PROPULSION SYSTEMS

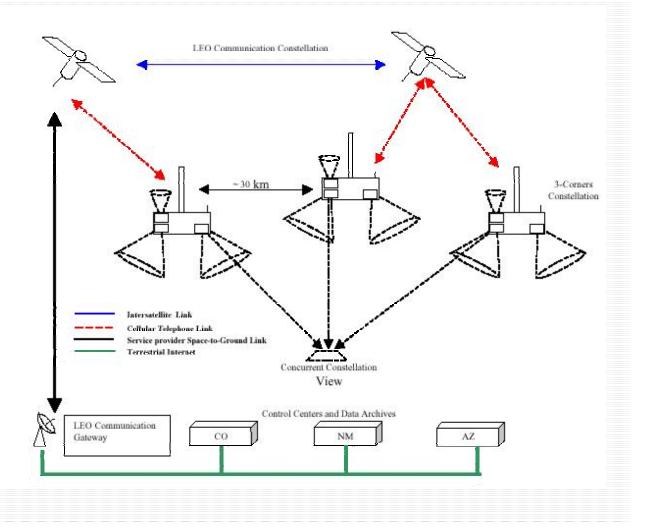
Micro-Propulsion: A limited Introduction

> FAMU/FSU College of Engineering Mechanical Engineering Dept Presented by: Marcnell Pierre December 05, 2001

µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal µ-Propulsion Issues

Starting Line

- Massive Field (opportunity)
 - Various applications
 - Numerous Works
- Limit Scope
 - Gives a reference
 - Exclude earth-bound applications
 - Exclude landing and take-off
 - Low thrust
 - µ-Spacecraft!!

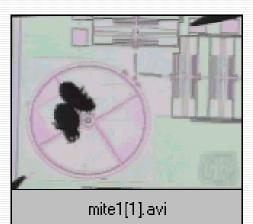

µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal µ-Propulsion Issues

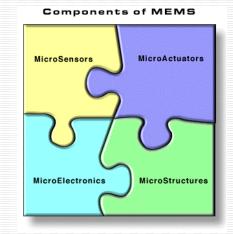
Categorizing µ-Spacecraft

Designation	Mass (kg)	Power (W)	Dimension (m)	Comment/Picture
Micro-spacecraft	10-100	10-100	0.3-1	
Class I micro- spacecraft	5-20	5-20	0.2-0.4	
Class II micro- spacecraft	1-5	1-5	0.1-0.2	
Class III micro- spacecraft	<1	<1	<0.1	100

Constellations

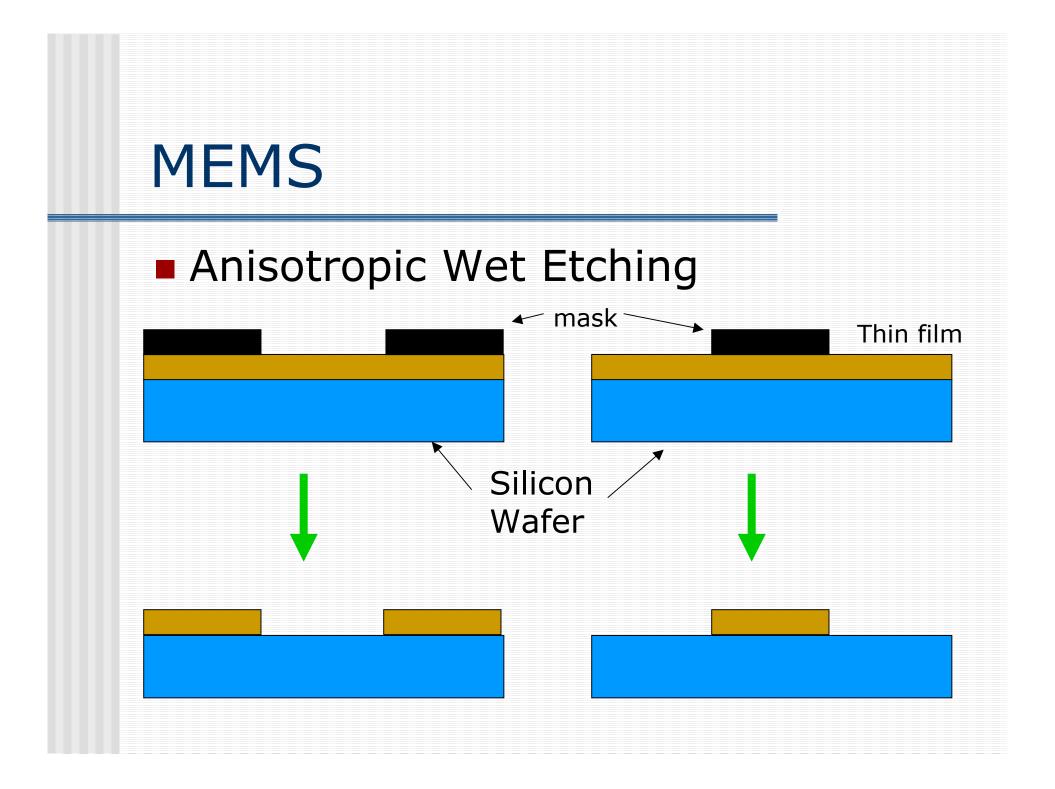
- 10-1000m formations
- Parallel or individual
- Direct/LEO Comm.
- 3CS
- Stereoscopic Imaging
- Closed Loop Control

