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Abstract—Data-driven electricity theft detectors rely on cus-
tomers’ reported energy consumption readings to detect mali-
cious behavior. One common implicit assumption in such detec-
tors is the correct labeling of the training data. Unfortunately,
these detectors are vulnerable against data poisoning attacks that
assume false labels during training. This paper addresses three
major problems: What is the impact of data poisoning attacks
on the detector’s performance? Which detector is more robust
against data poisoning attacks, i.e., generalized or customer-
specific detectors? How to improve the detector’s robustness
against data poisoning attacks? Our investigations reveal that:
(a) Shallow and deep learning-based detectors suffer from data
poisoning attacks that may lead to a significant deterioration
of detection rate of up to 17%. Furthermore, deep detectors
offer 12% performance improvement over shallow detectors.
(b) Generalized detectors present 4% performance improvement
over customer-specific detectors even in the presence of data
poisoning attacks. To enhance the detectors’ robustness against
data poisoning attacks, we propose a sequential ensemble detector
based on a deep auto-encoder with attention (AEA), gated
recurrent units (GRUs), and feed forward neural networks. The
proposed robust detector retains a stable detection performance
that is deteriorated only by 1 —3% in the presence of strong data
poisoning attacks.

Index Terms—electricity theft, data poisoning, robust detector,
machine learning, data-driven detection.

I. INTRODUCTION

Electricity theft is a serious threat for power grids as it
incurs high financial losses. For instance, the annual losses
are up to $6 billion in Canada and the United States [1].
Moreover, since electricity thefts overload the power grid,
they have a negative effect on its performance [2]. Recently,
utility companies have started to deploy advanced metering
infrastructures (AMIs) that are equipped with smart meters
to regularly monitor the customer’s energy consumption and
to reduce traditional (physical) electricity thefts [3]. However,
the implementation of smart meters has introduced a variety of
electricity theft cyber-attacks where malicious customers hack
into the meter to reduce their electricity bills by manipulating
their electricity consumption readings [4].
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A. Related Work and Limitations

So far, several shallow and deep learning-based attempts
have been carried out to adopt data-driven approaches for elec-
tricity theft detection'. For instance, AdaBoost-based models
presented accuracy of approximately 80% [5]. An anomaly
detector that employs an auto-regressive integrated moving
average (ARIMA) model offered a detection rate (DR) of 89%
and false alarm (FA) rate of 11% [6]. Outlier detection tech-
niques such as local outlier factor, mutual k-nearest neighbor,
and indegree number offered an area under the curve (AUC)
of up to 90% [7]. By exploiting decision trees and a support
vector machine (SVM), a two-step electricity theft detector
showed an accuracy of 92.5% [8]. A slight improvement in
performance is achieved by the multi-class SVM model with
DR and FA values of 94% and 11%, respectively [1]. More
recently, deep learning-based detection techniques were inves-
tigated. For example, a hybrid convolutional neural network
(CNN) and gated recurrent unit (GRU) detector presented an
AUC of 89% [9]. A feed forward-based detection presented
a DR of 92% and FA of 2.3% [10]. A recurrent neural
network (RNN)-based detector presented a DR of 94% and
FA of 4.7% [11]. A random forest and CNN-random forest-
based model offered F1-score of approximately 81% and 96%,
respectively [12]. A residual neural network-based detection
scheme provided a DR of 97% [13]. A bidirectional RNN
offered an accuracy of 97% [14]. Another hybrid CNN and
RNN-based detector presented a DR of 99.3% and FA of
0.22% [15].

All of the aforementioned detectors rely on the customers’
reported energy consumption readings during the training
stage. In this context, two detection mechanisms are adopted,
namely, generalized or customer-specific detection. When
datasets of all customers are merged to train a single detector
that can be used by any customer to detect electricity theft,
we say that a generalized detection mechanism is employed.
However, when a detector is trained (and then used) for each
individual customer using only the dataset of that customer,
then we say that a customer-specific detection mechanism
is employed. Unfortunately, all existing detectors, whether
generalized or customer-specific, implicitly assume that the
detector has been trained using correct labels. Specifically,
if a customer is carrying out electricity theft and has not
been detected before, the utility company will be training
the electricity theft detector using the customer’s data while

It should be highlighted that the aforementioned results are hard to
compare to each other since different metrics and datasets have been used
in the relevant works.



assuming it is benign data. Such a training that is based on
false labels is referred to as a data poisoning attack [16],
[17], and is accompanied by a shift in the detector’s decision
boundaries, which results in a deterioration of the detector’s
ability to distinguish benign from malicious data. Hence,
our paper focuses on addressing the following three major
questions:

o What is the impact of data poisoning attacks on the
electricity theft detector’s performance?

o Which electricity theft detector is more robust to data
poisoning attacks, generalized or customer-specific de-
tectors?

« How to develop a robust electricity theft detector that is
marginally affected by data poisoning attacks?

While the problem of data poisoning is overlooked in
smart grid literature, traditional techniques that deal with this
problem in other domains usually apply data filtering first
to remove any false labels, and then the detection step is
carried out [18]. The limitation of such a solution is that
it adds to the detector an additional stage dedicated only
for data filtering. In this paper, we investigate the possibility
of developing a robust detector that is marginally affected
by data poisoning, and at the same time, provides a stable
classification of the readings to either benign or malicious
(electricity theft detection) without requiring an additional data
filtering operation.

B. Contributions

In order to address the aforementioned questions, this paper
reports the following contributions:

o To quantify the impact of data poisoning attacks, we
test the performance of customer-specific and generalized
benchmark detectors along with their ability of detecting
data poisoning attacks as well as cyber-attack electricity
thefts in one step. The benchmark detectors include ran-
dom forest, adaBoost, ARIMA, SVM, deep feed forward,
GRU, and auto-encoder with attention (AEA) detectors at
different levels of data poisoning attacks. Our simulation
results reveal that both customer-specific and generalized
detectors suffer from severe performance degradation by
17%. Generalized detectors tend to be more robust against
data poisoning compared to customer-specific detectors
and exhibit a performance improvement of 4%.

