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Abstract—Current efforts to detect electricity theft cyber-
attacks in advanced metering infrastructures (AMIs) are hin-
dered by the lack of malicious electricity theft datasets. Therefore,
anomaly detectors trained with the energy consumption profiles
of honest customers appear as a plausible solution to overcome
the lack of malicious datasets. Taking into account this constraint,
this paper examines the performance of two structures of
variational auto-encoders (VAEs); fully-connected (FC) VAE and
long-short-term-memory (LSTM) VAE in detecting electricity
thefts. The proposed structures are promising and exhibit an
improvement of 11 — 15% in detection rate, 9 — 22% in false
alarm rate, and 27 — 37% in the highest difference compared to
existing state-of-the-art anomaly detectors that are shallow and
static, such as single-class support vector machine (SVM) and
auto-regressive integrated moving average (ARIMA) models.

Index Terms—electricity theft, auto-encoders, deep learning.

I. INTRODUCTION

Electricity theft is a major problem for power companies not
only because of the financial loss but also the grid overload
and negative influence. To enable the energy consumption
monitoring task in power grids, power companies are cur-
rently deploying advanced metering infrastructures (AMIs)
with smart meters mounted in the customers’ premises to track
the energy consumption data. Regrettably, AMIs are subject to
cyber electricity thefts. Malicious customers can hack AMIs
and alter the integrity of energy consumption readings [1] - [4].
Thus, there is an acute need to develop algorithms to detect
such cyber-attacks.

A. Related Work and Limitations

Two classes of machine learning (ML) approached were
proposed in the literature to identify electricity thefts. The
first class is based on supervised learning and employs both
benign and malicious energy consumption data for training.
For example, the support vector machine (SVM)-based clas-
sifier in [5] exhibits a low detection accuracy of 72%. This
approach suffers from the lack of malicious datasets to train
the classifier. Moreover, it is not practical in case of attacks that
the model is not trained to detect, such as zero-day attacks that
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take place for the first time. Therefore, the second class, that is
based on anomaly detection, is used. Anomaly detectors are
trained using benign datasets to learn the honest customer’s
data consumption profile. Then, it identifies electricity theft
patterns by measuring the deviation from the normal profile.
For example, the auto-regressive integrated moving average
(ARIMA)-based model presents a 77% detection rate [6].

Still, the existing anomaly detectors [1], [6], [7] suffer
from three major weaknesses. First, the existing approaches
rely mostly on shallow techniques with limited detection
capabilities due to their inability to apprehend the complex
patterns present in the energy consumption data. Second, most
anomaly detectors do not make use of the temporal correlation
in the energy consumption data. Third, the existing approaches
exhibit a relatively low detection performance. Thus, new
approaches are needed to capture the complex patterns and
temporal correlations of the energy consumption readings to
enhance the detection performance.

B. Contributions

This paper proposes cyber-attack anomaly detectors based
on variational auto-encoders (VAEs) and investigates their
detection performance. The rationale behind the deep structure
of the auto-encoders is to capture the complex patterns present
in the energy consumption profiles. We consider sequence-
to-sequence (seq2seq) structures based on long-short-term-
memory (LSTM) recurrent neural networks (RNNs) to model
the time-series nature of the energy consumption data. The
contributions of this paper are as follows:

o VAE detectors are proposed to identify electricity cyber
thefts. The advantage of using VAE lies in the latent
variables, which are stochastic. Also, the probabilistic
encoder of the VAE models the distribution of these latent
variables. The variations in the latent space are captured
by the VAE anomaly detector via the variance parameter.

e The performance of fully connected feed forward varia-
tional auto-encoders (FC-VAE) and LSTM-based RNN
variational auto-encoders (LSTM-VAE) is investigated.
FC-VAE presents a simple architecture with low com-
putational complexity, while LSTM-VAE captures the
temporal correlations in the energy consumption data [8].

e Sequential grid search hyper-parameter optimization [8]
is adopted to optimize one hyper-parameter at a time to
reduce the computational complexity and augment the
overall detection performance.

o The proposed anomaly detectors are tested against six
types of electricity theft cyber-attacks. The models’ per-
formance is compared to shallow architectures, namely,



single-class SVM and ARIMA. The developed VAE
detector improves the detection rate (DR), false alarm
(FA), and highest difference (HD) by 11 —15%, 9 —22%,
and 27 — 37%, respectively.

