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Abstract—Electricity theft cyber-attacks pose significant threats
to smart power grids. In these attacks, malicious customers hack
into their smart meters and manipulate the integrity of their
energy consumption readings to reduce their electricity bills.
Recently, machine learning techniques have been successfully
employed to detect such cyber-attacks. However, the developed
detectors have been tested against simple attacks. In this paper,
we investigate the performance of electricity theft detectors
against evasion attacks that are designed to reduce the reported
value of the energy consumption and at the same time fool the
machine learning-based detector model via adversarial samples.
Furthermore, we propose a strong evasion attack that significantly
degrades the performance of a set of benchmark detectors. Our
results reveal that evasion attacks can deteriorate the detection
rate (DR) and false alarm (FA) rate by ∼ 20%. To address such
evasion attacks, we propose an ensemble learning-based detector
that integrates auto-encoder with attention (AEA), long-short-
term-memory (LSTM), and feed forward deep neural networks.
The developed detector maintains a stable detection performance
against evasion attacks with a deterioration in performance by
only 1− 5% in DR and FA.

Index Terms—Electricity theft, evasion attacks, cyber-attacks,
smart grids, robust detector, adversarial samples.

I. INTRODUCTION

Electricity thefts cause financial losses of up to $6 billion
in the United States and Canada annually [1]. They also
negatively impact the power grid’s performance by overloading
it [2]. Therefore, utility companies deploy advanced metering
infrastructures, in which smart meters are capable of moni-
toring consumers’ energy consumption regularly, which limits
traditional (physical) electricity thefts [3]. Unfortunately, smart
meters are vulnerable to cyber-attacks in which malicious
customers hack into their meters to manipulate the electricity
consumption readings to reduce their electricity bills [4].

A. Related Work and Limitations

Machine learning (ML) techniques have been successfully
employed to detect electricity theft cyber-attacks in smart grids.
Both shallow and deep learning models have been adopted
in literature. Shallow detectors include classifiers that employ
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fuzzy inference and support vector machine (SVM), which
presented an accuracy of 72% [5]. Another shallow learning
detector exploiting an auto-regressive integrated moving av-
erage (ARIMA) representation reported a detection rate (DR)
and false alarm (FA) rate of 89% and 11%, respectively [6].
Also, a multi-class SVM-based shallow detector exhibited DR
and FA of 94% and 11%, respectively [1]. On the other hand,
within the deep learning techniques, a deep feed forward model
offered a DR of 92% [7] and a deep belief network-based
detector showed a DR of 93.7% [8]. Also, a deep recurrent
neural network-based detector presented a DR of 93% [9], [10].

One common limitation of the aforementioned detectors is
that they have been tested only against simple electricity theft
attacks. These detectors have not been tested against sophis-
ticated attacks such as evasion attacks that not only decrease
the reported electricity consumption value but also can fool
an ML-based detector, and hence, may go undetected. Thus,
evasion attacks may deteriorate the detection performance.
Until now, no reports have been mentioned in the literature
about the impact of such evasion attacks on the detection
performance. In addition, no effective solutions have been
proposed to improve the electricity theft detectors’ robustness
against evasion attacks.

B. Contributions

To overcome the limitation of the existing methods, we
propose an electricity theft detector that is robust by being
capable of detecting simple and evasion attacks. To achieve
this objective, the following contributions are carried out:
• To quantify evasion attacks’ impact, we examine the

performance of an SVM model as a shallow benchmark
detector as well as feed forward, long-short-term-memory
(LSTM), and auto-encoder with attention (AEA) models
as deep benchmark detectors throughout multiple levels of
evasion attacks. We adopt two types of benchmark evasion
attacks, namely, Fast Gradient Sign Method (FGSM) and
Basic Iterative Method (BIM), which fool the detector by
adding constant perturbations into the electricity readings.
We use these benchmark evasion attacks to generate
and inject adversarial samples into the test set at dif-
ferent attack levels. According to our simulation results,
benchmark detectors suffer from 12 − 20% performance



degradation in DR with the benchmark FGSM and BIM
evasion attacks. Deep detectors are be 3−6% more robust
against evasion attacks compared to the shallow detector.

