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Abstract—The smart power grid is a critical infrastructure
that has been targeted recently by several cyber-attacks. Hence,
it is important that advancements are made in intrusion detection
systems (IDSs). Recently, promising results have been reported
using deep machine learning techniques to develop effective
IDSs. However, the existing studies suffer from the following
limitations: (a) The adoption of either only physical features
(power system measurements) or only cyber features (network
logs) in the development of IDSs; (b) The adoption of deep
learning techniques that operate on 2D data, while power system
measurements are graph-structure data. In this paper, we address
these limitations and propose an effective IDS against false data
injection and ransomware attacks. Qur proposed IDS improves
the attack detection performance by (a) fusing cyber-physical
features collected from a practical testbed and (b) adopting a
topology-aware model based on a graph neural network (GNN) to
exploit the spatial and temporal correlation within the data. Our
experimental results demonstrate the superior performance of
our IDS compared with benchmarks that are based on topology-
unaware models and use solely cyber or physical data.

Index Terms—Intrusion detection systems, false data injection
attacks, ransomware attacks, and graph neural networks.

I. INTRODUCTION

The power grid is a critical infrastructure that provides
energy to almost all vital systems including water and gas
distribution systems, medical facilities, industry, defense facil-
ities, etc. A failure in the power grid, even partially, may result
in loss of life due to a lack of heat, loss of medical equipment
functionality, loss of emergency response communication,
etc. Therefore, it is crucial to defend the power grid from
adversaries for the safety and security of our communities.
As the power grid advances, more sensors and actuators
are integrated, thus, making it a smart power grid. This
advancement enhances the observability and controllability of
the power grid. Hence, the modern power grid represents a
cyber-physical system where the physical layer consists of
the power grid generators, breakers, transmission lines, loads,
etc., and the cyber layer consists of the Supervisory Control
and Data Acquisition (SCADA) equipment, switches, routers,
cables, etc. The cyber layer is usually indirectly connected to
the Internet via firewalls and layered networks, thus, making
it possible for an adversary from across the world to launch
attacks on the smart power grid. Hence, this cyber-physical
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setup exposes the power grid to all of the vulnerabilities
associated with being connected to a network.

Recently, several attacks have been reported on cyber-
physical power systems. For example, in 2015, the Ukrainian
power grid was attacked, which disabled power to more than
225,000 customers [1] for up to 6 hours [2]. Other attacks
were attempted against Ukraine in 2022, this time more
aggressively utilizing wiper malware [3]. This serves as a real-
world demonstration of how highly targeted the power grid is.
Thus, it is necessary to advance intrusion detection systems
(IDSs) in smart power grids to detect and recover from attacks.

A. Related Works

Several efforts have been made to develop IDSs in power
systems. However, the existing works mostly consider features
collected from one of the two layers of the cyber-physical
system (either the cyber or the physical layer). Yet, some
attacks are better captured through physical measurements
(e.g., false data injection (FDI)), while other attacks are better
captured through cyber features (e.g., ransomware). Hence,
the existing detectors do not portray a complete picture of
the cyber-physical system, and thus, offer a limited detection
performance. Closely related works are discussed next.

1) Cyber-Only Detectors: Some of the existing IDSs in
smart grids are trained only on cyber features collected from
the network logs. For instance, Babu in [4] uses a Snort-based
IDS with specific rules for DNP3-based attacks. Ustun et. al.
in [5] adopt machine learning models to detect attacks that
target the IEC 61850 GOOSE messages. Kwon et. al. in [6]
propose an IDS for IEEE 1815.1-based power systems.

2) Physical-Only Detectors: The dominant majority of the
existing research considers only features from the physical
layer for intrusion detection. For instance, Upadhyay et. al.
in [7] examine the effectiveness of using a majority vote
ensemble algorithm on physical measurements using a dataset
from Oak Ridge National Laboratory. Baul et. al. in [8] attempt
to detect FDI attacks on the IEEE 14-bus test system using
measurements from each bus with a long-short-term-memory
(LSTM) recurrent neural network (RNN). Saber et. al. in [9]
propose an IDS using an anomaly-based scheme (ABS) on
physical measurements to detect false fault trips in circuit
breakers. Mukherjee et. al. in [10] propose using a non-



linear LSTM structure to detect FDI attacks on the IEEE 14-
bus test system. Roy et. al. in [11] employ several machine
learning models in a decentralized IDS to detect attacks on
automatic generation control (AGC). Molzahn et. al. in [12]
examine FDI attacks on the control station of a power grid.
Efstathopoulos et. al. in [13] use physical data to perform
intrusion detection on a single power plant. Prasad et. al. in
[14] analyze power-line communication tapping attacks using
physical measurement data from the power lines.