The rest of this paper is structured as follows. Section II
describes the benign and malicious load profiles and the data
preparation step for training, validation, and testing. Section
IIT explores the design and optimization of the anomaly
detectors. Section IV depicts the experimental results. Section
V concludes this paper’s contributions.

II. DATA PREPARATION

The data offered by the public Irish Smart Energy Trail [9]
is adopted herein as the benign energy consumption data. The
malicious data is created by employing the six cyber-attack
models proposed in [1]. Each cyber-attack function models
the electricity theft behavior of a malicious user.

A. Benign Dataset

The Irish Smart Energy Trail dataset [9] is used to train and
test the proposed electricity theft detector. This dataset consists
of readings from 3,000 smart meters placed at residential units
and that are recorded every half an hour for a 1.5-year period.

B. Malicious Dataset

Let E.(d,t) denote the energy consumption value for cus-
tomer c at day d and time t. All these consumption values
are regarded as entries of matrix E.. The energy consumption
value reported by an honest customer’s smart meter is denoted
by R.(d,t) (R.(d,t) = E.(d,t)). Thus, E. = R, for honest
customers. Malicious customers manipulate the integrity of
the energy consumption readings and reduce their electricity
bills such that R.(d,t) # E.(d,t). We employ the false data
injection approach [1] to build the malicious dataset. Next,
we describe the set of cyber-attack functions, which can be
classified into three main classes. The first class refers to
partial reduction attacks. As a representative example of such
a partial reduction attack, cyber-attack function fi(E.(d,t))
decreases the actual energy consumption via a penalty constant
factor «, and the reported energy consumption R.(d,t) is
given by

Rc<d7 t) = fl(EC(d’ t)) = aEc(d7 t)' (1

As a more general example, cyber-attack function fo(E.(d,t))
considers the dynamic penalty factor 3(d, t):

fa(Ec(d,t)) = B(d, 1) Ec(d, ). 2

The second class consists of selective by-pass attacks. In this
class, malicious customers claim zero energy consumption at
a given time window, [t;(d),t;(d)], and report actual energy
consumption data the rest of the time. Thus, it is modelled as:

(o vt € [ti(d), ts(d)]
fS(Ec(d7 t)) - { Ec(dv t) Vt ¢ [ti(d)ytff(d)]'

The third class comprises the price-based load control
attacks. These attacks are applicable to cases where the

3)

electricity price varies during the day. In this set-up, one
possible attack function may report a flat energy consumption
value across the day:

f4(EC(d7 t)) = ]E[EC(d)]a 4)

where E[-] denotes the expectation operator. To avoid reporting
a constant value across the day, which can be easily detected,
a dynamic fraction 3(d,t) is employed:

fs(Ec(d,t)) = B(d, t)E[Ec(d)]. (5)

Finally, another attack function that we consider reports high
energy consumption values during periods of low electricity
tariffs and vice versa:

fG(Ec(dvt)) :Ec(dvat‘i’l)' (6)

Each of the above cyber-attack functions is applied to the
customer energy consumption profile matrix E.. This opera-
tion leads to six malicious matrices per customer. The benign
and malicious datasets are normalized to bring the values of all
features to a common scale. The normalized dataset presents
zero mean and unit variance. The normalized benign dataset
B is then divided into two disjoint subsets at the ratio 2:1. The
first subset is used as training data X ;. The second subset
is concatenated with the normalized malicious dataset M to
construct the test data. In this concatenation, each sample is
associated with a label that takes value ‘0’ if the sample is
benign and value ‘1’ if the sample is malicious. As much
more malicious data is generated than benign data, and to
avoid misleading performance results, we employ the adaptive
synthetic sampling approach (ADASYN) [10] to balance the
sets of benign and malicious data by over-sampling the minor
(benign) class within the test set. Thus, we obtain test data
X g7 with label Y 1.

III. DESIGN OF ELECTRICITY THEFT DETECTOR

Next, we focus on designing the electricity theft detectors.
We analyze the adoption of two types of VAE architectures.