« To enhance the robustness of electricity theft detectors
against data poisoning attacks, we investigate detection
schemes based on a combination of AEA, GRUs, and
feed forward layers using ensemble averaging and se-
quential ensemble learning methods. Ensemble averaging
builds its decision based on the average of the outputs of
individual AEA, GRU, and feed forward models. On the
other hand, the output of each individual model in the
sequential ensemble is passed over to the next model
for further processing until a final decision is made.
Our investigations pointed out that sequential ensemble
is more robust against data poisoning attacks compared
to ensemble averaging (up to 10% improvement) since it
takes full advantage of its subcomponents.

o Opverall, the sequential ensemble detector is capable of
detecting electricity theft with high DR (95.2%) and low
FA (2.9%). Additionally, the sequential ensemble detec-
tor’s performance is deteriorated by only 1 — 3% under
data poisoning attacks. Thus, the proposed sequential
ensemble-based detector is robust against electricity theft
and data poisoning attacks, without the need of a separate
data filtering stage.

Hyper-parameter optimization is carried out for all of the
investigated detectors using a sequential grid search.

This paper is organized as follows. Section II presents the
used benign and malicious datasets. Section III investigates
the impact of data poisoning attacks on customer-specific
and generalized detectors. Section IV presents the design
of the proposed robust detector along with the experimental
results corresponding to the ensemble learning-based detection
schemes. Finally, conclusions are made in Section V.

II. BENIGN AND MALICIOUS DATASETS

This section presents the electricity consumption data that
we use to train and test the detectors under investigation. The
benign energy consumption data is taken from the publicly
available Irish Smart Energy Trail dataset [19]. The malicious
data is simulated using six general cyber-attack functions
adopted from [1]. The data poisoning attack is simulated by
flipping some of the labels of malicious data to benign labels.

A. Benign Dataset

We use the Irish Smart Energy Trail dataset as the benign
dataset to train and test the electricity theft detectors under in-
vestigation. This dataset is released by the Sustainable Energy
Authority of Ireland and it is available to the public since 2012.
The electricity readings in this dataset are taken from 3,000
residential units’ smart meters that took readings every 30
minutes over 18 months. Thus, the benign dataset has a record
of 25,000 reports per customer. The energy consumption value
of customer c at a specific day d and time period ¢ is defined
as the entry E.(d,t) of matrix E.. For honest customers, the
energy consumption that is recorded by the customer’s meter
R.(d,t) and E.(d,t) are equal. Hence, matrices E. and R,
coincide in such a case.

B. Malicious Dataset

Malicious customers launch cyber-attacks and exploit the
integrity of the electricity readings to lessen their electricity
bills. Thus, R.(d,t) # E.(d,t). Herein, in order to construct a
malicious dataset, we use the false data injection approach [1].
As shown in Table I, we consider six cyber-attack functions
that are divided into three classes. The cyber-attack function
is represented by f(.).

In partial reduction attacks, f1(.) decreases the real electric-
ity consumption by a constant fraction «, while f5(.) involves
a dynamic fraction 3(d, t). For selective by-pass attacks, f3(.)
assumes an electricity consumption of zero during a specific
time interval, [t;(d),ts(d)], and reports the real consumption
outside that interval. Price-based load control attacks take



TABLE I
ELECTRICITY THEFT CYBER-ATTACK FUNCTIONS

Attack Class Equation

Partial reduction f1 (Ee(d, 1)) = e (d, t)

fZ(EC(d7 t)) = B(du t)Ec (dv t)

5 (Ee(d, 1)) = { 0 VE € [t:(d), 7 (d)]

Selective by-pass
y-p Ec(d,t) Vt ¢ [t;(d),ts(d)]

f4(Ec(d, 1)) = E[Ec(d)]

Price-based

load control f5(Ee(d, 1) = B(d, E[Ec(d)]

fo(Ee(d,1)) = Bo(d, T —t+ 1)

place where the price of electricity is different throughout
the day. Hence, f4(.) reports a constant value of electricity
consumption throughout the day. Notation E[-] denotes the
expectation (averaging) operator. Reporting a constant value
of electricity consumption throughout the day can be detected
easily. In order to avoid that, f5(.) employs a dynamic fraction
B(d,t). Finally, fg(.) is considered to be a reverse function as
it reorders the electricity consumption reports across the day
such that higher electricity consumption is reported when the
tariff is low. Each of these cyber-attack functions is applied to
the customer’s electricity consumption profile matrix E ., and
results in six malicious matrices per customer. The aggregation
of all six attack matrices creates a comprehensive malicious
dataset that captures a wide range of electricity theft behaviors.
For each matrix, each row represents a sample of the electricity
consumption profile across the day. Each sample is labeled. If
the sample is benign, the label is 0, whereas if the sample is
malicious, the label is 1.

III. IMPACT OF DATA POISONING ATTACKS

This section studies the impact of data poisoning attacks
on generalized and customer-specific benchmark detectors.
We first discuss the data preparation for generalized and
customer-specific detectors. Next, we discuss how to launch
a data poisoning attack. Then, we present a set of shallow
and deep anomaly (novelty) detectors and classifiers to detect
electricity thefts. Anomaly detection is a broad term that
includes outlier and novelty detection. Outlier detectors are
trained on benign and outlier data, whereas novelty detectors
are trained only on benign data [20], which represents the
technique adopted herein. Finally, we present the performance
results to quantify the impact of data poisoning attacks on
electricity theft detectors.

A. Dataset Preparation

This subsection discusses the dataset preparation for gen-
eralized and customer-specific detectors along with launching
data poisoning attacks. For each detection type, we consider
two approaches. The first is novelty detection where the detec-
tor is trained using benign data only and tested on benign and
malicious samples. The second is two-class detection where
the detector is trained and tested on benign and malicious
datasets.
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Fig. 1. Illustration of generalized and customer-specific detectors.

1) Novelty Detectors: For generalized novelty detectors,
data samples are concatenated from all customers as illustrated
in Figure 1(a). The concatenated benign samples from all
customers are further split into a disjoint training set and test
set with ratio 2 : 1. Malicious samples are then concatenated
with the benign test set to form the final test set. As a result,
we end up with imbalanced data since we accumulate more
malicious data (six malicious matrices per customer) than
the original benign data in the test set, which may result in
misleading performance results. To overcome this, we adopt
the adaptive synthetic sampling approach (ADASYN) [21] to
balance the benign and malicious samples by over-sampling
the minor (benign) class in the test set. Feature scaling is
applied to the training set so that the consumption samples
from all customers at all periods present equal influence during
the detector’s training. The scaled training set Xt has zero-
mean and unit-variance. The same scale is applied to the test
set Xrtgr with labels Yrgr. Since the same scale is applied to
both the train and test set, the change in the signal shape does
not impact the overall process.