• We design stronger types of evasion attacks that extend the
BIM attacks by making the perturbation values change in
successive time steps via the k-nearest neighbors (KNN)
algorithm. According to our simulation results, the DR
performance of the benchmark detectors further decreases
by 18 − 23% when injecting the adversarial samples
generated by the proposed BIM-KNN attack.

• To improve the robustness of the electricity theft detectors
against evasion attacks, we design a robust electricity theft
detector that fuses an AEA, LSTM, and feed forward
models via sequential ensemble learning. Each individual
model’s output is carried over to the following model
for additional processing to make a final decision. Our
investigations show that our proposed detector is more
robust against the benchmark and strong evasion attacks
compared to both types of benchmark detectors as its
performance deteriorates by only 1 − 5.5% when tested
against the strong evasion attack. For all detectors, we
apply a hyper-parameter optimization algorithm based on
sequential grid search that boosts the performance and
decreases the computational complexity.

We organize the rest of the paper as follows. Section II
discusses the utilized datasets (benign and malicious) as well
as the evasion attacks. Section III presents the evasion attacks’
impact on the benchmark detectors. Section IV presents the
proposed detector’s design as well as the simulation results.
Section V concludes the paper.

II. DATASET PREPARATION

In this section, we introduce the electricity consumption
data that is utilized for training and testing the electricity theft
detectors under investigation. The benign energy consumption
dataset is adopted from the public Irish Smart Energy Trial
dataset [11]. The malicious data contains six simulated general
cyber-attack functions [1]. The adversarial samples are gener-
ated using three evasion attacks.

A. Benign Dataset

For the electricity theft detectors’ training and testing, we
adopt the Irish Smart Energy Trial dataset. This dataset was
published by the Sustainable Energy Authority of Ireland
and is publicly available [11]. It contains 25, 000 readings
per customer from 3, 000 smart meters of residential units
that are reported once every 30 minutes along 18 months.
Entry Ec(d, t) of matrix Ec denotes the value of electricity
consumption for customer c during day d and time period t.
For honest customers, the reported energy Rc(d, t) is equal to
actual energy consumed Ec(d, t), Rc(d, t) = Ec(d, t).

B. Malicious Dataset

For malicious customers, Rc(d, t) 6= Ec(d, t). To develop a
malicious dataset, we utilize the false data injection approach

[1], where six cyber-attack functions f(·) are utilized to
produce Rc(d, t) under simulated cyber-attacks as follows.
• f1(Ec(d, t)) = αEc(d, t) lessens the actual energy con-

sumption by α, which is a constant fraction.
• f2(Ec(d, t)) = β(d, t)Ec(d, t) utilizes a dynamic fraction
β(d, t) < 1.

• f3(Ec(d, t)) records zero energy consumption during
[ti(d), tf (d)] and the real energy consumption otherwise,
i.e.,

f3(Ec(d, t)) =

{
0 ∀t ∈ [ti(d), tf (d)]
Ec(d, t) ∀t /∈ [ti(d), tf (d)].

• f4(Ec(d, t)) = E[Ec(d)] reports a constant electricity
consumption value throughout the day. Operator E[·]
represents the expectation (averaging) operation.

• f5(Ec(d, t)) = β(d, t)E[Ec(d)] considers a dynamic frac-
tion β(d, t) < 1 of E[Ec(d)].

• f6(Ec(d, t)) = Ec(d, T − t + 1) rearranges the recorded
electricity consumption during the day to record higher
consumption during the low tariff period.

We apply these cyber-attack functions to the electricity
consumption profile matrix Ec of the customer. Six malicious
matrices are constructed for each of the customers. Each row in
a matrix depicts an energy consumption profile sample during
the day and is associated with a label. If the sample is benign
(malicious), the label is 0 (1).

C. Evasion Attacks

Evasion attacks refer to manipulating malicious electricity
readings in a way that makes them seem benign to fool
the ML model via adversarial samples. Hence, the detector
classifies them as benign. Adversarial samples are generated
by applying evasion attack functions and injecting them into
the test set [12]. Herein, we test different types of white-
box evasion attacks as a proof-of-concept [13]. We adopt two
evasion attacks, namely, FGSM [14] and BIM [15]. Also, we
propose a stronger evasion attack that extends the BIM attacks
using the k-nearest neighbors algorithm (BIM-KNN).