3) Other Notable Detectors: Siniosoglou et. al. in [15]
developed an IDS and used it on either physical or cyber data.
Hence, the detector is only used on one or the other, not both.
Also, the data is only collected from one substation, similar to
[16], rather than a power system with a number of substations.
Ganesan et. al in [17] use physical data from a simulation of a
small power system along with the KDD99 dataset. While this
attempt uses both cyber and physical data, the physical dataset
is not correlated with the attacks and the KDD99 dataset is
not applicable to power systems.

B. Limitations and Challenges

The aforementioned works are limited in that almost all of
them consider features from the cyber or the physical layer.
This ignores the fact that the smart power grid is a cyber-
physical system and inhibits the IDS’s ability. Additionally,
some papers only consider a small system such as one substa-
tion, but a utility company may have several power plants or
substations under its control, and having more data on many of
these nodes may also help detect attacks. Lastly, existing IDSs
that adopt a data-driven approach rely on deep learning models
that are best suited for 2D data. However, the power system is
best described as a graph, and thus, the relevant cyber-physical
dataset is best represented as graph-structured data. Adopting
2D topology-unaware models on graph-structured data limits
the IDS’s ability to exploit the spatial and temporal correlation
within the data to improve detection performance.

To improve the detection performance, we aim to develop an
IDS that fuses features from the cyber and physical layers and
exploits spatio-temporal correlation within the data. However,
this is challenged by the fact that there is currently no smart
power grid dataset readily available that: (a) includes cyber
and physical features reflecting the state of the power system
under normal operation and attack conditions and (b) reflects
both spatial and temporal aspects of the power system. Instead,
there are generic industrial control system (ICS) datasets,
generic network attack datasets, and simple datasets of FDI
attacks on a single power substation (not a complete power
system). In order to create a dataset with the aforementioned
characteristics, a cyber-physical testbed mimicking the power
system is required. This testbed is necessary to collect benign
data, launch cyber-attacks and collect malicious data, and then
use the benign and malicious dataset to train and test the
desirable multi-modal cyber-physical IDS.

C. Contributions

To address the aforementioned challenges and develop ef-
fective IDS, the following contributions have been made:

e We developed a cyber-physical power system testbed
where OPAL-RT and RT-Lab were used to emulate the
physical layer of the power grid and the cyber range was
used to emulate the cyber layer of the power grid based
on the Modbus/TCP protocol and a set of routers and
firewalls. The developed cyber-physical testbed is based
on the IEEE 14-bus test system.

e We created a comprehensive multi-modal dataset that
covers the normal operation of the power grid and the
operation of the power grid under cyber-attacks that
include FDI and state-of-the-art ransomware attacks.

o« We developed a topology-aware graph neural network
(GNN)-based multi-modal IDS that fuses cyber-physical
features. The proposed IDS is compared with a set of
benchmarks that include deep 2D machine learning mod-
els, namely, feedforward neural network (FNN), RNN,
and auto-encoder with attention (AEA).

Our experimental results show the superior performance of
the GNN-based IDS compared with the benchmarks (5 —13%
improvement in detection rate (DR) and 6 — 13% reduction in
false alarms (FA)). Also, our results demonstrate that multi-
modal cyber-physical fusion can improve detection perfor-
mance (5% improvement in DR and 5% reduction in FA).

The remainder of this paper is as follows: The testbed

used for data collection along with the benign and attack data
collection process are described in Section II. The proposed
multi-modal GNN-based IDS is discussed in Section III.
Experimental results are presented in Section IV. Finally,
conclusions are given in Section V.

II. CYBER-PHYSICAL POWER SYSTEM TESTBED

The testbed consists of two layers, physical and cyber
layers. The physical layer is based on real-time simulation on
OPAL-RT [18]. The cyber layer consists of several Docker
containers that host the software for the SCADA system
(programmable logic controllers (PLCs) and human-machine
interfaces (HMlIs)), routers, firewalls, etc. The two layers are
interfaced together via a transmission control protocol (TCP)
connection and an interface network to which all PLCs are
connected. An overview of the data flow in the testbed is
shown in Fig. 1. The human operator sends control signals to
the PLCs through the HMIs. The PLCs communicate with the
cyber interface which sends signals to the physical interface,
and this will have some effect on the simulation of the physical
layer. Physical data is sent from the simulation environment
to the cyber interface which is sent back to the PLCs. A
relay is responsible for querying the PLC via Modbus/TCP
and reporting the measurements to ElasticSearch.