For customer-specific novelty detectors, a detector is de-
veloped for each customer as illustrated in Figure 1(b). Each
detector is trained and tested using the dataset of a specific
customer c¢, with a unique identification for each customer.
Thus, the same steps as above are carried out using the dataset
of each customer c to develop the scaled training set Xtg .
and test set Xrgr . with labels Yrsr ..

2) Two-class Detectors: For generalized two-class detec-
tors, we concatenate both benign and malicious samples for
all customers. Then, we employ the ADASYN approach to
balance the benign and malicious samples. The concatenated
dataset is then split into disjoint training and test sets with
ratio 2 : 1. Feature scaling is applied to the training set,
which yields the final scaled version Xtr with label Yr. The
same scale is then applied to the test set, which yields the
final scaled version Xtgt with label Y1gr. The same steps are
applied to customer-specific two-class detectors but using only
the dataset of customer c to develop training samples Xtg .
with labels Y7gr . and test samples Xtst . with labels Yrs ..

3) Data Poisoning Attacks: In order to investigate the
impact of data poisoning attacks on the detector’s performance,
malicious samples are falsely identified to be benign. Hence,
under data poisoning attacks, part of the data used during



the training stage (whether novelty or two-class detection is
adopted) is considered to be benign, while this data is actually
malicious. Along with the six malicious attacks discussed
in Section IL.LB, we launch data poisoning attacks using dif-
ferent attack penetration levels. Specifically, for generalized
detectors, we consider the cases where 0%, 10%, 20%, and
30% of customers present poisoned data. For customer-specific
detectors, we consider the cases where 0%, 10%, 20%, and
30% of customer ¢ samples are poisoned.

B. Benchmark Detectors

This subsection presents a series of shallow and deep learn-
ing detectors to study the impact of data poisoning attacks.

1) Novelty Detectors: The following detectors are trained
only on benign data but tested against benign and malicious
data. These detectors are robust against zero-day attacks.

a) ARIMA-based Detection: This model represents a
shallow anomaly detector that is trained to predict future
energy consumption with minimum prediction mean square
error (MSE). The model then detects malicious samples in the
testing stage whenever the MSE is above some threshold [6].

b) Auto-encoder with Attention: This model represents a
deep novelty detector. The structure of the AEA consists of
an encoder and a decoder, based on long-short-term memory
(LSTM) recurrent layers [22], along with an attention layer.
The input to the LSTM encoder is an energy consumption
sample (x € X g for the generalized detector or © € X1z ¢
for the customer-specific detector). Then, the LSTM encoder
encodes that time-series vector into a hidden state. The input
layer in the encoder is followed by L hidden LSTM layers,
and each layer presents Ny LSTM cells. Then, the output
of the LSTM encoder as well as the hidden state of the
decoder are used as inputs to an attention layer. This is done
to assign different weights and scores to each time step such
that higher importance is given to time steps that contribute
more to obtaining the needed output [23], [24]. After that,
the concatenation of the output from the attention layer and
the reconstructed output in the decoder are fed as input to
the decoder. The detailed structure of the AEA is shown in
Figure 2. Since the AEA is trained on benign samples, the
reconstruction error will be minimum for benign test samples
and large for malicious test samples. Hence, a certain threshold
is used to differentiate benign from malicious test samples.

Overall, an LSTM cell presents a state c¢; at a given time
t and outputs a hidden state h;. The access to this cell is
controlled by input, forget, and output gates, iz, fg:, and
og,¢ for the encoder and iy, fp+, and op; for the decoder,
respectively. The electricity consumption value at a given time
t, x;, and the prior hidden states of all LSTM cells that
are in the same layer hg ;i for the encoder and hy 1 for
the decoder are received by the LSTM cell. Additionally, the
LSTM cell receives the cell state, cg ;1 for the encoder and
cp,¢t—1 for the decoder. The calculations of ig/p ¢, fer,t> Or/p ts
Ce/p,t> and hgp g are shown in lines 9 — 13 and 28 — 32 of
Algorithm 1. As shown in Figure 2, the attention layer receives
the hidden states h4 and hﬁft‘_l of the encoder and decoder,

E,t
respectively. The attention layer outputs a context vector cy ¢

that is calculated using: (a) an alignment scoring function m,
which is a feed forward neural network trained on hé,?/ % and
hﬁ;‘_l, (b) a softmax function s, and (c) a multiplication layer.
The calculations are given in Lines 16 — 18 of Algorithm 1.
The decoder’s hidden layers receive the concatenation of c, ;
and the reconstructed output, za, Y .(Cyt, Ta).

2) Two-class Detectors: The following detectors are trained
and tested on both benign and malicious data.

a) Random forest-based Detection: This classifier inte-
grates multiple decision trees that control overfitting while
handling high-dimensional data and maintaining the computa-
tional efficiency [12].

b) AdaBoost-based Detection: This classifier uses deci-
sion trees as weak classifiers. It works by setting more weights
on the samples that are harder to classify and less weight on
the samples that can be easily classified.

c¢) SVM-based Detection: This represents a shallow and
static classifier. The SVM detector is trained using the benign
and malicious samples along with their labels in order to learn
to predict the sample’s label during the testing stage.

d) Feed Forward Neural Network: This represents a
deep classifier, but it is still static, i.e., it does not capture
well the temporal correlation that is present in the electricity
consumption time-series data. The classifier consists of a set of
Lr hidden layers and each layer has Np neurons. The energy
consumption data (x € X for the generalized detector or
x € X for the customer-specific detector) is fed to an
input layer and then processed by the Ly hidden layers. An
activation function Ayp is defined for the neurons in the
hidden layers. An output layer with Agr activation function
then yields the predicted label. The detector is trained using
benign and malicious data and labels in order to learn the
weight matrix W g for the connections between the neurons
of different layers and the bias vector by that minimize the
cross-entropy function:

. -1 T ~ T ~
C=min o ;;{y (@) In(y) + (1 =y (2)) In(g)}, (1)

where © denotes the model parameters (W r and br), | X1r|
denotes the total number of training samples, y represents the
predicted output (label) of the detector, and T stands for the
transposition operation. For customer specific-detectors, Xtg
in (1) is replaced by Xtr .. Further details about the feed
forward detector’s training are given in [10].

e) Gated Recurrent Neural Network: This represents a
deep classifier. Unlike the previous two classifiers, GRU layers
are efficient in capturing patterns of temporal correlation and
sequential information that are present in customers’ electricity
consumption time-series data [25]. In the detector, the hidden
recurrent part contains Lg hidden layers, each with Ng GRUs.
Hence, the electricity consumption data (x € Xz for the
generalized detector or £ € Xy . for the customer-specific
detector) is fed to an input layer and then processed by the Lg
hidden layers. All of the GRU layers, except for the last one,
receive a sequence vector as input and yield a sequence output
vector. The following parameters are presented for each of the
GRU hidden layers Ig € {2,...,Lg — 1}:
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Fig. 2. Illustration of the proposed robust detector based on sequential ensemble.