1) Benchmark Evasion Attack Functions: We adopt bench-
mark evasion attacks to generate adversarial samples to in-
vestigate the evasion attacks’ impact on shallow and deep
benchmark detectors. The benchmark evasion attacks rely on a
constant or series of bounded perturbation values. The resulting
perturbation value is a small value that is subtracted from Ec

to fool the detector while reducing the electricity consumption.
a) FGSM Attack: This attack uses the gradients of the

ML model in order to generate adversarial samples [14]. To get
the perturbation value, for an input electricity reading sample
Ec(d, t), FGSM uses the gradients of the loss function of the
model with respect to Ec(d, t) to create a similar reading Radv

c

that maximizes the loss. This is done based on a one-step
gradient update along the direction of the gradient’s sign at
each time step. This process is represented as

Radv
c (d, t) = Ec(d, t)− ε sign

(
∇Ec(d,t)J (φ,Ec(d, t),y)

)
,
(1)



where Radv
c (d, t) is the reported generated adversarial sample,

Ec(d, t) is the actual electricity reading, ε is the perturbation
magnitude, sign refers to applying the signum function, ∇Ec

is
the model gradients, J is the model’s loss function, φ denotes
the model parameters, and y is the original (true) label.

b) BIM Attack: This attack extends the FGSM attack by
applying it over time steps with a small step size α and clipping
the obtained time series elements after each iteration [15]. It
is stronger than the FGSM-based attacks since it is capable
of generating adversarial samples that have similar patterns to
the original readings using small changes or perturbations in
an iterative manner such that [15]

Radv
c (d, t+ 1) = ClipEc(d,t),ε{Radv

c (d, t)−
αsign

(
∇Ec(d,t)J

(
φ,Radv

c (d, t),y
))
}, (2)

where the clip function is applied after each time step t in
order to ensure that the reported readings have similar patterns
to the original ones. In (2), α denotes the small perturbation
value in each time step and ε is the maximum perturbation
magnitude. Herein, ε = 0.1 since having lower perturbation
values decreases the chances of spotting the difference and
hence increases the chance of fooling the detector.

The limitation of the benchmark evasion attacks is that in
FGSM, the perturbation value is a constant, and hence, might
be spotted by the detector. In BIM, the procedure is iterative,
but the perturbation values are still bounded, which might
be also detected. Thus, it is necessary to develop a stronger
evasion attack and train the detectors accordingly to be more
robust against complex types of electricity theft cyber-attacks.

2) Proposed Evasion Attack: To overcome the limitation
of the aforementioned evasion attacks, we design a stronger
evasion attack that can better fool the detector with small
undetected perturbation values α. In our proposed BIM-KNN
evasion attack, α is different for each of the generated adver-
sarial samples. α depends on the average value of a reading
sample Ec(d, t) and four surrounding readings. To find α for
Ec(d, t), in a sample series of readings, Ec = [Ec(d, t − 2),
Ec(d, t−1), Ec(d, t), Ec(d−1, t+1), Ec(d−1, t+2)], we get
Ēc as the average value of the readings in Ec. α at time t is:
α = Ēc Ec(d, t). This ensures that α changes for each reading
since each reading has different surrounding readings with
different average values. The number of nearest neighbors k is
set to k = 2 in both directions of the reading to have reported
values with similar average as the actual values. This way, α
stays small while fooling the detector using small changing
values that have similar patterns as the original readings. Radv

c

is generated similar to (2), but without being bounded by ε.
Illustrative Example: During the day, launching the cyber-

attacks introduced in Section II.B leads to a 5 kWh average
theft. Launching evasive attacks also leads to a 5 kWh average
theft. However, evasive attacks are less detectable and fool the
detectors, while other attacks can be easily detected.

III. IMPACT OF EVASION ATTACKS

This section first presents the benchmark detectors and the
injection process of adversarial samples into the test dataset.

Then, it investigates the impact of evasion attacks on the
performance of the shallow and deep detectors.