A. Physical Layer

The physical layer of the testbed is based on the IEEE 14-
bus test system modeled in MATLAB Simulink. The Simulink
model is created according to the OPAL-RT specifications
defined in [19] and compiled using the RT-Lab software which
then sends the compiled simulation executable to the OPAL-
RT. After compiling the model and loading it onto the OPAL-
RT, RT-Lab is used for starting, stopping, and monitoring the
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Fig. 1: Illustration of the data flow in the testbed.

simulation. A 6-month load profile is applied to the IEEE
14-bus test system to mimic practical consumption patterns
throughout days and seasons. The load profile is created as
per the following MATLAB function

Lius(t) = Liase x N(1 4+ K[t] x 0.07,0.01), (1)

where Ly, (t) denote the load value at a given bus (i.e., the
value of active P and reactive () power values) and timestamp
t, Lpyse is the base load values (P and @) according to the
IEEE data [20], and N represents a normal random variable
with a mean of Ly, x N (1 + K[t] x 0.07) and a standard
deviation of 0.01, and K is an array containing the 6-month
load profile values. The load profile is scaled to 15 minutes.
Lastly, a physical interface is built into the model to create a
TCP server for exchanging data with the cyber layer.

B. Cyber Layer

The cyber layer is composed of Docker containers con-
nected by Docker networks. First, we discuss setting up the
Docker network. Most real-world communication networks are
observed to exhibit a scale-free property [21], where only a
few nodes (routers) have a degree and a betweenness score
much larger than the rest of the nodes [22]. Hence, we
generated a synthetic scale-free communication network with
the average degree following the power-law distribution [23]:
f~ k™9, (2<d<26), where k is the node degree and 4 is
an exponent. The MATLAB code provided by [24] is used to
generate a random scale-free network with an average degree
K =7 and an exponent ¢, = 2.2. The routers are connected
via links, and each router is connected to the local network
of a given substation (bus/node in the physical layer). The
routers establish their routes using the OSPF protocol, and
there is a central node from which the HMIs are accessed
and an external Internet connection is provided. In order to
select a control center from the nodes in the cyber layer, we
adopt the highest degree node approach [22]. It should be
noted that other methods of selecting control centers exist
in literature such as selecting the node with the highest
betweenness centrality [25] and the geometric median of all

nodes [26]. However, since the communication network has
scale-free characteristics, we assume, similar to [22], that the
control center is the node with the highest degree.

The substation local network is composed of a few contain-
ers. One container is the HMI which is port-forwarded to by
the router using IP tables. For each bus that the cyber node
controls, there is one PLC and one relay. The HMI and the
relays both collect measurements from the PLCs. The HMI
can send circuit breaker control signals to the PLC as well.
The relay polls the PLC and sends the data through the central
cyber node (control center) to an ElasticSearch database.

C. Cyber-Physical Coupling

Each power node (bus) is coupled with a communication
node (router). Hence, the number of routers in the synthetic
communication network is made equal to the number of buses
in the IEEE test system. To couple the cyber and physical
nodes, we use the Random Positive Degree Correlation Cou-
pling (RPDCC) scheme presented in [27], which is shown to
mimic the coupling of real-world interdependent systems [28].
In RPDCC, power nodes of high degrees tend to couple with
communication nodes of high degrees, and so do nodes with
low degrees. For each of the power and communication graphs
(i.e., physical and cyber layers), we obtain a weighted random
permutation set of the vertices (using the MATLAB function
provided by [29]), where the weights are the corresponding
degrees. Then, the two weighted sets are coupled together.

A single interface Docker container is attached to both
the host bridge network (for accessing the OPAL-RT) and a
Docker network called INTERFACE. The interface software
acts as both a client to the OPAL-RT’s TCP server and a
server to the PLCs. The PLCs send an HTTP request to the
interface container and it replies with the data from the real-
time simulation that applies to that PLC. When the PLCs
receive a control signal, they send it to the interface container
which creates a packet and sends the command to the OPAL-
RT’s TCP server. An illustration of the cyber and physical
interfaces is shown in Fig. 2.

