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Abstract—The increasing popularity of electric vehicles (EVs)
has strengthened the integration between power and transporta-
tion networks. Amidst the rising trend of interconnecting power
and transportation networks, there has been a surge in attacks
targeting power systems, specifically those capable of disrupting
charging services. Existing studies on identifying false data
injection attacks (FDIAs) are insufficient in safeguarding coupled
power-dependent electrified transportation networks for several
reasons: (a) they are primarily designed for power networks
only, (b) they does not consider the influence of cyber attacks
on charging satisfaction rates, and (c) they lack adaptability/do
not generalize well to various topological configurations. To
overcome these shortcomings, this paper introduces a compre-
hensive FDIA detection scheme that takes into account the
interconnected nature of power-transportation infrastructures,
eventually improving the charging user satisfaction rates. Toward
this objective, we develop a defense strategy based on a graph
autoencoder (GAE) that extracts spatio-temporal features from
the intertwined data, thereby providing increased resilience
against FDIAs. Furthermore, our model undergoes training on
diverse power system topologies and various attack scenarios,
ensuring improved generalization capabilities. Simulations were
conducted on two types of power systems: one with 2000 buses
and another with 30 buses, featuring 360 and 35 charging
stations (CSs) respectively. When subjected to unseen data, our
model achieved an impressive 98.3% detection rate, marking a
significant enhancement of 15% to 30% compared to benchmark
strategies. This highlights the efficacy of our proposed method
in adequately tackling the challenges associated with detecting
FDIAs on interconnected power and transportation networks.

Index Terms—Transportation network, Electric vehicles,
Graph neural network, Coupled system, and Power system.

I. INTRODUCTION

N recent years, the excessive consumption of fossil fuels

has contributed to a steady increase in global greenhouse
gas emissions, prompting heightened attention from nations
toward climate change-related issues. The transportation sector
stands as the major contributor to anthropogenic greenhouse
gas emissions in the United States, accounting for 28% of the
worldwide total [1]. In efforts to reduce the reliance of the
transportation sector on fossil fuels, transportation electrifica-
tion has emerged as a key strategy. Recognizing these benefits,
the interdependency between the power and transportation
systems strengthens with the adoption of EVs on a global

scale, spanning regions such as the US, EU, and China [2].
Moreover, modern cyber-physical power systems rely on a
large amount of metered data exchanged within the power grid
for operational or situational purposes. Consequently, ensuring
the authenticity of this collected data is imperative for main-
taining the stability and reliability of the system. A significant
threat to data integrity arises from FDIAs, where malicious
entities manipulate the sensor measurement data [3]. These
attacks have the potential to influence operational decisions
that lessen the customer satisfaction rate. Hence, recent studies
have focused on formulating intelligent defense strategies that
can effectively detect such attacks.

The CSs draw power from the power buses for efficient
charging of the EVs. Thus, the EV user experience is in-
fluenced by the electric power availability on a bus. During
FDIAs, the attackers manipulate the power readings to make
them appear higher (additive attacks), lower (deductive at-
tacks), or a blend of both (camouflage attacks). In additive
attacks, the attacker creates a false perception of abundant ca-
pacity. Conversely, in deductive attacks, the attacker portrays a
deceptive impression of inadequate power. These falsified data
induce charging uncertainty and decrease charging satisfaction
rates significantly. Camouflage attacks result in fluctuation of
charging power demands across different buses. This paper
aims to develop a novel FDIA detection scheme for power-
dependent electrified transportation networks and to evaluate
the impact of cyberattacks on EV-users’ satisfaction rate.

A. Literature Review

The growing complexity of contemporary power systems
has lead to a shift in the area of power attack detection
from classical model-based approaches to more dynamic and
versatile machine learning (ML)-based approaches. Classical
model-based approaches operate under the assumption that
the system behavior is predicted precisely by a mathematical
model. For example, the state estimation-based detection strat-
egy was employed in [4] and [5], and the models used compare
the estimated states with the actual measurements to detect
the anomalies. Reference [6] proposed a decentralized model-
based approach based on the maximum likelihood principle.



In [7] the authors proposed an extended Kalman filter interval
state estimation technique. Due to the complex couplings
between the power and transportation systems, capturing all
the system dynamics is often challenging and impractical.

Data-driven ML-based approaches have emerged as an
effective and viable alternative to classical model-based ap-
proaches. ML approaches have demonstrated varying levels of
success. A feed-forward neural network (FNN)-based attack
detector showed over 90% detection rate [8]. A generative
adversarial network model with an integrated autoencoder
reported a detection performance of 96.2% [9]. In [10], a
combination of the Kalman filter and recurrent neural network
(RNN) achieved a detection rate of 96%. A convolutional
neural network (CNN) in conjunction with a Kalman filter
achieved 99% detection accuracy [11]. Despite their high
detection rates, ML approaches often overlook the topological
and physical characteristics of power grids.