A. Variational Auto-encoder Architecture

A VAE is a directed probabilistic graphical model whose
posterior is approximated by a neural network [11]. The VAE
assumes that a data point = is generated according to the
unobserved continuous random variable k. k' represents a
specific value that is generated using a prior distribution p(k).
Then, 2/, which is the data instance is generated according
to the conditional distribution p(z|k). Since inferring the
distribution p(k|x) is hard and the values of k are unknown,
VAE determines the probability p(k|z) and p(z|k) through the
network of encoders and decoders, respectively. The approxi-
mation of the true posterior p(k|z) is denoted by ¢(k|z) and
the log-likelihood of data point x is

logp(z) = Dxu(q(kl|2)||p(k|z)) + L(O; 7). (7)

Notation Dy, designates the Kullback—Leibler (KL) diver-
gence, © denotes the model parameters, and L£(©;x) is a
variational lower bound on the log-likelihood expressed as

L(6;2) = —Dx(q(k[2)[|p(x)) + Eq(k|a) [log pe (z[K)]. (8)
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Fig. 1. Illustration of the VAE architecture.

The model parameters © are learned by optimizing the
lower bound L£(©;z) (L(O;x) < logp(k)). If the latent
variables are modeled as univariate Gaussian, then k = p+oN
with N denoting a normal distribution with zero mean and
unit variance [15]. Therefore, the activations of the encoder
forward-pass determine the mean (1) and variance (o2) of the
Gaussian distribution. In VAE, the reconstruction probability
is used as an anomaly score [12].

1) Fully Connected VAE: Figure la shows the structure
of an FC-VAE. In VAE, the latent space is continuous and
simplifies the random sampling for interpolation by outputting
two vectors, mean vector fig and variance vector ai. To
generate samples of the energy consumption data, the decoder
uses pp and o2. Then, the reconstruction probability is
calculated to detect electricity theft. The combined VAE loss
function is expressed as follows

C = |lz - Zol” + Dx(G(ka, o2)[IN(0, 1)), (9

Zo represents the reconstructed output as function O.
G(pz,02) and N(0,1) denotes the general and standard
normal distribution, respectively.

The probability distribution’s parameters, ft, and o-fc, are
generated by the auto-encoder. The decoder then generates
vectors that are used to construct an output via the decoder
layers. The loss is then calculated using (9). After that, back
propagation is used to update the parameters of the encoder
and decoder. Algorithm 1 shows the calculation of the optimal
parameters based on the iterative gradient descent.

2) Sequence-to-Sequence VAE: Originally, LSTM-VAEs
were used as a way of data generation for language modeling
applications [13]. Herein, we adopt an LSTM-VAE as an
anomaly detector. Figure 1b shows the structure of an LSTM-
VAE. The training algorithms of LSTM-VAE are supposed to
generate 1, and 0'3, which are used to generate the samples
that the decoder uses as shown in Algorithm 2.

Algorithm 1: Training of FC-VAE

1 Input Data: X 1p

2 Initialization: Weights W' and biases b for all layers [ and
weights V', and V', and biases b;, and b, for the latent layer

3 while not converged do

4 for each training sample x do

5 Feed Forward: Compute:

6 Encoder:

7 for all layers 1 =1,...,L/2 do

8 ‘ zl(x) = Wha!=1(z) + bl and a!(z) = p(z!(x))
9 end

10 Generate . and 0'3:

" pe = p(Val~! (@) + b

12 02 =p(Vea=1(x)) + bg

13 Sample data & from G(pe, o-?v)

14 Decoder:

15 for all layers | =L/2+1,...,L do

16 ‘ 2H(@) = Wlal=1 (&) + bl and al(&) = p(2} (%))
17 end

18 Back propagation: Compute:

19 VWé )C’, VV(_)C’ and vb% )C’
20 end

21 Weight and bias update:

l I _ n A
2 Wi =W —4# > Vwé.)c
Vi =Vo - &2 Vv, ©
by =b() & 2 Ve C

23 end
24 Output: Optimal parameters wt, Vi, Vo, b!, by, and b, for all
layers

For both FC-VAE and LSTM-VAE, after the training is com-
plete using X 1, the test dataset X s is applied. Whenever
the cost function that calculates the MSE between the original
and reconstructed energy consumption profile is larger than a
threshold, a malicious sample is labelled with y = ‘1’, else a
benign sample is labelled with y = ‘0’.