. oinl represents the input at time step ¢ and the output

of the previous layer Ig — 1.

. sfﬁ represents the hidden state at time step ¢, which is
the computed memory in the previous hidden state sic’_l
of the same layer.

o 29 =g(oleTIUN + si¢ WS 4 bl9) is the update gate
that is specified by the new input oiG_l and previous

memory s/ ; U'S and W'¢ are learnable weights, o(.)
is an activation function, and biG is a bias vector.

o 7o = g(ol¢TIUS 4 slo Wl 4 blo) is the reset gate
that specifies the amount of the prior memory siG_l that
takes part in the next state using the equation héG =
tanh(ol¢ ' U + (59, © rlOYWIE 1+ biC), where U'C,
WITG, UlG, and W%G are learnable weight matrices, blrG
and bﬁLG are bias vectors, and ® is the Hadamard product.

e 58, = (1-2/9)@h'9+ 29050 is the next state and the
output at time ¢ + 1 is 0/G, = softmax(V'%s{G | + b9),
where V' is a learnable weight matrix.

Denote the hidden layers’ activation functions by Ay g. The
activation function Apg of the output layer predicts a label
for the input sample. During the training stage, the detector
uses the benign and malicious data and labels in order to
learn the model parameters (matrices Wg ., Ug «, Vg and
bias vectors bg,.) that minimize the cross-entropy function
defined in (1). Further details about the training of the GRU-
based detector are found in [26].

C. Hyper-parameter Optimization

To ensure that we capture the best performance out of
each detector, hyper-parameter optimization is implemented
[27]. For the random forest and AdaBoost classifiers, the
optimal number of estimators are 100 and 50, respectively.
For SVM, the optimal regularization parameter and kernel
turn out to be 1.0 and Sigmoid, respectively. The following
hyper-parameters are considered for the deep detectors: (a)
number of hidden layers (L4, L, Lg for AEA, feed forward,
and GRU detectors), (b) number of neurons (cells/units) in
the hidden layers (N4, Np, Ng for AEA, feed forward, and
GRU detectors), (c) type of optimizer O to find the model
parameters, (d) dropout rate B, (e) weight constraints G, (f)
type of hidden and output activation functions. To reduce
the computational complexity, we implement a sequential
grid search analysis where each of the hyper-parameters is

optimized in sequential stages separately by finding the best
hyper-parameter that provides the best reported DR during
each stage. More details about sequential grid search can
be found in [10]. The search space for the hyper-parameter
values are: Number of layers: L) = {2, 4, 6, 8}. Number
of neurons: j\/(.) = {100, 200, 300, 500, 1000}. Optimizers:
O = {SGD, Adam, Adadelta, Adamax}. Dropout rates: BB
= {0, 0.2, 0.4, 0.5}. Weight constraints: G = {0, 1, 3, 5}.
Hidden activation functions: Ay = {ReLU, Sigmoid, Linear,
tanh}. Output activation functions: Ap = {Softmax, Sigmoid}.
Cross-validation is implemented over Xtgr for the generalized
detectors and Xtr . for the customer-specific detectors.

D. Performance Evaluation

This subsection evaluates the impact of data poisoning
attacks on the benchmark detectors presented in Section III.B.

1) Evaluation Metrics: When the model correctly detects
a malicious sample as malicious, it is considered to be true
positive (TP). When it correctly detects a benign sample
as benign, it is represented as true negative (TN). When
it incorrectly detects a benign sample as malicious, it is
referred to as false positive (FP). When it incorrectly detects a
malicious sample as benign, it is considered as false negative
(FN). To assess the performance of the detectors from different
aspects, we adopt seven performance evaluation metrics: (1)
Detection rate (DR = TP/(TP + FN)) specifies the number
of malicious samples that the detector correctly identifies as
malicious. (2) False alarm (FA = FP/(FP + TN)) computes the
number of benign samples that are incorrectly identified as
malicious by the detector. (3) Specificity (SP = 100-FA). (4)
Precision (PR = TP/(TP+FP)) determines the ratio of correctly
detected malicious samples to the total number of malicious
samples. (5) Accuracy (ACC = (TP + TN)/(TP + TN + FP +
FN)) determines how well the model correctly detects benign
and malicious samples. (6) Fl-score provides the harmonic
mean of PR and DR. (7) The area under the curve (AUC) of
the receiver operating characteristic (ROC) plots the TP versus
the FP.

2) Evaluation Results: Keras sequential API is used for
the training of the detectors. We adopt the following for deep
learning detectors: the number of epochs I = 50, batch size
K =100, initial hyper-parameters of the models are: optimizer
= SGD, dropout rate and weight constraint = 0, hidden layer
activation = ReLU, and output layer activation = Sigmoid.



TABLE II
OPTIMAL HYPER-PARAMETERS OF THE GENERALIZED DETECTORS
Hyper- AEA Feed- GRU
parameter forward
L, 6 6 8
Ny 500, 300, 200 500 300
O SGD Adamax Adam
B 0 0 0.2
G 1 3 5
Ay Sigmoid ReLU ReLU
Ao Sigmoid Sigmoid | Softmax

a) Optimal Hyper-parameters: Table II shows the op-
timal hyper-parameters’ combination for the generalized de-
tectors. For the AEA, 3 layers are used in the encoder and
additional 3 layers are used in the decoder. The number of
LSTM cells in the encoding layers is (500, 300,200) and
(200, 300, 500) in the decoding layers. The hyper-parameters
in Table II are also used by the majority of the customer-
specific detectors.

b) Optimal Threshold Values for Novelty Detectors: For
the novelty detectors, ARIMA and AEA, the calculated labels
Y ¢, and Y 1sp are compared against each other to produce a
confusion matrix that is used to calculate the different evalua-
tion metrics. To determine Y (,,, thresholds are introduced for
each developed detector. As discussed earlier, comparing the
prediction MSE/reconstruction error against such a threshold
is done to distinguish between benign and malicious samples.
For each novelty detector, the median of the interquartile range
(IQR) of the receiver operating characteristic (ROC) curve
determines the threshold, where scores under that specific
threshold value represent benign samples and the scores above
it denote malicious samples. Hence, each ROC curve is divided
into three quartiles to take the median of the IQR. Thus, the
threshold value for ARIMA is 0.58 and 0.51 for the AEA.