A. Benchmark Detectors

This subsection presents the shallow SVM detector as well
as the deep feed forward, LSTM, and AEA detectors that we
use as benchmarks to study the impact of evasion attacks.

1) Shallow Detector: Using shallow machine learning tech-
niques, shallow detectors do not fully capture the patterns
within in the electricity readings. The SVM model is a classifier
that is static and trained on labeled data (benign and malicious)
to learn and predict the labels of the samples during testing.

2) Deep Detectors: Using deep learning techniques, deep
detectors have the capability of capturing the different patterns
in the electricity reports. The feed forward-based classifier is
static and does not fully capture the temporal correlation within
the electricity consumption time-series data. The LSTM-based
classifier is a recurrent neural network that is efficient when
it comes to capturing the sequential information and temporal
correlations in the customers’ electricitiy consumption time-
series data. The AEA-based anomaly detector is trained on the
benign data only to detect anomalies (theft) in the test samples.

a) Auto-encoder with Attention: The AEA model consists
of an encoder and decoder with LSTM recurrent layers [16],
and an attention layer. The LSTM encoder’s input is the
reported consumption r. Then, the encoder encodes the time-
series vector into a hidden state. The encoder contains an input
layer and succeeded by LA hidden LSTM layers with NA
LSTM cells in each layer. The inputs to the successive attention
layer are the encoder’s output and the decoder’s hidden state.
This done to allocate distinct scores and weights to each time
step, where the time steps that contribute more towards getting
the desired output are given higher importance [17], [18]. Then,
the decoder’s reconstructed output and the attention layer’s
output are concatenated and fed into the decoder, as shown
in the encoder and decoder sections of Fig. 1.

At time t, an LSTM cell presents a state ct and outputs
a hidden state ht. Accessing the LSTM cell is managed by
input iE,t, output oE,t, and forget fE,t gates for the encoder and
input iD,t, output oD,t , and forget fD,t gates for the decoder.
The LSTM cell receives the reported consumption value, rt,
the previous LSTM cells’ hidden states within the same layer
(hE,t−1 and hD,t−1 for the encoder and decoder, respectively),
and the cell state (cE,t−1 and cD,t−1 for the encoder and
decoder, respectively). Specifically, we have
• ilE/D,t = ϕ(W l

ir
l
t + U l

ih
l
E/D,t−1 + V l

ic
l
E/D,t−1 + bli).

• f lE/D,t = ϕ(W l
fr

l
t + U l

fh
l
E/D,t−1 + V l

fc
l
E/D,t−1 + blf ).

• clE/D,t = f lE/D,tc
l
E/D,t−1 + ilE/D,t tanh(W l

cr
l
t+U l

ch
l
E/D,t−1 +

blc).
• olE/D,t = ϕ(W l

or
l
t + U l

oh
l
E/D,t−1 + V l

oc
l
E/D,t + blo).

• hlE/D,t = olE/D,t tanh(clE/D,t)

The hidden states hLA
E,t and hLA

D,t−1 are received by the atten-
tion layer and outputs a context vector cv,t, which is obtained
via an alignment scoring function m, softmax function s, and
multiplication layer as,



• m = Γ(h
L/2
E,t ,h

L
D,t−1), with feed forward model Γ.

• s = exp(m)/
∑
|m| exp(m).

• cv,t =
∑
T s× h

L/2
E,t .

Then, the decoder’s hidden layers recieve the concatenation
of cv,t and the reconstructed output rA, which is denoted by∑

(cv,t, rA).
b) Long-Short-Term-Memory Neural Network: In this

deep classifier, the LSTM layers are efficient in exploiting the
sequential information patterns and temporal correlation in the
time series electricitiy consumption data [19]. The detector’s
recurrent part consists of LM hidden LSTM layers with NM
LSTM cells in each layer.

c) Feed Forward Neural Network: In this deep classifier,
information flows in one direction, without any loops. It
consists of LF hidden layers with NF neurons in each layer
that are used to learn more informative features.