A power distribution system can be formally represented
as a graph whose nodes capture the power grid’s buses
and its edges represent the power lines [12]. Such graph
representation facilitates modeling and analysis of complex
topologies, and capturing of spatial and temporal dependencies
essential for tracking the ever-changing dynamics of power
systems. Within the graph signal processing framework, an
auto-regressive moving average (ARIMA) model combined
with a graph filter was proposed in [13] to detect stealthy
attacks on power systems. Reference [14] proposed a modified
temporal multi-graph convolutional network that achieves 96%
accuracy across different power system topologies. In [9],
the authors combined graph convolution with long short-term
memory (LSTM) and achieved 96% detection accuracy. In
reference [15], a graph autoencoder (GAE)-based approach
was introduced for identifying cyber attacks within network
topologies that were not previously encountered, showing a
12% improvement over shallow detectors.

Although the above mentioned GNN-based detectors
present certain advantages, their domain of applicability is
limited since they are exclusively built for electric power
systems. This work extends the area of applicability of FDIA
detectors to the more general framework of coupled power and
transportation systems.

B. Contributions

The major contributions of this paper are outlined next:

o First, we propose a detection strategy using graph au-
toencoder (GAE) for coupled electrified transportation
systems that effectively extracts topological features from
both systems through Chebyshev graph convolution op-
eration.

o Second, the proposed approach offers improved gener-
alizability as it is trained on multiple system topologies.
The enlarged training ensures adaptability and robustness
in real-world scenarios.

o Third, we evaluate the performance of the proposed
approach against various attack types, including additive,

deductive, and camouflage attacks. We also assess sce-
narios where attackers have either a limited or compre-
hensive knowledge of the coupled system, enabling the
identification of network vulnerabilities.

o Fourth, we analyze the impact of these cyberattacks on
EV users’ charging satisfaction rates using data from
2,000 and 30 bus power systems with 360 and 35
allocated CSs, respectively.

II. THE INTEGRATED POWER-TRANSPORTATION SYSTEM
MODELING

Given the intrinsic graph-like configuration of power grids,
leveraging GNN-based strategies is promising for developing
efficient FDIA detector. However, the asymmetric nature of
directed graphs can hinder information flow and limit the
learning ability of GNNs, particularly at the peripheral grid
areas [16]. To address this issue, we represent power systems
as undirected weighted connected graphs, G = (V,E, W),
where V = {1,2,.., B} signifies the set of nodes or buses
while B indicates the total count of power system buses.
W € RBXB and E represent the adjacency matrix and the
set of edges or power lines joining two buses, respectively.
If there is a link between buses ¢ and j, W;; is set to 1,
otherwise it is set to 0.

The considered transportation networks comprises 360 and
35 CSs, respectively, each CS being uniquely localized via
precise geographic coordinates. To establish an effective and
meaningful coupling between the two systems, we overlay
the power and transportation networks and align them based
on their respective positions. Then, we connect the CSs to
the power buses based on the shortest distance between them
which ensures a seamless integration that optimizes efficiency
and functionality. Fig.1 illustrates the coupling of power and
transportation network.

Coupling --»:

Charging
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Fig. 1. Power-dependent electrified transportation system.

III. THREAT MODELING

The attack functions and strategies are next discussed.



A. Attack Functions

Herein paper, we consider three distinct attack types: i)
additive attacks, ii) deductive attacks, and iii) combined at-
tacks. Denote the measured power at bus ¢ and timestamp ¢
by Pf. The true power measurement, Py, ;, should align with

the ﬁeld power measurement, Plfl ;» at the control center (i.e.,

Pl.i = PL). The attack functions during different attack
scenarios are formally expressed as:
Attack functions
Pf?lse A Ptiue 2 + APZ
Pfalse,i - -Ptrue i AP
lzlse,z = Irue,z +e- APt - (1 - e) : Apitv

where AP} denotes the stealthily inserted power value by the
adversary and e represents a binary variable taking the values
1 or 0, indicating an additive or deductive attack, respectively.

B. Attack Strategies

1) Attacks on random power nodes (RNA): these attacks
entail a random selection of power nodes as targets. These
attacks assume randomly selecting a subset of r buses from
a total of B buses (where r < B). The number of possible
subsets is m These attacks have the potential to disrupt
the system operation which, in turn, lessens user satisfaction
rate.