¢) Computational Complexity: The training of all the
detectors is done offline using the NVIDIA GeForce RTX
2070 hardware accelerator. Approximately, it takes an hour
to train the shallow detectors and 1.5 — 3 hours to train the
deep detectors. For all the detectors, the testing is done online,
which requires around 2 seconds to report a decision regarding
individual readings.

d) Detection Performance: Simulation results of gener-
alized and customer-specific detectors are shown in Tables
IIT and IV, respectively. The results are reported using a set
of performance metrics. Along with the six malicious attacks
discussed in Section II.B, the detectors are tested without data
poisoning (0%) as well as with 10%, 20%, and 30% of data
poisoning. From the results in Tables III and IV, we can see
that the DR of the detectors ranges from 80 — 94% when all
labels are correct (i.e., 0% penetration level of data poisoning).
Hence, roughly 6 —20% of malicious users go undetected and
so they will be falsely labeled by the utility company as benign
users. Similarly, FA when all labels are correct ranges from
5 — 20%, and hence, 5 — 20% honest users may be falsely
labeled as malicious. Hence, based on a set of state-of-the-art
benchmarks that cover shallow and deep classifiers as well as
novelty detectors, we conclude that false labeling may occur,
on average, up to 20%. Since this is on average, we study the

impact of different levels of poisoning attack strengths from
0—20% and we even consider the more extreme case of 30%
attack penetration level to gain more insights.

Table III shows the performance results of the generalized
detectors. Without data poisoning, the AEA-based novelty
detector outperforms the rest of the models roughly by 1.6 —
11.9% in DR. For all of the generalized detectors, with 10%
data poisoning, the average reduction in detection performance
is 4%. After poisoning 20% and 30% of the training data,
the average degradation compared to the 0% case is 9% and
14.8%, respectively. The average performance degradation of
the generalized detectors per data poisoning stage is roughly
4.8%. The impact of data poisoning attacks on the DR of the
generalized detectors throughout the different data poisoning
percentages is visualized in Figure 3(a).

Table IV shows the performance of customer-specific de-
tectors (averaged over the customers). Without data poisoning,
the customer-specific AEA-based model outperforms the rest
of the models by 2 — 12.9% in DR. For all of the customer-
specific detectors, with 10% of data poisoning, the degradation
is roughly 4.4%. After poisoning 20% and 30% of the training
data, the average degradation compared to the 0% case is 9.8%
and 16%, respectively. The average performance degradation
of the customer-specific models per data poisoning stage is
5.3%. The impact of data poisoning attacks on the DR of
the customer-specific detectors throughout the different data
poisoning percentages is visualized in Figure 3(b).

3) Remarks: The following conclusions can be drawn:

e Overall, generalized detectors perform better than
customer-specific detectors whether or not the system
encounters data poisoning attacks. The average improve-
ment in detection performance is roughly 2 — 3%.

o Generalized detectors tend to be more robust than
customer-specific detectors. Generalized detectors use
data from all customers in the neighborhood to do the
training. For example, consider the case with penetration
level of 10% data poisoning, in this case, while 10%
of the customers have false labels, the remaining 90%
customers have correct labels. Each single customer adds
up roughly 24, 000 data points. Consider the very simple
scenario of 10 customers. Now we have 216,000 data
points with correct labels and 24,000 data points with
false labels. On the other hand, with customer specific
detectors, training is done using only the customer’s data.
Hence, when 10% of the data is poisoned, we have 2, 400
data points with false labels and 21, 600 data points with
correct labels. While the poisoning percentage is the same
in both generalized and customer specific detectors, the
amount of data is different. The amount of data with
correct and false labels affects the detector’s decision
boundary. Hence, one advantage of generalized detectors
is that they aggregate data from many customers, and
hence they are able to better capture distinctive features
of honest customers, which eventually enhance the detec-
tor’s robustness.

o For the generalized detectors, deep learning-based ap-
proaches outperform shallow techniques by roughly 5%
in DR when there is no data poisoning attack. Under



TABLE III
IMPACT OF DATA POISONING ON GENERALIZED DETECTORS (%)

Poisoning Percentage
Model Metric 0% 10% | 20% | 30%
DR 82.2 77.8 72.7 66.8
FA 17.6 20.3 26.4 33.3
SP 82.4 79.7 73.6 66.7
Random forest PR 82.1 71.7 73.8 66.6
ACC 82.3 78.7 73.1 66.7
F1 82.1 77.7 72.7 66.7
AUC 81.4 78.6 73.9 66.7

DR 85.7 81.2 76.2 70.1
FA 14.1 18.4 23.3 29.9
SP 85.9 81.6 76.7 70.1
AdaBoost PR 85.3 81.1 76.1 70.0
ACC 85.8 81.4 76.4 70.1

F1 85.5 81.1 76.1 70.0
AUC 85.0 82.1 713 70.0

DR 87.8 83.3 78.1 72.0
FA 124 16.8 22.1 28.4
SpP 87.6 83.2 719 71.6
ARIMA PR 87.1 83.0 78.2 72.1
ACC 87.1 83.2 78.0 71.8
F1 87.4 83.1 78.1 72.0
AUC 87.1 84.2 79.1 72.1

DR 89.2 84.8 79.7 73.7
FA 10.2 14.5 19.6 25.7
SP 89.8 85.5 80.4 74.3
SVM PR 89.0 84.5 79.5 74.0
ACC 89.5 85.1 80.0 74.0

F1 89.1 84.6 79.6 73.8
AUC 89.5 85.7 79.8 74.0

DR 90.8 86.5 81.6 76.0

FA 9.3 13.5 18.5 24.4
SpP 90.7 86.5 81.5 75.6
Feed forward PR 90.0 86.5 81.5 75.8