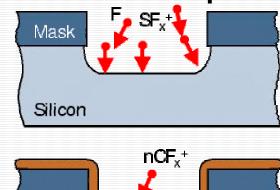


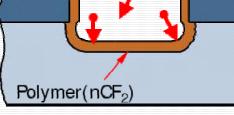

Constellations Rigid body rotation Orbit Correction Burns: 3/orbit AV Requirements Normal Vector of **Reference Orbit** Normal Vector of • $\Delta V = f(h, m, v)$ **Cluster Plane** ■ ∆V∝h 60° Subsatellite Orbit Earth 30 **Cluster plane Cluster plane** Reference Orblt Nadir Vector

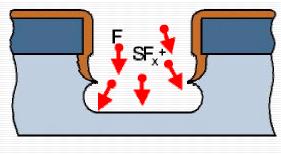
■µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal ■ µ-Propulsion Issues

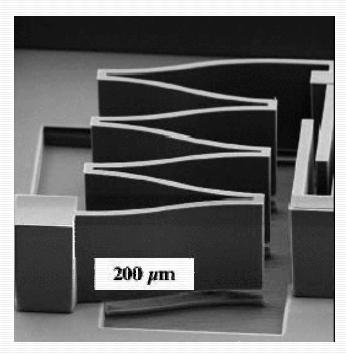
Micro-Electro-Mechanical Systems

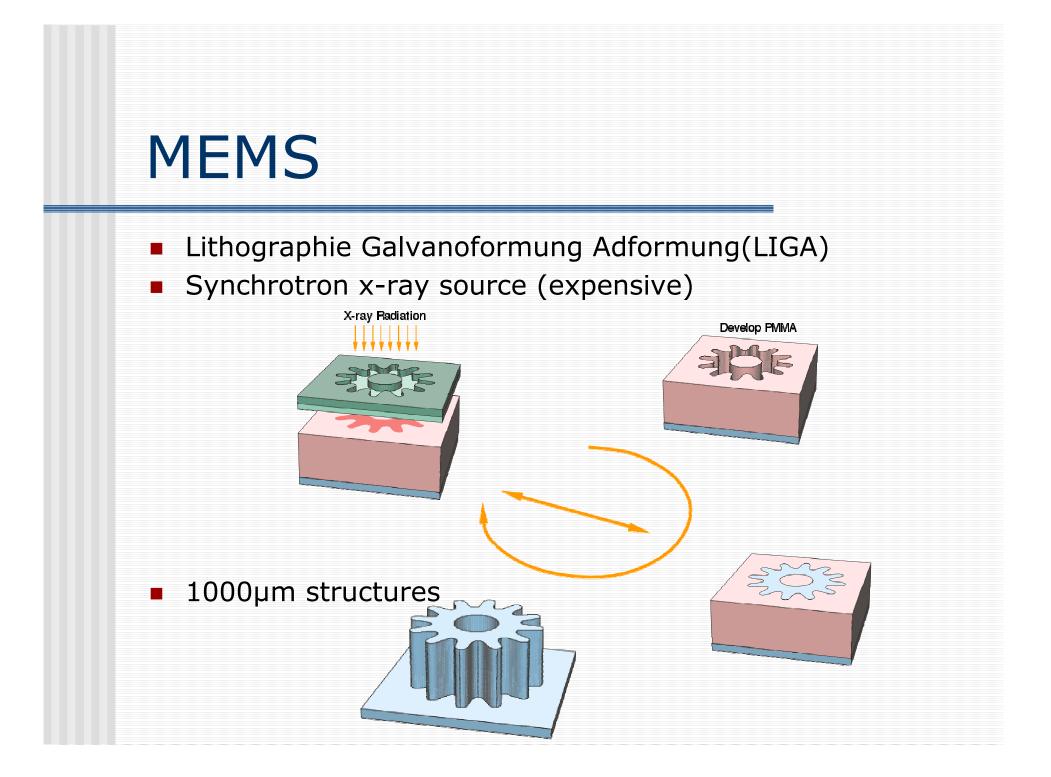

- Micron-scale
- Adapted IC technology
- Systems on chip

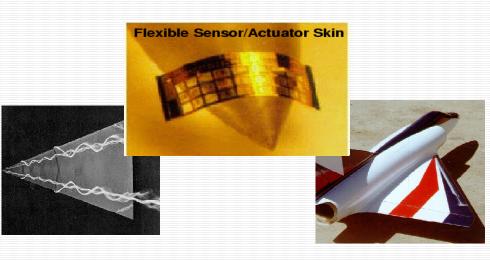


