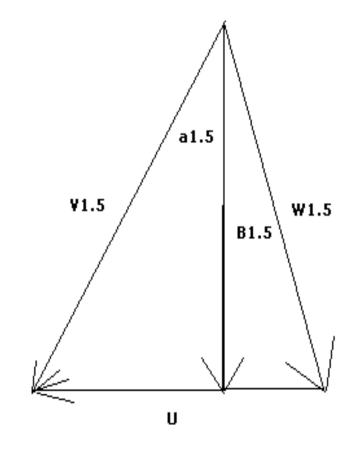
$$W_{1} = \sqrt{W_{x}^{2} + V_{1}^{2}}$$

$$W_{1} = \sqrt{(-233 \cdot 9)^{2} + 170 \cdot 0^{2}}$$

$$W_{1} = 289 \cdot 2 \frac{m}{-1}$$

S

$$\beta_{1.5} = \beta_1 + \theta$$


$$\beta_{1.5} = -54 \cdot 0 + 15$$

$$\beta_{1.5} = -39 \cdot 0 \text{ deg}$$

$$V_a = 170 \cdot 0 \frac{m}{s}$$

$$W_{1.5} = \frac{V_a}{\cos(\beta_{1.5})}$$

$$W_{1.5} = 137 \cdot 7 \frac{m}{s}$$

$$W_{u1.5} = V_a \tan (\beta_{1.5})$$

$$W_{u1.5} = -137 \cdot .7 \frac{m}{s}$$

$$V_{u1.5} = U + W_{u1.5}$$

$$V_{u1.5} = 96 \cdot 2 \frac{m}{s}$$

$$\alpha_{1.5} = \tan^{-1}\left(\frac{V_{u1.5}}{V_a}\right)$$

$$\alpha_{1.5} = 29 .5 \text{ deg}$$

$$V_{1.5} = \frac{V_a}{\cos(\alpha_{1.5})}$$

$$V_{1.5} = 195 .3 \frac{m}{s}$$

Velocity Diagram Explanation

- Velocity Diagram gives blade camber line angle and inlet (β₁) and outlet (β_{1.5})
- Turning angle of the blade is the change in the inlet and outlet angles of the blade
- The line of attack for the stator is represented by $\alpha_{1.5}$

To find the compressor pressure ratio we assume that we have an adiabatic, reversible process where:

$$\frac{P_{o1.5}}{P_{o1}} = \left(\frac{T_{o1.5}}{T_{o1}}\right)^{\frac{n}{k-1}}$$

To use this relationship we must first find the temperatures

T₀₁ is the easier of the two temperatures to find. It is dependent on the inlet velocity and temperature of the fluid. $T_{o1} = T_1 + \frac{V_1^2}{2C_p}$ $T_{o1} = 288 + \frac{170^2}{2(1000)(1.004)}$ $T_{01} = 324.8K$

- T_{o1.5} is more difficult to calculate because it is dependent on the compressor work which you must find first.
- Work of the compressor is the power divided by the mass flow rate. Where power is the torque multiplied by ω.

$$_{1}w_{2}=\frac{T\omega}{m}$$

$$m = \rho_1 \cdot A_1 \cdot V_1 = \frac{P_1 m_{air}}{RT_1} \left(\frac{\pi D_{hub}^2 + \pi D_{tip}^2}{4}\right) (V_1)$$

$$m = 37.10 kg / s$$

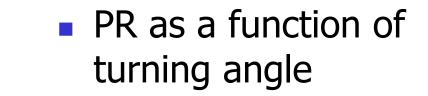
$$T_{shaft} = m \cdot \left(\frac{D_{hub} + D_{tip}}{4}\right) \cdot \left(V_{u1} - V_{u1.5}\right)$$

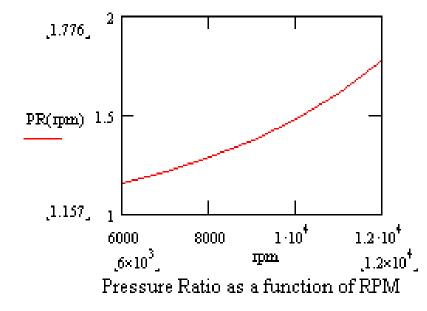
$$T_{shaft} = 37.10 \cdot \left(\frac{.457 + .66}{4}\right) \cdot \left(0 - 96.2\right) = -996.6 Nm$$

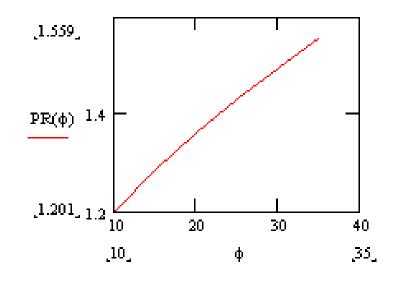
$$power = T \cdot \omega = -996.6 \frac{8000 \cdot 2\pi}{60 \cdot 1000} = -834.9 kW$$

$$_{1}w_{2} = \frac{-834.9}{37.10} = -22.5$$

The work done by a compressor will always be negative, the opposite is always true for a turbine


Now we are ready to find T_{01.5} and our stage pressure ratio


$$T_{o1.5} = T_{o1} - \frac{1}{C_p} W_2 = 302.4 - \frac{-22.5}{1.004}$$
$$T_{o1.5} = 324.8K$$


$$PR = \left(\frac{324.8}{302.4}\right)^{\frac{1.4}{1.4-1}}$$
$$PR = 1.284$$

Compressor Design Graphs

PR as a function of rotational speed