ACC 90.7 86.5 81.5 75.8
F1 90.4 86.5 81.5 75.9
AUC 91.1 86.4 81.3 76.1

DR 92.4 88.3 83.7 78.5

FA 6.8 10.8 15.3 20.6
SpP 93.2 89.2 84.7 79.4
GRU PR 92.3 88.7 84.0 79.0

ACC 92.8 88.7 84.2 78.9
F1 92.3 88.5 83.8 78.7
AUC 92.1 88.2 83.8 79.4

DR 94.1 90.2 85.8 80.8

FA 52 9.2 13.5 18.4
SP 94.8 90.8 86.5 81.6
AEA PR 94.5 90.3 85.2 80.6

ACC 94.4 90.5 86.1 81.2
F1 94.3 90.2 85.5 80.7
AUC 94.0 90.1 85.9 80.3

strong data poisoning attack (30%), the performance
improvement is up to 8% in DR.

o Out of the three deep learning-based detectors, AEA per-
forms the best, followed by GRU-based, and then by feed
forward detectors. Both AEA and GRU-based detectors
capture (and hence leverage) the temporal correlation
present in the electricity consumption time-series data.

o All investigated detectors suffer roughly from 17% degra-
dation in detection performance when the system encoun-
ters strong data poisoning attacks (30%).

TABLE IV
IMPACT OF DATA POISONING ON CUSTOMER-SPECIFIC DETECTORS (%)

Poisoning Percentage
Model Metric 0% 10% | 20% | 30%
DR 79.1 74.3 68.7 62.0
FA 19.4 24.6 29.9 35.1
SP 80.6 75.4 70.1 64.9
Random Forest PR 78.6 74.7 68.9 62.5
ACC 79.8 74.8 69.4 63.4
F1 78.8 74.5 68.8 62.2
AUC 79.1 75.0 69.3 62.1

DR 82.5 71.8 722 65.5
FA 16.6 21.2 26.8 329
SP 83.4 78.8 73.2 67.1
AdaBoost PR 82.0 78.1 72.2 65.9
ACC 82.9 78.3 72.7 66.3

F1 82.2 77.9 72.2 65.7
AUC 82.3 78.3 72.7 65.4

DR 84.6 79.9 74.3 67.7
FA 14.6 19.3 24.8 31.2
SP 85.4 80.7 75.2 68.8
ARIMA PR 84.1 80.0 74.0 67.9
ACC 85.0 80.3 74.7 68.2

F1 84.3 79.9 74.1 67.8
AUC 84.3 | 80.1 74.2 67.8

DR 87.1 82.6 712 70.8
FA 12.4 17.0 224 28.7
SP 87.6 83.0 71.6 713
SVM PR 87.0 82.0 71.5 71.1
ACC 87.3 82.8 714 71.0

F1 87.0 823 71.3 70.9
AUC 87.2 82.5 713 70.9

DR 88.7 84.3 79.1 72.8
FA 11.7 16.2 21.5 27.7
Sp 88.3 83.8 78.5 72.3
Feed forward PR 88.5 84.0 78.9 72.4
ACC 88.5 84.0 78.8 72.5

F1 88.6 84.1 79.0 72.6
AUC 88.6 85.8 78.5 724

DR 90.0 85.6 80.4 74.2
FA 10.4 14.7 19.9 26.1
SP 89.6 85.3 80.1 73.9
GRU PR 89.8 85.5 80.3 74.0
ACC 89.9 85.4 80.2 74.0

F1 89.9 85.5 80.3 74.1
AUC 89.7 85.8 80.3 74.0

DR 92.0 87.7 82.7 76.7

FA 8.3 12.4 17.4 22.5
SP 91.7 87.6 82.6 71.5
AEA PR 91.8 87.5 82.6 71.9

ACC 91.8 87.6 82.6 71.1
F1 91.9 87.6 82.6 712
AUC 91.4 87.3 82.6 71.3

IV. ROBUST ELECTRICITY THEFT DETECTION

Since generalized deep learning-based detectors offer bet-
ter performance whether or not the system encounters data
poisoning attacks, we rely on them to propose a more robust
detector that presents marginal deterioration in detection per-
formance even in the presence of strong data poisoning attacks.
Herein, ensemble learning is used to design a robust detector
that combines deep AEA, GRU-based RNN, and feed forward
neural network to extract more distinctive representative fea-
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Fig. 3. Impact of data poisoning attacks on the DR of generalized and customer-specific benchmark detectors.

tures and hence improve the overall detection performance
against data poisoning attacks. Below, we investigate two
ensemble learning techniques, namely, ensemble averaging
and sequential ensemble. By extracting more distinctive rep-
resentative features, we expect that ensemble-based models
will improve the detection performance against data poisoning
attacks.

A. Ensemble Averaging

Ensemble averaging involves taking the average of the
outputs of AEA, GRU, and feed forward detectors into an-
other fully-connected layer to make a final decision. Such
an approach helps to improve the performance of stand-alone
models since the various errors of models are averaged out.
However, the performance of the ensemble average is not
significantly better than the best stand-alone detector (i.e.,
AEA). The ensemble averaging detector is included here for
comparison and validation purposes.

B. Sequential Ensemble

Figure 2 illustrates the proposed architecture of a sequential
ensemble-based generalized detector that consists of an input
layer, an AEA with LSTM cells, recurrent layers with GRUs,
a fully-connected layer, and an output layer, all placed in
sequence. The rationale behind placing these layers in this
specific sequential order is highlighted next. Since AEA gives
the best detection result, we place it as the front layers of the
detector. This benefits from two advantages: (a) differentiating
between normal and anomalous behavior and (b) capturing
temporal correlations within the data. The output from the
AEA is then fed to recurrent layers based on GRUs to
further extract hidden features within the reconstructed data.
Finally, the fully connected layer reshapes the output from the
recurrent GRU layers to make a final decision at the output
layer. As can be observed, ensemble averaging is more like
treating the detectors in parallel, while sequential ensemble
treats the detectors in series to extract more distinctive features
that help in improving the detection performance.

During the training stage, the optimal weights and bias
values for the AEA, GRU, and fully connected layers are
learned. The optimization objective consists of minimizing
the cross-entropy cost function (1). Algorithm 1 presents the

proposed robust electricity theft detector’s training process,
which is carried out using an iterative gradient descent op-
timization algorithm. This is achieved by splitting Xtg into
equal-sized M mini-batches and executing feed forward as
well as back-propagation steps for I (total) iterations. In the
feed forward stage, the training samples in the mini-batch
pass through all of the layers in the network to compute
the predicted output vectors. Lines 6 — 34, 26 — 34, and 49
in Algorithm 1 correspond to the AEA, recurrent GRU, and
fully connected sections of the robust detector, respectively. In
the back-propagation stage, to calculate the gradient of cost
function (1) with respect to the network weights, the mini-
batches are used [27]. Thus, the calculated gradients are used
to update each iteration’s biases and weights.