B. Train and Test Data

The AEA model is trained on benign data only. Thus, all
customer data are concatenated and split into disjoint train and
test sets with 2 : 1 ratio. For the final testing, we concatenate
the malicious samples with the benign test set. However, this
may result in misleading results since we have more malicious
than benign data. To have balanced data, we implement the
adaptive synthetic sampling approach (ADASYN) [20] to over-
sample the minor class. To have equal influence of all customer
samples at all periods during training, we apply feature scaling
to the train set, which results in a scaled train set XTR with
zero-mean and unit-variance, which is also applied to the test
set XTST with YTST labels.

The rest of the investigated models are multi-class classifiers
that utilize benign and malicious data for training and testing.
Hence, all customers’ benign and malicious samples are con-
catenated. To balance such samples, ADASYN is employed.
Then, we split the concatenated dataset into disjoint train and
test sets by 2 : 1 ratio. The resultant scaled version XTR with
label YTR as well as XTST with label YTST are then obtained
by applying feature scaling.

Then, to study the evasion attacks’ impact on the detectors’
performance while testing, we inject adversarial samples into
the test data. We consider adversarial samples at different attack
penetration levels where they represent 5%, 10%, and 15% of
the test data. We inject each type of evasion attack separately
and report the simulation results accordingly.

C. Hyper-parameter Optimization

To capture each detector’s ultimate performance, we conduct
hyper-parameter optimization [19]. For the deep detectors,
we optimize the hyper-parameters using the following search
spaces. (1) Number of hidden feed forward LF and LSTM
LM/A layers from L(.) = {2, 4, 6, 8}. (2) Number of neu-
rons/cells in the hidden feed forward NF and LSTM layers
NM/A from N(.) = {100, 200, 300, 500, 1000}. (3) Optimizers
O from O = {Adam, Adamax, Adadelta, SGD}. (4) Dropout
rate B from B = {0, 0.2, 0.4, 0.5}. (5) Weight constraints G

from G = {0, 1, 3, 5}. (6) Hidden activation functions AH from
AH = {ReLU, Sigmoid, Linear, tanh} and Output activation
functions AO from AO = {Softmax, Sigmoid}. To lessen the
computational complexity, we perform sequential grid-search
where we optimize each hyper-parameter in sequential steps
separately to get the ultimate value during each step.

D. Performance Evaluation

This subsection presents first the evaluation metrics. It then
presents simulation results that quantify the impact of the
evasion attacks on the benchmark detectors.

1) Evaluation Metrics: Let true positive (TP) refer to a ma-
licious reading that is correctly determined as malicious while
true negative (TN) refers to a benign reading that is determined
as benign. False positive (FP) denotes a benign reading that is
incorrectly determined as malicious and false negative (FN)
refers to a malicious reading that is incorrectly determined as
benign. As performance metrics, we use detection rate (DR =
TP/(TP + FN)) to determine the malicious readings that are
detected as malicious and false alarm (FA = FP/(FP+TN)) to
determine benign readings that are detected as malicious.

2) Evaluation Results: To train the detectors, we use Keras
sequential API. The number of epochs I = 50 and the batch
size K = 100. We use SGD optimizer, 0 weight constraint and
dropout rate, ReLU hidden activation function, and Sigmoid
output activation function as the initial hyper-parameters.

a) Optimal Hyper-parameters: The optimal hyper-
parameters for the feed forward model are: 6 layers with 500
neurons, Adamax optimizer, no dropout rate, weight constraint
of 3, ReLU hidden activation function, and Sigmoid output
activation function. For the LSTM model: 8 layers with 300
cells, Adam optimizer, 0.2 dropout rate, weight constraint of
5, ReLU and Softmax hidden and output activation functions,
respectively. For the AEA: the encoder contains 3 layers with
(500, 300, 200) LSTM cells and the decoder contains 3 layers
with (200, 300, 500) LSTM cells, SGD optimizer, no dropout
rate, weight constraint of 1, and Sigmoid for the hidden and
output activation function.

b) Theft Detection: For the AEA, to recognize benign
samples from malicious ones, we compare the reconstruction
error to a threshold, which is determined by the median of
the interquartile range (IQR) of the receiver operating charac-
teristic (ROC) curve. If the score is below the threshold, the
sample is considered as benign, else malicious. This gives the
predicted label Y PRED. The optimal threshold is found to be
0.51. For the LSTM and feed forward classifiers, we directly
get Y PRED. For each model, we compare Y PRED and Y TST to
produce the confusion matrix and calculate the DR and FA.

c) Detection Performance: The evasion attacks’ impact
on the benchmark detectors is presented in Table I. We report
the results using the detector’s DR and FA with the generated
cyber-attacks introduced in Section II.B, without adversarial
samples (0%) as well as with 5%, 10%, and 15% of adversarial
samples along with the generated cyber-attacks of Section II.B.