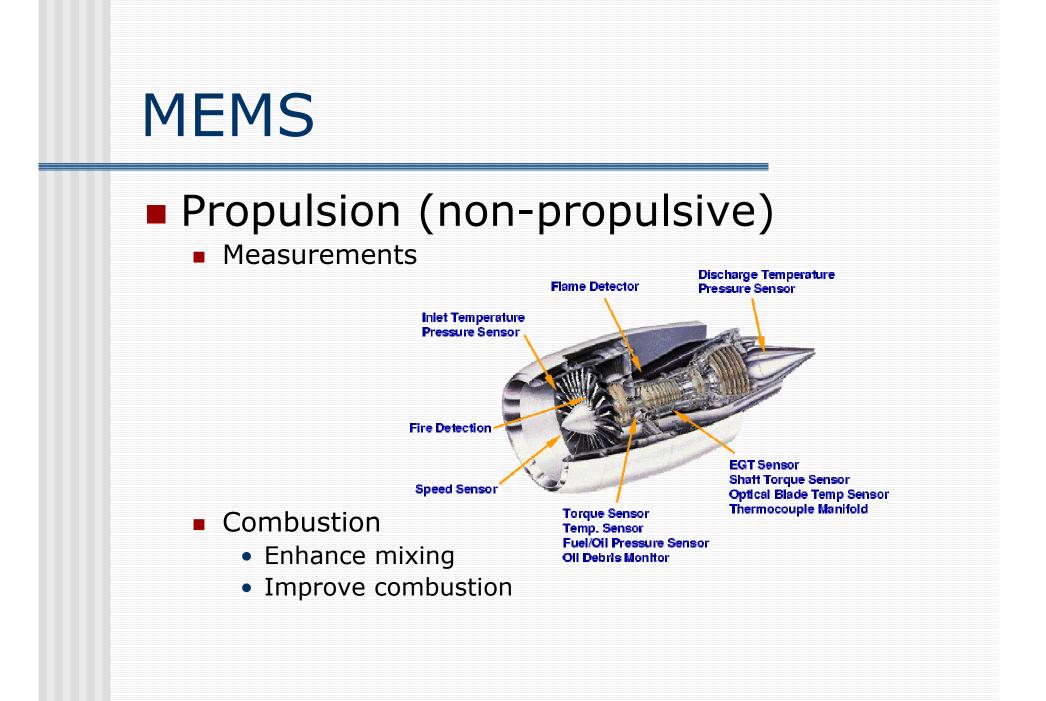

Silicon

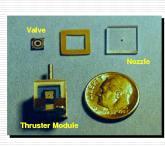

- Sacrificial surface µ-machining or etching
- Numerous techniques
- Non-Silicon Fabrication
 - New and under development
 - Stronger materials
 - Polymers



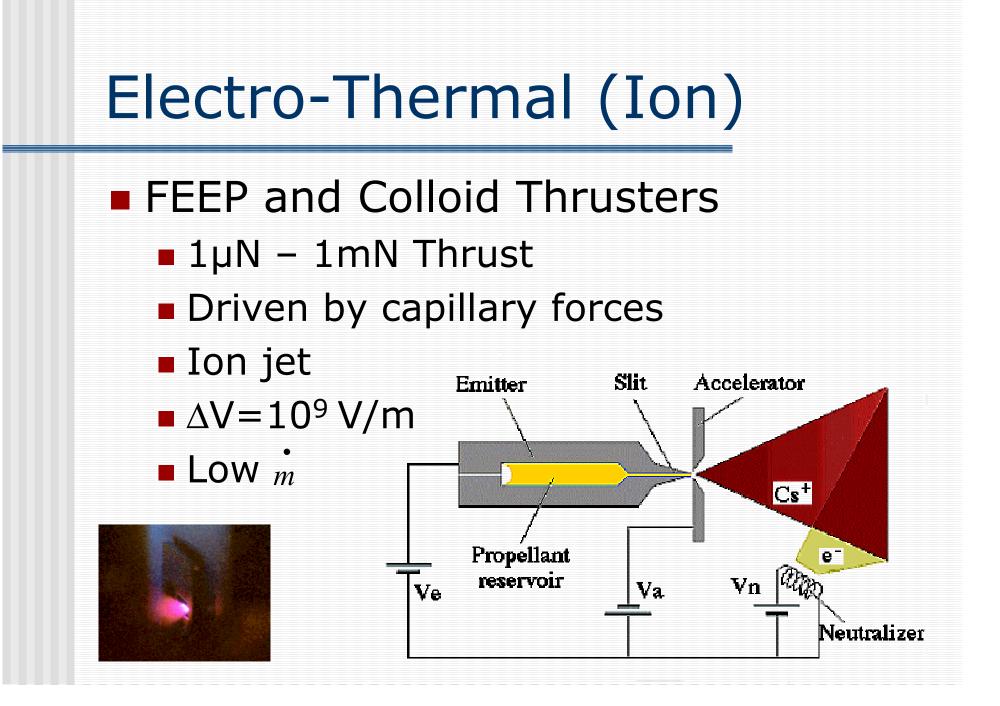

Anisotropic Dry Etching (RIE)