C. Performance Evaluation

The same evaluation metrics are used as depicted in Section
III.D. Furthermore, the same initialization values are used
for the detector’s hyper-parameters as discussed in Section
III.D. Sequential grid search is conducted to find the detector
optimal hyper-parameters, which are found to be: 3 layers
in the encoder part and 3 layers in the decoder part of the
AEA, the number of LSTM cells in the encoding layers is
(500, 300, 200) and (200, 300,500) in the decoding layers,
8 recurrent layers each with 300 GRUs, 500 neurons in
the fully connected layer, the used optimizer is Adam, no
dropout rate, weight constraint of 1, ReLU hidden activation
function, and Sigmoid output activation function. It takes
around 3 and 4 hours to train offline the ensemble averaging
and sequential ensemble-based detectors, respectively. The
ensemble averaging-based detector is faster since the models
can be trained in parallel. For both detectors, the online testing
of the models requires around 2 seconds to report a decision.

Table V summarizes the performance evaluation results
for the ensemble learning-based detectors compared to the
AEA model (which exhibited the best detection performance
among the benchmark detectors discussed in Section III).
The ensemble averaging-based detector presents a slightly
improved performance compared to the benchmark detectors.
However, as expected, since the individual detectors run in
parallel, the performance of the ensemble average detector
is limited by the performance of the best detector, i.e., the



Algorithm 1: Training of the robust detector
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30

31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

56

57

58 end

59 Output: Optimal U

for each training sample x do
Feed forward
Encoder:
for each hidden layer 1l =1, ..
for each time step t do
ifal,t = p(Wizl + Uéhll?l,t—l + Vf;cé,t—l + b;)
flg,t = Sﬁ(“{?wé+q;fhs,t71+Vllf‘§£,t71+bf)v
Cet = fE,tCE,t—l + gy tanh(W .z +
v ehi 1 +bL).,
E,t *‘P(Wlmt""UlhlEt 1 +Vl
hlﬁ,t = OE,t tanh(c E,t)
Attention Layer:
if L = L/2 then
m = F(h13L{2tht 1)
5 = exp(m) /L | eXP()
eyt = p8X hELyf.
end

., L/2 do

Lt b,

end
1n__ pl VR |
h" =hg 4, " =cgy.

end
& = (cv,t,a)
Decoder:
The decoder hidden and cell states at initial time step are
equal to A’ and ¢’
for each hidden layer | = L/2+1,...
for each time step t do
Zét =p(Wla+ Uéhf),tfl + V'licf),tfl +bl),
fé’t :z Lpl 1 !
p(WhE +Ulhy 4 + Ve, 4 +bY),
cf),t = flg,tcé,t—l + ill),t tanh(WlC:Eé +
Uihj, -1 bL),
o, —so(Wl B+ ULkl + Vieh , +bl),
Rl bt = = ol bt tanh(cD,t)

, L do

end
end
x A denotes the reconstructed output in the AEA
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TABLE V
IMPACT OF DATA POISONING ON THE PROPOSED DETECTORS

Poisoning Percentage
Metric | 0% | 10% | 20% | 30%
DR 94.1 | 902 | 85.8 | 80.8
FA 52 9.2 13.5 18.4
SP 94.8 | 90.8 | 86.5 81.6
AEA PR 94.5 | 90.3 852 | 80.6
ACC | 944 | 90.5 86.1 81.2
F1 943 | 902 | 855 80.7
AUC 94 90.1 859 | 80.3

DR 94.6 | 913 87.1 81.3
FA 4.8 8.6 12.9 17.8
SP 952 | 914 | 8&7.1 82.2
Ensemble Averaging PR 949 | 91.1 87.1 81.8
ACC | 949 | 913 87.1 81.7

F1 947 | 91.2 | 87.1 8L.5
AUC | 946 | 912 | 87.0 | 814

DR 952 | 943 | 933 | 922
FA 29 3.7 4.7 5.8
SP 97.1 | 963 | 953 | 942
Sequential Ensemble PR 95.6 | 95.0 94.3 92.7
ACC | 96.1 | 953 | 943 | 932

F1 954 | 946 | 93.8 | 924
AUC | 974 | 952 | 93.1 92.0

Model

AEA. Specifically, a degradation of roughly 4% is witnessed
when 10% of training data is poisoned. This degradation is
up to 8.4% when 20% of training data is poisoned. The
performance is further deteriorated by 13.4% when 30% of
training data is poisoned. As seen in Table V, the average
performance degradation rate for the ensemble averaging-
based model throughout the different data poisoning stages
is 4.3%. Hence, the deterioration in performance for the
ensemble average-based detector is still remarkable (roughly
with 13% performance deterioration when 30% of training
data is poisoned), which is very close to the AEA performance
when subjected to data poisoning attacks.

The sequential ensemble-based detector presents a stable
performance against data poisoning attacks and marginal
deterioration in performance. More specifically, the detector
experiences less than 1% deterioration in performance when
10% of training data is poisoned. The deterioration percentage
is only 1.8% when 20% of training data is poisoned. The
detector experiences only 3% deterioration in performance
when 30% of the training data is poisoned. Hence, the average
performance degradation rate of 1% per data poisoning stage.
Overall, the robust detector outperforms the benchmark and
ensemble-average detector roughly by 10 — 25% when the
system is subject to strong data poisoning attack (30%), which
reflects a superior and robust detection performance under
severe operating conditions. The sequential ensemble-based
detector outperforms the rest of the stand-alone detectors since
it is able to extract more distinctive features that improves
the robustness of the detector against data poisoning attacks.
Specifically, AEA differentiates malicious from benign be-
haviors while capturing well the temporal correlations within
the data. GRUs further extract hidden features within the
reconstructed data in the AEA. The fully connected layer
reshapes the output from the GRUs to make a final decision
at the output layer.