B. Performance Evaluation of the Detectors

TP, TN, FP, and FN define the true positives, true negatives,
false positives, and false negatives, respectively. TP refers to
a sample that is malicious and detected as malicious. TN
indicates a benign sample that is detected as benign. FP
means that the sample is benign but detected as malicious. FN
represents the malicious sample that is detected as benign. To
evaluate the performance of the developed detectors, we use
(a) Detection Rate (DR = TP/(TP+FN)) that determines the
number of malicious readings that were correctly detected as
malicious by the detector. (b) False Alarm (FA = FP/(TN+FP))
refers to the number of benign samples that were incorrectly
detected as malicious. (c) Highest Difference (HD = DR - FA),
which refers to the measured difference between DR and FA.

The calculated label Y, is compared against Y 1sp to
produce a confusion matrix in order to calculate the per-
formance evaluation metrics. To compute Y 5., a threshold
is computed based on the median of the interquartile range
(IQR) of the receiver operating characteristic (ROC) curve. If
a score is less than the threshold value, it represents a benign
sample. However, if a score is less than the threshold value,
it represents a malicious sample.



Algorithm 2: Training of LSTM-VAE
1 Input Data: X 1p

2 Initialization: Weights Ub, Wl(.), Vb, and bias bl(,)

Vi
3 while not converged do

4 for each training sample x do
5 Feed Forward
6 Encoder:
7 for each hidden layer | =1,...,L/2 do
8 for each time step t do
9 'ifal,t =p(Wlal + Uih‘él,tfl + Vécé,t—l + b;)
10 fle=eWhal+Ush, , +Vicl ,  +b)),
1 cfa,t = fé,tclﬁ,t—1 + ié,t tanh(chmfg +
ULkl FoD. l
2 sz,t = ‘P(Wlozé + Uéh’E,tfl + Vécé,t +bj),
13 h,,lu_’t = oé’t tanh(céyt),
14 end
15 h't = h,lw,
16 b= cé’t.
17 end
18 Generate pi; and o2:
19 o = @(Vual_l(l")) + b;,b
» o2 = p(Veal~l(x)) + bl
21 Sample data & from G(pe, a2)
2 Decoder:
23 The decoder hidden and cell states at initial time step are
equal to h’ and ¢’
24 for each hidden layer | = L/2+1,...,L do
25 for each time step t do
26 'L’é,t = Sf’(Wiilt + Uéh’ll),t—l + Vi'cé,t—l + b/li)’
27 f]l;,t =
p(WhE, +Ulshy, 1 + Vel 4 +b),
28 cé,t = frl),tcé,t—l + ill),t tanh(Wimi +
Ulh ;1 +bL).
29 Oé,t = ‘P(Wlo%é + Uéh‘ll),tfl + Vécé,z + bfu)v
30 h,f,’t = of)’t tanh(cé,t),
31 end
32 end
33 Back propagation: Compute Vwé )C, VUé )C,
Vyi Co.and Vy C ' '
34 end
i s . I L _ n
35 Weight and bias update: W\ ) =W, — & > VWIOC
_r7l _
U(') = U<‘> ¥ 2 VUl(A)C
I _ vyl _n
Vo=V x Vv ©
I _pl _n
by =b() = & La Ve [ ©

36 end

37 Output: Optimal Ul(_), Wb, Vl(_), and bl

t) V.

C. Hyper-parameter Optimization

Optimal choices of the detector hyper-parameters lead to
improved detection performance. The hyper-parameters that
we optimized are: the number of hidden layers (Dense or
LSTM) (L), which is the same for the encoder and decoder
layers, the optimal number of neurons in those layers (IV;),
the optimizer (O), the dropout rate (D), and the hidden and
output activation functions (Ay and Ao, respectively).

As shown in Algorithm 3, hyper-parameter optimization is
carried out through four main sequential steps. Due to the large
number of hyper-parameters that we aim to optimize, an ex-
haustive grid search presents a high computational complexity.
Thus, we carried out a sequential grid search by optimizing
one hyper-parameter at a time [8]. The motivation behind such
an approach is to reduce the computational complexity and

improve the overall detection performance. For the selection
of the hyper-parameters, we implement a cross-validation
over X1y to decrease the chance of sub-optimality. Let P*
denote the hyper-parameter optimal setting that results in
improved detection accuracy against the validation set. A given
combination of hyper-parameters leads to a specific model
(MD).