Table I shows the impact of the basic and strong evasion
attacks on the benchmark detectors. Deep detectors outperform
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Fig. 1. Illustration of the proposed robust detector in Section IV.

TABLE I
IMPACT OF EVASION ATTACKS ON BENCHMARK DETECTORS

Evasion Percentage
Attack Model Metric 0% 5% 10% 15%

FGSM

SVM DR 89.2 84.3 78.4 71.5
FA 10.2 14.6 21 27.4

Feed
Forward

DR 90.8 86.7 81.4 75.4
FA 9.3 13.5 18.8 24.2

LSTM DR 91.5 88.2 83 77.5
FA 7 10.9 15.9 21.8

AEA DR 94.1 91.2 86.6 81.6
FA 5.2 8.7 13.5 19

BIM

SVM DR 89.2 83.8 77.4 70
FA 10.2 15.2 22.3 29.9

Feed
Forward

DR 90.8 86.5 80.4 74
FA 9.3 14 20.4 26.6

LSTM DR 91.5 87.4 81.5 75.4
FA 7 11.6 17.6 24

AEA DR 94.1 90.3 85.2 79.5
FA 5.2 9.4 15.1 21.1

BIM-KNN

SVM DR 89.2 82.6 75.1 66.7
FA 10.2 16.4 24.3 32.9

Feed
Forward

DR 90.8 85.4 78.3 70.4
FA 9.3 15.1 22.3 29.7

LSTM DR 91.5 86.4 79.4 71.6
FA 7 12.4 18.9 26.3

AEA DR 94.1 89.3 83.3 76.7
FA 5.2 10.2 16.3 23.2

the shallow detector by 1.6−4.9% without evasion attacks. For
all detectors, the average deterioration rates in the detectors’
performance with 5%, 10%, and 15% of basic evasion attacks
are 4.2%, 9.7%, and 15.8% for the FGSM attacks, and 4.8%,
11.1%, and 17.9% for the BIM attacks, respectively. For the
strong evasion attack, the average deterioration rates for all
detectors with 5%, 10%, and 15% of the BIM-KNN evasion
attack are 5.8%, 13%, and 21%, respectively.

IV. ROBUST ELECTRICITY THEFT DETECTION

The previous section has demonstrated the damaging impact
of evasion attacks on the performance of a set of benchmark
electricity theft detectors. We aim, in this section, to propose
a robust detector that can maintain a stable detection perfor-
mance against evasion attacks. Fig. 1 shows the architecture of
the proposed detector, which places an input layer, AEA based
on LSTM cells, additional recurrent layers, fully-connected
layer, and output layer in sequence using sequential ensemble.

These layers are placed in this specific order in order to help
distinguish benign from malicious behaviors and to capture the
temporal correlations in the data. Sequential ensemble extracts
distinctive features by dealing with the detectors in series,
which boosts the detection performance [21]. This is achieved
by feeding the output of the AEA into the additional recurrent
layers to capture more hidden features from the reconstructed
data. After that, the output of the recurrent layers is reshaped
by the fully connected layer for decision making at the output
layer. The output layer consists of two neurons denoting a
malicious energy consumption report and a benign report.
A given reading’s real label is denoted by a one-hot vector,
such that y(xc(d)) = (0 1)T for the honest customer, while
y(xc(d)) = (1 0)T for the malicious customer.

A. Robust detector training
For the AEA, LSTM, and fully connected layers, the optimal

bias values and weights are learned in the training stage.
Herein, the optimization objective is to minimize the cross-
entropy cost function in (3).