V. CONCLUSION

This paper provided answers to three major questions per-
taining to the performance of electricity theft detectors in
the presence of data poisoning attacks. Extensive simulation
studies provide support for the following conclusions: (1) Gen-
eralized detectors offer generally superior performance com-
pared to customer-specific detectors whether or not the system
is subject to data poisoning attacks, and the performance
improvement is up to 4%; (2) Deep learning-based detectors
offer superior performance compared to shallow detectors and
the performance improvement is up to 12%; (3) Electricity
theft detectors generally experience severe deterioration in
performance when subjected to data poisoning attacks, with
degradation up to 17% under strong data poisoning attacks
(e.g., when 30% of training data is poisoned); (4) Sequential
ensemble detectors based on AEA, recurrent GRU layers, and
a fully connected layer offer a stable and robust performance
against data poisoning attacks with marginal deterioration
in performance, which raises up to 3% under strong data
poisoning attacks. Such a performance represents a 10 — 25%
improvement compared to shallow and deep learning-based
benchmark detectors and ensemble average-based detectors in
the presence of strong data poisoning attacks.

REFERENCES

[1] P. Jokar, N. Arianpoo, and V. C. Leung, “Electricity theft detection in
AMI using customers’ consumption patterns,” [EEE Transactions on
Smart Grid, vol. 7, no. 1, pp. 216-226, 2016.

[2] C. Lin, S. Chen, C. Kuo, and J. Chen, “Non-cooperative game model
applied to an advanced metering infrastructure for non-technical loss
screening in micro-distribution systems,” IEEE Transactions on Smart
Grid, vol. 5, no. 5, pp. 2468-2469, Sep. 2014.

[3] V. B. Krishna, C. A. Gunter, and W. H. Sanders, “Evaluating detectors
on optimal attack vectors that enable electricity theft and der fraud,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 4,
pp. 790-805, 2018.

[4] T. Popovic, C. Blask, M. Carpenter, S. Chasko, G. Chason, G. Ciocarlie,
F. Cleveland, B. Davison, D. DeBlasio, D. Dickinson, M. David,
P. Duggan, M. Ellison, S. Eswarahally, I. Gassko, E. Gonzales, S. Griffin,
V. Hammond, J. Henry, and S. Rosenberger, “Electric sector failure
scenarios and impact analyses - version 3.0 (NESCOR),” 12 2015.

[5]1 R. Wu, L. Wang, and T. Hu, “Adaboost-svm for electrical theft detection
and grnn for stealing time periods identification,” in IJECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, 2018, pp.
3073-3078.

[6] V. Badrinath Krishna, R. K. Iyer, and W. H. Sanders, “ARIMA-Based
modeling and validation of consumption readings in power grids,” in
Critical Information Infrastructures Security. — Springer International
Publishing, 2016, pp. 199-210.

[7] J. Yeckle and B. Tang, “Detection of electricity theft in customer con-
sumption using outlier detection algorithms,” in 2018 Ist International
Conference on Data Intelligence and Security (ICDIS). 1EEE, 2018,
pp. 135-140.

[8] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra,
“Decision tree and svm-based data analytics for theft detection in smart
grid,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp.
1005-1016, 2016.

[9] A. Ullah, N. Javaid, O. Samuel, M. Imran, and M. Shoaib, “CNN and

GRU based deep neural network for electricity theft detection to secure

smart grid,” in 2020 International Wireless Communications and Mobile

Computing (IWCMC), 2020, pp. 1598-1602.

M. Ismail, M. Shahin, M. Shaaban, M. Shahin, E. Serpedin, and

K. Qaraqge, “Efficient detection of electricity theft cyber attacks in

AMI networks,” in IEEE Wireless Communications and Networking

Conference (WCNC), 2018, pp. 1-6.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qaraqe, and E. Ser-
pedin, “Deep learning-based detection of electricity theft cyber-attacks
in smart grid AMI networks,” in Deep Learning Applications for Cyber
Security.  Springer, 2019, pp. 73-102.

S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao, “Electricity
theft detection in power grids with deep learning and random forests,”
Journal of Electrical and Computer Engineering, vol. 2019, 2019.

Y. Chen, G. Hua, D. Feng, H. Zang, Z. Wei, and G. Sun, “Electricity
theft detection model for smart meter based on residual neural network,”
in 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC). 1EEE, 2020, pp. 1-5.

Z. Chen, D. Meng, Y. Zhang, T. Xin, and D. Xiao, “Electricity theft
detection using deep bidirectional recurrent neural network,” in 2020
22nd International Conference on Advanced Communication Technology
(ICACT), 2020, pp. 401-406.

M. Ismail, M. F. Shaaban, M. Naidu, and E. Serpedin, “Deep learning
detection of electricity theft cyber-attacks in renewable distributed
generation,” IEEE Transactions on Smart Grid, 2020.

F. Zhang, P. P. K. Chan, and T. Tang, “L-gem based robust learning
against poisoning attack,” in 2015 International Conference on Wavelet
Analysis and Pattern Recognition (ICWAPR), 2015, pp. 175-178.

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE Symposium on Security and
Privacy (SP), 2018, pp. 19-35.

A. Paudice, L. Muiloz-Gonzélez, A. Gyorgy, and E. C. Lupu, “Detection
of adversarial training examples in poisoning attacks through anomaly
detection,” arXiv preprint arXiv:1802.03041, 2018.

“Irish Social Science Data Archive,” Last accesed:
Nov  2017. [Online].  Available:  http://www.ucd.ie/issda/data/
commissionforenergyregulationcer/

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A
review of novelty detection,” Signal Processing, vol. 99, pp. 215 — 249,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S016516841300515X

C. Lu, S. Lin, X. Liu, and H. Shi, “Telecom fraud identification based
on adasyn and random forest,” in 2020 5th International Conference on
Computer and Communication Systems (ICCCS), 2020, pp. 447-452.
T.-W. Sun and A.-Y. A. Wu, “Sparse autoencoder with attention mech-
anism for speech emotion recognition,” in 2019 I[EEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2019, pp. 146-149.

Z. Zhao, Z. Bao, Z. Zhang, J. Deng, N. Cummins, H. Wang, J. Tao,
and B. Schuller, “Automatic assessment of depression from speech via
a hierarchical attention transfer network and attention autoencoders,”
IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 2,
pp. 423-434, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

D. Lavrova, D. Zegzhda, and A. Yarmak, “Using GRU neural network
for cyber-attack detection in automated process control systems,” in
2019 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), 2019, pp. 1-3.

M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qarage, and
E. Serpedin, “Deep recurrent electricity theft detection in AMI networks
with random tuning of hyper-parameters,” in 2018 24th International
Conference on Pattern Recognition (ICPR), 2018, pp. 740-745.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.