Algorithm 3: Hyper-parameter Optimization

1 Initialization: Optimizer = SGD, dropout rate = 0, hidden activation
= Relu, output activation = Softmax
Output: A combination of optimized hyper-parameters
Input: Training set X tr
for L € £ do
for N; € N do
Algorithms 1 and 2 are applied with L and N; along with
other initial hyper-parameters ;
7 DR and FA are recorded;
s end
9 end
10 The optimal L* and N;" along with initial other hyper-parameters
introduce model MD1
1 for O € O do
12 Algorithms 1 and 2 are applied with MD1’s hyper-parameters
and o;
13 DR and FA are recorded;
14 end
15 L*, N and O* along with initial other hyper-parameters introduce
model MD2
16 for D € D do
17 Algorithms 1 and 2 are applied with MD2’s hyper-parameters
and D;
18 DR and FA are recorded;
19 end
20 L*, Nj, O*, and D* along with initial other hyper-parameters
introduce model MD3
21 for A ¢4, do

a ;B W

2 for A c .4, do

23 Algorithms 1 and 2 are applied with MD3’s
hyper-parameters and A, and A_;

24 DR and FA are recorded;

25 end

26 end

7 L*, Nj, O*, D*, A}, A§ are the optimal parameters.

IV. EXPERIMENTAL RESULTS

A. Threshold Value

After dividing the ROC curves into three quartiles and
computing the IQR’s median, the optimal threshold values for
the FC-VAE and LSTM-VAE turned out to be 0.43 and 0.47,
respectively.

B. Hyper-parameter Optimization

Table I summarizes the optimized hyper-parameter val-
ues that are selected from the following sets: number
of layers £ = {2,3,4,5}, number of neurons N =
{100,200, 300,400,500}, optimizer © = {SGD, Adam,
Adamax, and Rmsprop}, dropout rate D = {0,0.2,0.4,0.5},
hidden activation functions Ay = { Relu, Sigmoid, Linear,
Tanh}, and output activation layer A, = { Softmax, Sigmoid}.



TABLE I
OPTIMAL HYPER-PARAMETER VALUES

Hyper-parameter || FC-VAE | LSTM-VAE
L* 8 4
o* Adam SGD
D* 0.4 0
Al Relu Tanh
Al Softmax Sigmoid
TABLE II

PERFORMANCE EVALUATION

Model DR | FA | HD
FC-VAE 88 11 77
LSTM-VAE 91 7 84
SVM 76 29 47
ARIMA 77 20 57

C. Performance Evaluation

Table II summarizes the performance of the developed
detectors. An improvement of 3% in DR, 4% in FA, and 7%
in HD was observed when the LSTM-VAE model was used
compared to the FC-VAE model. Such an improvement is due
to the fact that the LSTM-based model captures better the
time-series nature of the energy consumption data [14].

We also compare the performance of the developed deep
auto-encoder-based anomaly detectors against the current
state-of-the-art anomaly detectors, that are trained on benign
data only, including (a) single-class SVM and (b) ARIMA-
based anomaly detector that predicts future consumption with
minimum prediction MSE. During testing, whenever the MSE
is above a threshold, the detector announces a malicious sam-
ple. The SVM-based detector represents a static classifier that
does not capture the time-series nature of the data. Although
the ARIMA model captures the time-series nature of the data,
it still represents a shallow architecture that does not capture
well the complex patterns within the electricity readings. On
the other hand, since the proposed VAEs represent a deep
structure that captures the complex patterns and temporal
correlations within the electricity consumption data, it out-
performs the existing state-of-the-art anomaly detectors. As
summarized in Table II, the developed VAE detector improves
the DR, FA, and HD by 11 — 15%, 9 — 22%, and 27 — 37%,
respectively.

V. CONCLUSION

This paper proposed novel anomaly detectors for electricity
theft detection based on variational auto-encoders. The de-
veloped anomaly detectors are trained only on benign energy
consumption samples, a strategy that overcomes the limitation
caused by the reduced number of malicious energy consump-
tion profiles. This paper investigated whether deep architec-
tures offer better detection performance compared to shallow
detectors and whether recurrent LSTM-based architectures
offer better detection performance compared to static fully
connected feed forward-based detectors. Our study revealed
a significant improvement when deep and recurrent anomaly
detectors are employed compared to shallow and static struc-
tures. The best detection performance is achieved by LSTM-

VAE with 91% detection rate, 7% false alarm, and 84% highest
difference offering an improvement of up to 15%, 22%, and
37% in detection rate, false alarm, and highest difference,
respectively, compared to shallow detectors.
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