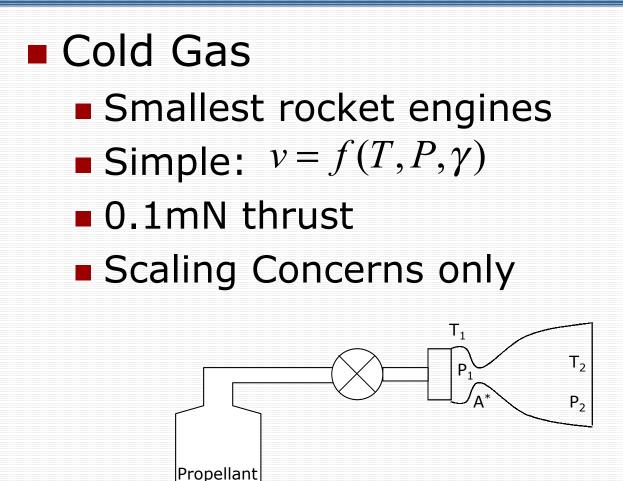


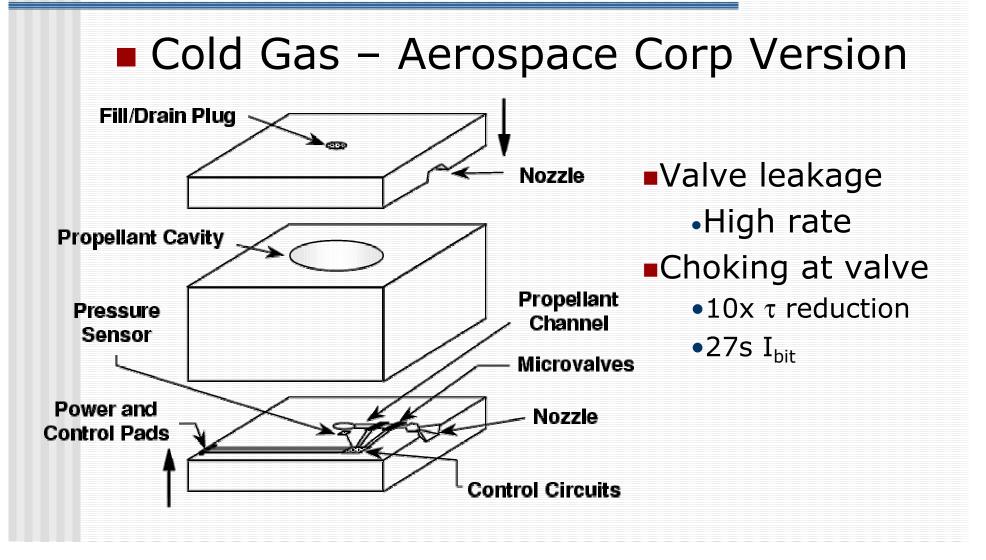

- Tools (Shear Stress Sensor)
 - Determine wall shear stress
 - Flush mounted
 - Assumptions allow modeling

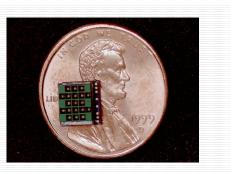


Research (Vortex-Control: Delta Wing)


- MEMS actuators and sensors
- µ-flaps properly located
- Induce moments for maneuvering

