### Ramjet/Scramjet/Pulsejet

Thomas Adams Sydni Credle Wesley Thigpen

November 28, 2001



#### **Ramjet Propulsion**

Glenn Research Center



X – 15 with ramjet engine

•Basically the same operation as a turbojet Ramjet test

Working fluid is the surrounding air.

• Uses supersonic diffuser-cone as compressor.





## Ramjet Components



### SCRAMJET

- *"Supersonic Combustion Ramjet"*
- Air in Combustion chamber is still supersonic, rather than subsonic
- Fuel is still injected for ignition, but fuels do not ignite quickly enough
- A workable fuel injection system for the SCRAMJET is still in development.



## Pulsejet

- The pulsejet is basically a pulsating jet.
- Only consist of a combustion chamber and a nozzle.
- Currently used in a lot of RC jet models.



### Super-Sonic Characteristics

- Pressure variations are not transmitted upstream
- Shock Waves are formed due to extreme pressure disturbances
- Directly correlates to Mach number

$$M = \frac{V}{\sqrt{\gamma RT}}$$

### Super-Sonic Flow Characteristics



(before shock) -High speed flow is undisturbed

(after shock)

-Velocity Decreases

-Air Pressure, Temperature, and Density Increase

### Normal Shock

 Definition: A shock front perpendicular to fluid flow causing a pressure rise and velocity decrease suddenly and irreversibly.



### Normal Shock Flow Functions

For flow through a normal shock, with no direction change, area change, or work done, the governing equations are:

Continuity:  $\rho_1 u_1 = \rho_2 u_2$  u = V = Velocity

Momentum:  $P_1 - P_2 = \rho_1 u_1 (u_2 - u_1)$ 

Energy:  $T_{01} = T_{02}$ 

### Normal Shock Flow Functions

In terms of the initial *(state 1)* and final *(state 2)* Mach numbers, the following parameters can be derived:

$$M_{2}^{2} = \frac{M_{1}^{2} + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_{1}^{2} - 1}$$

$$P_{02}^{02} = \frac{\left[\frac{\frac{\gamma + 1}{2}M_{1}^{2}}{1 + \frac{\gamma - 1}{2}M_{1}^{2}}\right]^{\gamma / (\gamma - 1)}}{\left[\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right]^{\frac{1}{\gamma - 1}}}$$

$$\frac{P_{2}}{P_{1}} = \frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}$$

# Normal Shock Flow Functions (cont'd)

$$\frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2}$$

$$\frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{M_1}{M_2} \left[ \frac{1 + \frac{\gamma - 1}{2} M_2^2}{1 + \frac{\gamma - 1}{2} M_1^2} \right]^{1/2}$$

# **Oblique Shock Theory** "Shock line" $M_1$

### **Oblique Shock**



### Oblique Shock (cont'd)



Figure #1

## **Oblique Equations** $M_{1n} = M_1 \sin \theta$ $M_{2t} = M_{1t} \sqrt{\frac{T_1}{T_2}}$

$$M_2 = \sqrt{M_{2t}^2 + M_{2n}^2}$$

| Table E.4 | Normal-Shock Flow Functions (one-dimensional flow, ideal gas, $k = 1.4$ ) |                   |           |           |                                     |
|-----------|---------------------------------------------------------------------------|-------------------|-----------|-----------|-------------------------------------|
|           | $M_2$                                                                     | $p_{0_2}/p_{0_1}$ | $T_2/T_1$ | $p_2/p_1$ | $oldsymbol{ ho}_2/oldsymbol{ ho}_1$ |
| 1.00      | 1.000                                                                     | 1.000             | 1.000     | 1.000     | 1.000                               |
| 1.50      | 0.7011                                                                    | 0.9298            | 1.320     | 2.458     | 1.862                               |
| 2.00      | 0.5774                                                                    | 0.7209            | 1.687     | 4.500     | 2.667                               |
| 2.50      | 0.5130                                                                    | 0.4990            | 2.137     | 7.125     | 3.333                               |
| 3.00      | 0.4752                                                                    | 0.3283            | 2.679     | 10.33     | 3.857                               |
| 3.50      | 0.4512                                                                    | 0.2130            | 3.315     | 14.13     | 4.261                               |
| 4.00      | 0.4350                                                                    | 0.1388            | 4.047     | 18.50     | 4.571                               |
| 4.50      | 0.4236                                                                    | 0.09170           | 4.875     | 23.46     | 4.812                               |
| 5.00      | 0.4152                                                                    | 0.06172           | 5.800     | 29.00     | 5.000                               |

### Oblique Shock (cont'd)



### Oblique Shock (Example)



Given:  $M_1 = 5$  and  $\theta = 30^{\circ}$ 

Find: Deflection angle (cone angle)  $\delta$ , stagnation pressure ratio  $(p_{o2}/p_{01})$ , and M<sub>2</sub>

### Solution: $M_{1n} = M_1 \sin \theta = 5 \sin 30 = 2.5$ From Table 3.1 in FGT book:

 $T_2/T_1 = 2.1375$  $M_{2n} = 0.51299$  $P_{02}/P_{01} = 0.49901$  $M_{1t} = M_1 \cos \theta = 5 \cos 30 = 4.33$  $M_{2t} = M_{1t} \sqrt{\frac{T_1}{T_2}} = 4.33 \sqrt{\frac{1}{2.1375}} = 2.96$  $M_2 = \sqrt{M_{2t}^2 + M_{2n}^2} = \sqrt{2.96^2 + 0.51299^2} = 3.0$  $\beta = \tan^{-1}(\frac{M_{2n}}{M_{2n}}) = \tan^{-1}(\frac{0.51299}{2.96}) = 9.83^{\circ}$  $\delta = \theta - \beta = 30 - 9.83 = 20.17^{\circ}$ 

### Advantages of Ramjets

- Ram compression increases with flight speed
- No need for a compressor
- Elimination of compressor means that the turbine is unnecessary
- Less weight associated with Ramjet configuration
- No moving parts

### Disadvantages of Ramjets

- Inefficient below Mach 3
- Will not work if there is no forward motion
- Some other form of propulsion is required to provide the initial acceleration to high speeds (turbojets, rocket boosters, etc.)



### References

- "Propulsion" <u>http://wings.avisits.com/Book/Propulsion/adj.mced/types-01.htm</u>
- M. L. Zucrow, Aircraft and Missile Propulsion, John Wiley & Sons, 1958.
- P. G. Hill and C. R Peterson, *Mechanics and Thermodynamics of Propulsion*, Addison-Wesley Publishing Company, Inc., 1965.
- R. W. Fox and A. T. McDonald, *Introduction to Fluid Mechanics*, 5<sup>th</sup> Ed. John Wiley & Sons, Inc., 1998.
- "Beginners Guide to Propulsion" -