C = min
Θ

−1

|XTR|
∑
XTR

{yT(x) ln(ỹ) + (1− yT(x)) ln(ỹ)}, (3)

where the model parameters W and b in all AEA, LSTM,
and feed forward layers are denoted by Θ, the total number of
training samples is represented by |XTR| with the same number
of rows as XTR, the predicted label of the detector is denoted
by ỹ, and the transposition operation is denoted by T.

We use an iterative gradient descent optimization algorithm
to train the proposed robust detector. Hence, XTR is split into
equal-sized M mini-batches. Then, feed forward and back-
propagation are executed for I (total) iterations. To compute the
predicted output vectors, the training samples in the mini-batch
are passed through all the network’s layers in the feed forward
stage. To calculate the cost function’s (3) gradient given the
weights of the network, the mini-batches are uzilized in the
back-propagation stage [19]. To update the iterations’ weights
and biases, the computed gradients are utilized.

B. Experimental Results
This section discusses the proposed detector’s optimal hyper-

parameters. It also evaluates the evasion attacks’ impact on



the proposed detector’s performance, where we use the same
datasets introduced in Section II as well as the evaluation met-
rics, hyper-parameter optimization method, and initialization
values introduced in Section III.D.

1) Optimal Hyper-parameters: The encoder contains 3 lay-
ers with (500, 300, 200) LSTM cells and the decoder contains
3 layers with (200, 300, 500) LSTM cells. The number of addi-
tional recurrent LSTM layers is 6, each additional LSTM layer
contains 300 LSTM cells. The fully connected layer contains
500 neurons. The used optimizer is Adam, the dropout rate is
0, and the weight constraint is 1. ReLU and Sigmoid are used
for the hidden and output activation functions, respectively.

2) Detection Performance: Simulation results of the per-
formance of the proposed detector when evasion attacks are
used to inject adversarial samples are shown in Table II. The
results are shown using the DR and FA of the detector with
the generated cyber-attacks introduced in Section II.B, without
adversarial samples (0%) as well as with 5%, 10%, and 15%
of adversarial samples along with the generated cyber-attacks.
Without injecting adversarial samples, the proposed detector
outperforms the benchmark detectors by 1.6 − 6.5% in DR
and 2.9 − 7.9% in FA. The average deterioration rates of
the proposed detector with 5%, 10%, and 15% of the BIM-
KNN evasion attacks are 1.2%, 2.9%, and 5.6%, respectively.
This means that the proposed detector’s robustness is better
than the benchmark detectors by 3.5 − 5.3%, 7.8 − 11.1%,
and 11.8 − 16.9% in DR with 5%, 10%, and 15% of the
strongest evasion attacks, respectively. Additionally, with this
strong evasion attack, the proposed model still offers stable
performance of 90.1% in DR and 7.9% in FA when injecting
15% adversarial samples, which still outperforms the shallow
detector’s performance without evasion attacks.

TABLE II
IMPACT OF EVASION ATTACKS ON THE PROPOSED DETECTOR

Evasion Percentage
Attack Type Metric 0% 5% 10% 15%

FGSM DR 95.7 95.1 93.9 92
FA 2.3 3.2 4.6 6.6

BIM DR 95.7 94.8 93.4 91.3
FA 2.3 3.3 4.9 7.1

BIM-KNN DR 95.7 94.4 92.7 90.1
FA 2.3 3.4 5.2 7.9

3) Complexity: The proposed detector is trained offline for
only 2 hrs. When used online, a detection is made in 2 secs.

V. CONCLUSION

This paper investigated the impact of different evasion
attacks, as well as cyber-attacks, on electricity theft detectors.
Specifically, we examined the impact of the basic FGSM and
BIM-based evasion attacks with constant perturbation value
on shallow and deep detectors. Also, we proposed a stronger
evasion attack (BIM-KNN), in which the perturbation value
changes in an iterative process that fools the detector and
further deteriorates its performance. Based on our simulation
results, the benchmark detectors severely suffer from perfor-
mance degradation by 17−23% in DR with evasion attacks. To

enhance the performance of the detectors, we proposed a robust
detector that combines AEA, LSTM, and fully connected layers
using sequential ensemble. The proposed detector maintains a
stable performance and deteriorates by 1.3− 5.6% in DR and
FA with strong evasion attacks.
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