D. Benign Data Collection and Imputation

The physical data were collected through ElasticSearch
and the cyber data was collected from the Docker host with
tcpdump. For both, data was collected every 15 minute. First,
the cyber data that was collected was encoded in PCAP files,
which are raw network traffic dumps. Then, the program
TShark, included with the WireShark installation, was used
to export the PCAP files to CSV files. This generated one
CSV file for each cyber node in the system. The physical
data collected from ElasticSearch was exported as one CSV
file. As the rates of cyber and physical data are not the same
within each data collection period, a data imputation step is
carried out where the measurements were duplicated between
timestamps such that for every row in the cyber data, there
is a physical row to match. A similar approach was used in
[16] where null packets were inserted into the cyber dataset
in order to match the number of rows in the physical data.
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TABLE I: Multi-modal features collected from both cyber and
physical layers.

Cyber

Source MAC Address
Destination MAC Address
Source IP Address
Destination IP Address
Packet Size (Bytes)
Packet Protocol
Source TCP Port
Destination TCP Port
Source UDP Port
Destination UDP Port

Physical

Phase 1 RMS Voltage (V)
Phase 2 RMS Voltage (V)
Phase 3 RMS Voltage (V)
Phase 1 RMS Current (A)
Phase 2 RMS Current (A)
Phase 3 RMS Current (A)
Frequency (Hz)
Phase Angle (Degrees)
Active Power (W)
Reactive Power (VAR)

Table I summarizes the multi-modal features collected from
the cyber and physical layers.

E. Attack Data

The attacks assume a compromised control center desktop
from which attacks are launched. Two attacks were performed
on the testbed to collect the malicious dataset:

o False Data Injection (FDI): The attack was launched by
performing an ARP spoof such that all the Modbus/TCP
traffic is redirected to a dummy PLC that holds the last
valid data from the real PLC. A signal is then sent to the
real PLC to turn off the circuit breaker. The dummy PLC

reports the last valid measurements via Modbus/TCP as
if it were the real PLC. This attack was considered as it
is a common attack on SCADA systems, and it mostly
manifests on the physical layer. This attack utilizes IP
spoofing as a means of impersonating the real PLC.

o Ransomware (RW): ICS ransomware is on the rise [30],
and so this attack cannot be ignored. In this attack, a user
logged into the PLC retrieved a file from the Internet
that contained the ransomware to simulate a malicious
download. The ransomware was then run. It conducted
an ICMP scan of the local network, sent some data to the
command and control server, and disabled Modbus/TCP
communications in order to simulate a lockdown. There
was no change to the breaker state, so this attack is
better manifested on the cyber layer. In a real ransomware
attack, the ransomware would have some impact on the
physical layer after some amount of time if the operators
failed to pay the ransom [31].

III. CYBER-PHYSICAL GNN-BASED IDS

Cyber-physical power systems can be modeled as con-
nected, undirected, weighted graph G = (V,&€, W) where V
denotes the set of heterogeneous physical (power substations)
and cyber (router) nodes, £ represents set of intra-edges within
each layer and inter-edges connecting the two-layers, and W
is the weighted adjacency matrix. The intra-edges represent
the transmission lines connecting the power substation nodes
in the physical layer. In the cyber layer, these represent
the communication links connecting the routers. Finally, the
inter-edges are based on the coupling between the physical
and cyber nodes. For the inter-edges in the physical layer,
the corresponding weight values W, are based on the line
admittance value for the connected nodes. If they are not
connected, then, the corresponding weight value equals zero.
For the inter-edges in the cyber layer and the intra-edges, the
corresponding weight values W, and W, respectively, are
binary values based on the adjacency matrix.

To develop the IDS, we adopt the graph convolutional neural
network (GCNN) model. This represents a supervised model
that is trained and tested on benign and malicious data. The
input features are based on the collected multi-modal cyber-
physical features shown in Table I and the labels are binary
values indicating whether or not this sample represents the
system operation under normal or attack conditions. All input
features are fed to the model as raw numerical inputs except
for the cyber feature representing the protocol type where we
first apply one hot encoding before passing it to the model.

The adopted GCNN model, shown in Fig. 3, exhibits a
deep structure that uses multiple stacked Chebyshev graph
convolution layers that capture the graphs’ spatial features
through the graph convolution operation [32]. The Chebyshev
graph convolution layers are followed by a dense layer to
estimate the attack probability of a given sample. The decision
is then provided to the output layer, accordingly. Hyper-
parameter optimization is carried out to specify the number
of graph convolution layers, the number of units/layer, the
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Fig. 3: Tllustration of the layers used in a GCNN. Several
GNN layers are applied to the input graph before a dense layer
is finally applied. A final activation function with an output
between 1 and O is used to set the output.

dropout rate, the order of neighborhood, the optimizer, and
the activation function.

