Combustion Chamber Design

Bradford Grimmel Nicholas Toro Ian Fulton

Topics

- Combustion Chamber
 Defined
- Design Considerations
- Chamber Shapes
- Fast Combustion
- Volumetric Efficiency
- Heat Transfer

- Low Octane Requirement
- Knock
- Flow Inside A Cylinder
- Turbulence

Combustion Chamber Defined

- The combustion chamber consists of an upper and lower half.
 - Upper half- Made up of cylinder head and cylinder wall.
 - Lower half- Made up of piston head (Crown) and piston rings.

Design Considerations

- Minimal flame travel
- The exhaust valve and spark plug should be close together
- Sufficient turbulence

Design Considerations

- A fast combustion, low variability
- High volumetric efficiency at WOT
- Minimum heat loss to combustion walls
- Low fuel octane requirement

- A basic shapes
 - Wedge
 - Crescent

- Hemispherical
- Bowl in Piston

- Wedge
 - Asymmetric design
 - Valves at an angle and off center

- Hemispherical (Hemi)
 - Symmetric design
 - Valves placed on a arc shaped head

- Bowl-in-Piston
 - Symmetric design
 - Valves are placed perpendicular to head

 Crescent (Pent-Roof)

 The valves are placed at an angle on flat surfaces of the head

Fast Combustion

• Effect of spark plug location

Creations (e. d-allocation beaution)

Fast Combustion in Relation to Shape

Fast Combustion in Relation to Shape

Comparison of Burn Angles

Volumetric Efficiency

- Size of valve heads should be as large as possible
- Want swirl produced

Heat Transfer

- Want minimum heat transfer to combustion chamber walls
- Open and hemispherical have least heat transfer
- Bowl-in-piston has high heat transfer

Low Octane

- Octane Requirement related to knock
- Close chambers (bowl-in-piston) have higher knock at high compression ratios than Open chambers (hemispherical and pent-roof)

Octane Rating

- Research Octane Number (RON)
- Motor Octane Number (MON)
- Octane is one factor in the combustion process that another group will speak about
- Straight chain C-H bonds such as heptane have weaker C-H bonds than branched chained C-H bonds in branch chained HC such as iso-octane
- Straight bonds are easier to break

Chemical Compositions

Knock

- Surface ignition
 - Caused by mixture igniting as a result of contact with a hot surface, such as an exhaust valve
- Self-Ignition
 - Occurs when temperature and pressure of unburned gas are high enough to cause spontaneous ignition

Flow

- 2 types of flow
 - Laminar flow
 - Minimal microscopic mixing of adjacent layers
 - Turbulent flow
 - Characterized as a random motion in threedimensions with vortices (eddies) of varying size superimposed on one another and randomly distributed in the flow

Why Turbulence?

- Decrease burn time
 - Reduces knock
 - Reduces emissions (NO_x)
- Allows for leaner mixture (stratified charge)
 - Reduces emissions (HC)
- Decreases in combustion temperature
 - Reduces knock
 - Reduces emissions (CO)
 - Reduces power

Inducing Turbulence

- Valve configuration and valve timing
- Turbulence generation pot

- Eddies are defined by length scales
- The Integral Scale l_I measures the largest eddies of the flow field
- The Kolmogorov scale l_k measures the smallest eddies
- The Taylor microscale l_m relates fluctuating strain rate of flow field to intensity

- Swirl
 - Axis of rotation is parallel to cylinder
 - Generate swirl about valve axis (inside port)

Swirl

- Impulse Swirl Meter
- Honeycomb flow straightener measures total torque exerted by swirling flow.
- A swirling ratio is defined:

 $R_s = \omega_s / 2\pi N$

Swirl

- Tumble
 - Axis of rotation is perpendicular to cylinder axis
 - Associated with swirl

• R_t is the tumble ratio,

 $R_t = \omega_t / 2\pi N$

- This ratio compares the angular velocity,
- ω_t, of the solid-body rotation with same angular momentum as actual velocity distribution in tumble to angular velocity of the crankshaft (N)

Squish

 Radially inward gas motion that occurs toward end of compression stroke

Conclusion

- Optimum chamber
 - Central spark plug location
 - Minimum heat transfer
 - Low octane requirement
 - High turbulence