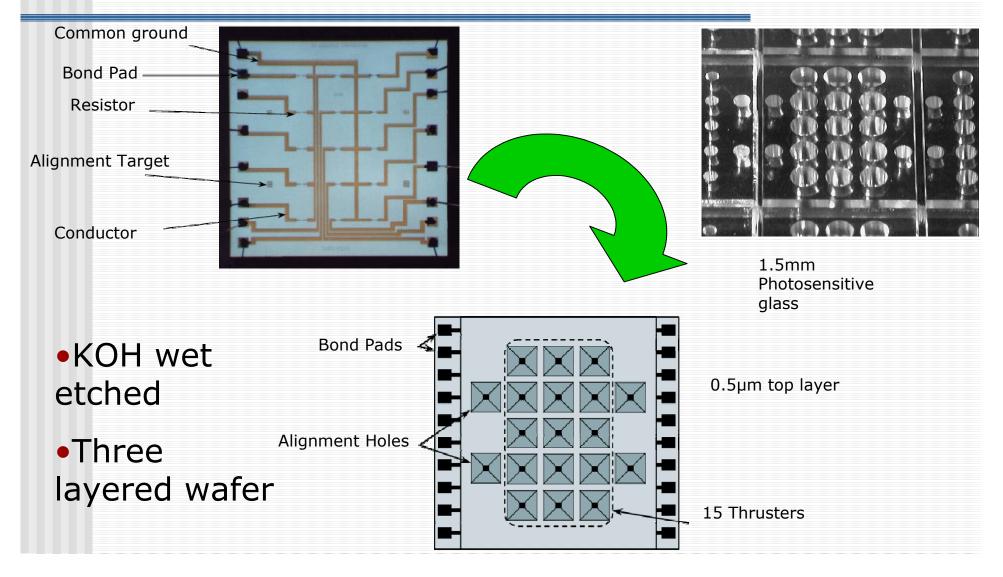


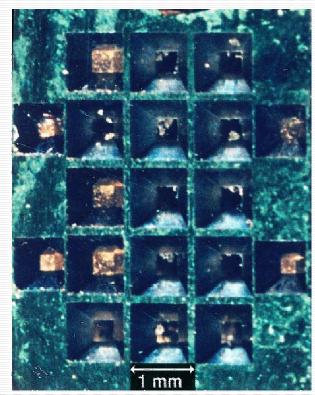

■µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal ■ µ-Propulsion Issues



Chemical


Chemical




■µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal ■ µ-Propulsion Issues

- Multitude of single shot µ-thrusters (10⁻⁴ to 10⁻⁶ per 10 cm wafer)
- 10⁻⁴ to 10⁻⁶ N-s Impulse bits
- KOH wet etching & wafer bonding
- Class I and II applicability
- Attitude control
- Several Versions
 - TRW/Aerospace Corp
 - French (LAAS at CNRS)
 - Honeywell
 - NASA Glenn

- 10⁻⁴ N-s with Lead Styphnate
- Ims impulse duration
- Relatively low △V missions
- Ideal for attitude control
- Scales to Meso/Macro

■µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal \blacksquare µ-Propulsion Issues

Non-MEMS Options

CHEMICAL

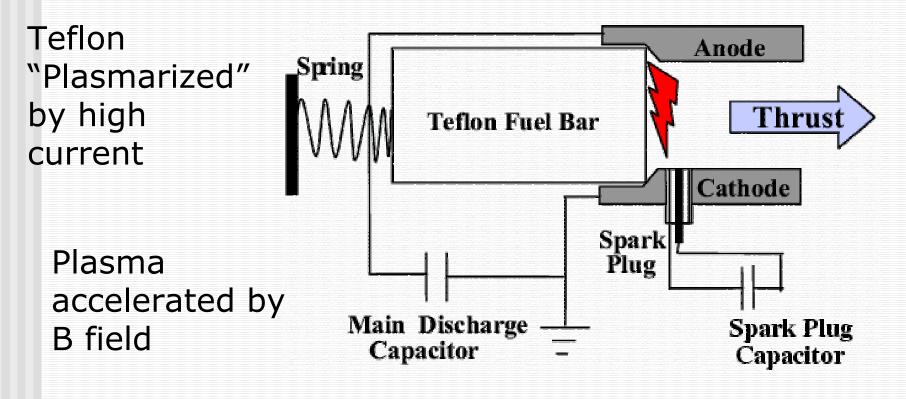
• Bipropellant • Monopropellant • HAN • Hydrazine • H₂O₂ • Cold Gas • Solid Generally Applicable to Class I Primary Propulsion **ELECTRIC (ION)**

•Ion Engine

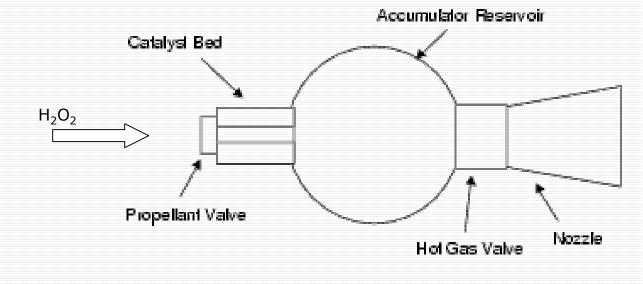
•Hall

•PPT

•FEEP/Colloid


Resistojets

MEMS Extendible (current developments) •FEEP/Colloid •Ion Engine •Resistojet •Solid •Cold Gas •Bipropellant