IV. EXPERIMENTAL RESULTS
A. Benchmark IDS Models

We compare the GNN-based IDS with deep supervised and
unsupervised benchmark models. Deep models are based on
neural networks and involve multiple stacked hidden layers.
The considered supervised models are FNN and RNN, while
the considered unsupervised model is AEA. Unlike supervised
models, the unsupervised model does not use labeled data for
training. Instead, it attempts to find patterns in the data and
make predictions based on those patterns. Then, the IDS finds
deviations from the predicted pattern which indicates an attack.

B. Hyper-parameter Optimization Results

For all the listed hyper-parameters, we adopted a sequential
grid search method to find their optimal values [33]. Table II
details the optimal hyper-parameters for each detection model.

C. Performance Metrics

Two metrics have been considered, namely detection rate
(DR) and false alarm (FA). The detection rate (DR = TP/(TP
+ FN)) specifies the portion of correctly detected malicious
samples. False alarm rate (FA=FP/(FP + TN)) determines the
portion of benign samples incorrectly marked as malicious. TP
(true positive) denotes the correctly identified malicious sam-
ples and TN (true negative) represents the correctly identified
benign samples. Also, FP (false positive) are the incorrectly
identified benign samples and FN (false negative) are the
incorrectly identified malicious samples.

D. Performance Results

We trained and tested three types of models, namely,
cyber-only (C), physical-only (P), and cyber-physical (CP).
The cyber-only models are trained and tested using features
collected only from the cyber layer. The physical-only models
are trained and tested using features collected only from the
physical measurements. The cyber-physical models are trained
and tested using features collected from the cyber and physical

layers. This is carried out to quantify the improvement in
detection when cyber-physical fusion is adopted.

The following observations can be made based on the
summarized results in Table III:

o GNN-based IDSs offer the best detection performance in
terms of DR and FA. This is because the power system
data is best represented as graph-structured data and
GNN models capture the spatial relationships among the
features, and hence, yield the best detection results. As
shown in Table III, the GNN-based IDS offers consistent
performance improvements in DR and FA compared to
all benchmark models.

o The ransomware attack is best detected based on the
cyber features compared with the physical features. On
the other hand, an FDI attack is best detected using
physical features compared with cyber features. Overall,
cyber-physical fusion yields consistent improvement in
DR and FA for both attacks.

TABLE II: Optimal hyper-parameters for each model.

Model Hyper-parameter Optimal Value
Number of Layers 5
Number of Neurons 32
FNN Dropout Rate 0.2
Optimizer Adam
Activation Function ReLU
Number of Layers 3
Number of Units 32
RNN Dropout Rate 0
Optimizer SGD
Activation Function ReLU
Number of Layers 6
Number of Units 32
AEA Dropout Rate 0.2
Optimizer SGD
Activation Function Sigmoid
Number of Layers 5
Number of Units 16
GNN  Neighborhood Order 4
Optimizer RMSProp
Activation Function ReLU

TABLE III: Performance of each detection model.

Attack ‘ Model  Metric ‘ P C CP
DR | 758 78.1 803

ENNCpn [ 252 2200 210

DR | 792 816 839

- RNNBA | 197 175 151
Aga DR |83 864 883

FA | 165 158 135

DR | 887 904 921

ONN pr | 103 83 75

. DR | 862 813 883

FA | 152 175 135

DR | 898 857 923

DI RNNpA | 146 153 124
Ags DR | 907 872 949

FA | 123 131 119

DR | 934 901 978

GNN kA | 72 82 61




V. CONCLUSIONS

In this paper, a cyber-physical IEEE 14-bus power system
testbed was developed on which attacks were launched and
multi-modal data was collected. The collected multi-modal
cyber-physical features consist of benign data and cyber-attack
data that includes FDI and ransomware. A cyber-physical
GNN-based IDS was developed and compared with a set of
deep learning-based benchmark detectors. Our experimental
results show the superior performance of the GNN-based
IDS compared with the benchmarks. Specifically, our results
demonstrated a 5 — 13% improvement in DR and 6 — 13% re-
duction in FA. Also, our results demonstrated that multi-modal
cyber-physical fusion can improve detection performance with
up to 5% increase in DR and 5% reduction in FA. The results
presented herein pave the way toward developing effective IDS
in cyber-physical power systems.
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