2) Attacks at the most vulnerable power nodes (VNA):
Vulnerability indicates the potential of a power node to act as a
critical failure point, i.e., a vulnerable location where an attack
could cause significant harm to the entire system. Vulnerability
assessment process assigns vulnerability scores to power buses
that will later be used to formulate strategies targeting the most
vulnerable buses. The vulnerability is influenced by both their
topological characteristics and power flow of a system. We
consider a comprehensive set of metrics to encompass both the
topological and electrical aspects of the power grid [17]-[19].
The weight of these vulnerability metrics is determined via
the Analytical Hierarchy Process (AHP) [20], where pairwise
comparisons are conducted to assess the comparative signifi-
cance of each metric.

IV. GAE BASED ATTACK DETECTION SCHEME

This section describes the proposed GAE architecture. We
formulate the FDIA detection task as a classification problem
where the aim is to classify input samples X into two distinct
categories, one indicating the presence and the other the
absence of cyber attacks. The input samples consist of the
temporal measurement data for active and reactive powers,
[P, Q;] € R™ 2 at the t'* timestamp. Fig. 2 depicts the
architecture of the proposed model. The objective is to learn
the data patterns from benign input samples and measure the
reconstruction error 77 while reconstructing. The graph encoder
and decoder functions are denoted by Fg = fgr(X) and

= fp (X), respectively. The objective function of the
proposed model is given by:
T?i?c(XJD (fe(X))). 2
I

The essential components of the considered GAE architecture
are next presented.

A. Chebyshev Convolution Operation

During the training period, the spectral graph convolution
with input signal o € X is performed as UyU” o. Matrix
U incorporates the eigenvectors of normalized Laplacian L =
UQUT. The spectral filter 19 = diagonal (f) incorporates
the parameter vector § € R™ in the Fourier domain. The
diagonal matrix €2 captures the non-negative eigenvalues A
of L. The Fourier transformation of o is performed through
U7o. Spatially localized filters extract features from a par-
ticular region of interest, rather than performing filtering
operations over the entire input sequence. This selectivity
is implemented via the polynomial: H. () = > ;" 7 Q*,
where v = (Y0, 71, ---, Vm ) Tepresents the vector of coefficients
that the model seeks to learn for the m!”-order polynomial.
The polynomial filtering is expressed as

Jo =Y wNi(L)a,  (3)

k=0

UH,(Q)U "o = Hy(L

where L = 2L /A — 1. The computational complexity of the
filtering operation is O(m/|E|).

1) Graph Encoder Eg: The graph encoder has [ Cheby-
shev graph convolutional layers. This layer extracts the spatial
characteristics from the network via graph convolution opera-
tions, bias addition, and the application of the ReLU activation
function. The resulting output is the tensor:

B :RGLU(’}/m *g XlE—1+blE)- 4)

Vector b;,, denotes the bias at layer /5 and *g represents the
graph convolutional operator. The bias in the ReLU activation
function promotes nonlinear processing.

To extract the temporal relationships from the time-series
signal, we incorporate an LSTM unit that facilitates the mod-
eling of recurrent information flows. An LSTM cell consists
of the input 4; _, output of , and forget gate f/ . The LSTM
unit presents two distinct states: i) the cell state CltE and ii)
the LSTM output H, ltE The two states are related via:

. Cl, = fi,CI=" + il tanh (W,EXfE + UL H! +blE)

. H{E = oltE tanh (C’ltE) .

Cf;l and H f;l represent the previous cell and hidden states,
respectively; W, and U, refer to the learning weights and
© (+) stands for the nonlinear activation function.

2) Latent Layer ly: ly enables a compressed represen-
tation of the input information. The latent layer holds the
compact representation of data which is then concatenated

with X, and conveyed to the graph decoder.

3) Graph Decoder Dg: The main aim of the graph decoder
is to produce an output X * that closely resembles the input X
The reconstruction error 7 is measured as: 7 = || X* — X||°.
Similar to the graph encoder, the outputs of the graph decoder
are sequentially fed to the LSTM that processes time-evolving
graph features. The LSTM updates its current hidden state
H, ztD based on the current input from the graph decoder layer

and the previous hidden state H, f;l seamlessly. The cell
state of the graph decoder-LSTM is regulated by i; , o

D’



and fltD, which stand for the input, output, and forget gates,
respectively. The decoder cell and hidden state are given by:

. C}, = f{,C{>"+if, tanh (Wl‘; X!, +USH{ '+ bﬁ)) .
. HltD = ofD tanh (CltD) .
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Fig. 2. Architecture of the proposed GAE.

V. EXPERIMENTAL SETTINGS

This section describes the benchmark detectors, their hyper-
parameter optimization, and metrics for evaluating the model’s
performance and user satisfaction rate.