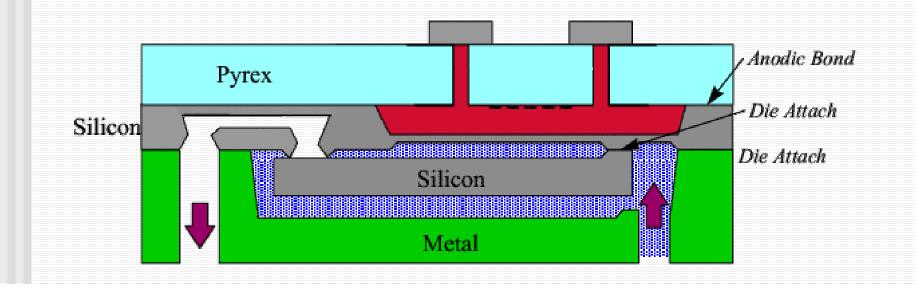

Non-MEMS Options

Pulsed Plasma Thruster (PPT)

- Hydrogen Peroxide (H₂O₂)
 - At 90% concentration
 - Silver-wire mesh as catalyst
 - Products: H₂O and heat = steam

■µ-Spacecraft view point Classification and Applications Propulsion Using MEMS MEMS Overview Electro-Thermal Propulsion Chemical Propulsion Digital Micro-Thruster Non-MEMS Options Chemical Electro-Thermal µ-Propulsion Issues

µ-Propulsion Issues


- Surface effects are dominant
 - BC's change in momentum (gas flows)
- Flows become highly dissipative
- µ-Nozzles

 - Currently Several Investigations
- µ-Combustion
 - Incomplete Burn = clogged systems
 - Temps (700 to 1800 K) to high for Silicon
- µ-Heat Effects
 - Thermal Expansion and modeling

µ-Propulsion Issues

µ-Valves

- High leak rates
- Incomplete flow characterizations

Summary

		I _{sp} (sec)	I _{bit} (N - s)	Thrust (N)	Power (W)	μ- Craft	C lass	C lass II	C lass III
MEMS		(300)				Clait	t.a		111
	FEEP/Colloid		5 x 1 0 - 9	(1 -	2		Y		
				1000)x10 ⁻					
				6					
	Ion Engine						Ð	V	
	R esistojet	48 - 70	Expected						
		/ 0	arbitrarily sm all						
	S o lid								
	Cold Gas			0.1 x 1 0 - 3			NNN		
	Bipropellant							Ż	
	D ig ita l		10-4 - 10-		100				
			6						
Non-									
MEMS									
	B ipropellant	280		5 - 1 5 6		Z			
		- 300							
	M onopropellant	300							
	* * * H A N								
	***H ydrazine	~ 2 2 0		0.9 - 18			7		
	* * * H 2 O 2	65-	0.1	10 - 45					
		150							
	Cold Gas	65-	1 0 - 4 -	0.0045 -	2.4 -	\checkmark	Ŋ		
		296	0.044	4.5	3 0				
	S o lid	199		157 -			Ŋ		
		- 273		2 5 0 0					
	Ion Engine	$\frac{2}{1} \frac{7}{7} \frac{3}{0} 0$		0.001 -	50 -				
	ION L'IIgIn C	-		0.001 - 0.031	600				
		3700							
	H a l l	8 3 0		0.0018 -	70 -	\sim			
		-		0.035	540				
		1740		7 1 0 -6		га			
	FEEP/Colloid	450		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Ŋ			
		- 9000		0.0030					
	РРТ	400	(2 -	(0.002 -	1 - 2 5				
		-	$\begin{pmatrix} 2 \\ 8 & 6 & 0 \end{pmatrix} \times 1 & 0^{-6}$	$\begin{pmatrix} 0 & 0 & 0 & 2 \\ 2 & 0 & 1 & 0 \\ \end{pmatrix} x = 1 & 0^{-3}$					
		5000							
	R esistojets								

References

C.-M.Ho, P.-H.Huang, J.M.Yang, G.-B. Lee and Y.-C.Tai, "Active flow control by micro systems", FLOWCON, International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Mechanics of Passive and Active Flow Control, Gottingen, Germany, Sep. 1998, pp.18-19.

Campbell, Mark, "UW Dawgstar: One Third of Ion-F", 3th AIAA/USU Conference on Small Satellites Paper SSC9-III-4, Logan Utah, 1999

- F.-G. Tseng, C. Linder, C.-J. Kim, and C.-M. Ho "Control of Mixing With Micro Injectors for Combustion Application"
- Proc. MEMS (DSC-Vol.59), Application of Microfabrication to Fluid Mechanics, ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA, Nov. 1996, pp 183-187.

German et al, "An Evaluation of Green Propellants for an ICBM Post-Boost Propulsion System", Defense Technical Information Center, 2000

Ho, C.M., Tai, Y.C., "Micro-Electro-Mechanical Systems and Fluid Flows", Annual Rev. Fluid Mech, 1998

- Horan et al, "Three Corner Sat Constellation New Mexico University", 13th AIAA/USU Conference on Small Satellites Paper SSC99-VI-7, Logan Utah, 1999
- K. C. Pong, C. M. Ho, J. Q. Liu, and Y. C. Tai, "Non-Linear Pressure Distribution in Uniform Microchannels," Application of Microfabrication to Fluid Mechanics 1994 presented at 1994 ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, pp. 51-56, Nov. 6-11 (1994).

Ketsdever et al, "Predicted Performance and Systems Analysis of the Free Molecule Micro-Resistojet", Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol 187, edited M. Micci and A Ketsdever, AIAA, Reston VA 2000, Chap5

References

- Ketsdever, A, "System Considerations and Design Options for Microspacecraft Propulsion Systems", Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol 187, edited M. Micci and A Ketsdever, AIAA, Reston VA 2000, Chap4
- Kimura et al, "Measurement of Wall Shear Stress of a Turbulent Boundary Layer Using a Micro-Shear-Stress Imaging Chip, The Japan Society of Fluid Mechanics and Elsevier Science, 1999
- Kiraly, Z., Engberg, Brian, et al, "The Orion MicroSatellite: A Demonstration of Formation Flying in Orbit", 13th AIAA/USU Conference on Small Satellites Paper SSC99-VI-8, Logan, Utah, 1999
- Lewis et al, "Digital Micropropulsion", Sensors & Actuators A, 2000 p143-154
- Liu et al, "A Micromachined Flow Shear Stress Sensor based on Thermal Transfer Principles", IEEE/ASME J. of Micro-electro-mechnical systems (J. MEMS), 1999
- Marcuccio et al, "Attitude and Orbit Control of Small Satellites and Constellations with FEEP Thrusters", Electric Rocket Propulsion Society, 1997
- Marcuccio et al, "Flight Demonstration of FEEP on Get Away Special", 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 98-3332, Cleveland, OH 1999
- Mueller, J, "Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-At and Emerging Technologies", Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol 187, edited M. Micci and A Ketsdever, AIAA, Reston VA 2000, Chap3
- Mukerjee, E.V., Wallace, K. Y., et all, "Vaporizing Liquid Microthruster, Sensors and Actuators Paper 83(2000) 23-236, Elsevier Science S.A., 2000

Reichbach, Jeffrey, "Micropropulsion System for Precision Formation Flying", MIT Masters Thesis, MIT 2001

References

Tai et al, "Micro Heat Exchanger by Using MEMS Impinging Jets", Proc. 12th Annual International Workshop on Micro Electro Mechanical Systems, pp. 171 - 176, 1999, Orlando, FL

Yang, Xue'en, "A MEMS Valve for the MIT Microengine", MIT Masters Thesis, MIT 1999

Yashko, Gregory, "Ion Micro-Propulsion and Cost modeling for satellite Clusters", MIT Masters Thesis, MIT 1998

http://mems.sandia.gov/scripts/index.asp

http://www.atlanticresearchcorp.com/docs/space_biprop.shtml

http://www.darpa.mil/mto/mems/

http://www.dbanks.demon.co.uk/ueng/liga.html

http://www.howstuffworks.com/spy-fly.htm

http://www.nanosat.usu.edu/index.html

http://www.nanospace.org/

http://www.redwoodmicro.com/publications.htm#PAP