A. Benchmark Detectors

The benchmark detectors to reference the performance of
the proposed approach include: i))ARIMA model, a shallow
unsupervised learning method; ii) LSTM, a type of recurrent
neural network (RNN) particularly designed for forecasting
sequential data; iii) feedforward neural network (FNN), a
supervised architecture that extracts features through stacked
hidden layers of fully connected neurons; iv) CNN, which
utilizes convolutional operations to dynamically learn features
from data; and v) support vector machine (SVM), a supervised
learning algorithm.

B. Hyperparameter Optimization

To optimize the detection performance, we utilize a se-
quential grid search algorithm to optimize the hyperparameters
of both the proposed and benchmark detectors. The optimal
hyperparameters, H ={number of layer, number of neurons
in each layer, dropout rate, optimizer, activation function,
order of neighborhood} for CNN, FNN, LSTM, GCNN and
GNN are (in order): Henn = {4, 32, 0.4, Rmsprop, 5, Relu},
Hrnn = {4,32,0, Adam, N/A,Relu}, Histm = {3,32,0.2,
Adam, N/A, Relu, }, and Hgan = {6, 64, 0.2, Adam, 5, Relu}.
For ARIMA model, we explored the search space from the set
{0,1,2,3}. Ultimately, we determined that the optimal values
for the differencing degree and moving average were 1 and 0,
respectively. For the SVM model, the optimal settings for the
gamma, kernel, and regularization parameters were (in order):
auto, sigmoid, and 1, respectively.

C. Metrics of performance evaluation

The performance metrics to evaluate the detection perfor-
mance of the proposed FDIA detector include: 1) Detection

rate, DR = TPTE;N, to assess the capacity to dFitect genuine
attack samples; 2) False alarm rate, FAR = PN 0 deter-

mine the frequency of non-malicious samples being mistakenly

identified as threats; and 3) Accuracy, ACC = 1t to

thoroughly evaluate the detector’s efficacy in identifying both
attack and normal samples. The variables: TN, TP, FN, and
FP represent the count of true negatives, true positives, false
negatives, and false positives, respectively.

D. Metric of User Experience

To evaluate the EV user charging experience, we employed
the Ev users’ charging satisfaction rate S, defined as: S =
%. Here, Pcgs indicates the available power at the
charging stations. During attack situations, the true power
reading of a CS, Pgg is altered with a false value, resulting in
a higher number of unsatisfied users compared to the normal

conditions.

VI. EXPERIMENTAL RESULTS

This section presents the overall attack detection perfor-
mance of the proposed model across different attack scenarios
for the considered systems. A comparative performance anal-
ysis is carried out between the proposed approach and state-
of-the-art benchmark detectors.

A. Performance Against Different Attack Scenarios

The performance of the proposed model against random bus
attack and most vulnerable bus attack is depicted in Table II.
The results reveal that the proposed model achieves higher
performance against all the test cases. According to the simu-
lation study, a slight enhancement of the detection performance
is observed as the system size expands. This is attributed to
the increase in the volume of data in larger systems, leading to
improved performance. Specifically, when testing the proposed
detectors on the 2000-bus system configurations, the model
shows 0.9% to 2.5% performance improvement compared to
the 30-bus system. From the table, we also infer that the model
exhibits slightly less performance during random bus attacks.
Among the benchmark detectors, CNN performs the closest to

TABLE I. Relative performance of the benchmark detectors.

Altack System Detector Metric
Strategy DR FAR ACC
ARIMA 59.41 53.98 58.33
SVM 63.68 46.35 62.39
FNN 70.02 37.59 68.60
2000-bus LSTM 75.09 30.15 73.54
CNN 80.29 24.52 79.98
Random GAE 99.11 8.20 98.74
bus attack ARIMA 58.03 55.63 57.22
SVM 62.50 47.79 6117
30.bus FNN 69.00 39.11 67.43
LSTM 75.01 31.54 71.65
CNN 78.93 25.98 79.36
GAE 98.83 8.32 97.94
ARIMA 56.62 54.84 55.67
SVM 6141 47.41 60.04
FNN 68.11 39.61 66.08
2000-bus LST™M 72.83 31.89 71.03
CNN 78.20 24.59 77.79

Most

ulharabie GAE 97.02 8.83 96.79
Moty ARIMA 54.33 55.94 53.37
SVM 50.43 48.61 57.65
20bus FNN 66.05 39.93 64.2
LSTM 70.67 3L.97 69.21
CNN 75.54 25.04 75.12
GAE 96.48 8.90 96.31




the proposed detector while ARIMA performs the worst with
an average of 35.44% accuracy. Overall, the proposed GAE-
based detector shows a 15-30% improvement in detection
performance over the test cases. Moreover, the average F1-
score observed for the proposed model is 0.93 which indicates
the high performance of the proposed model.

B. Impact of Attacks on User Satisfaction Rate

This section assesses the influence of cyber attacks on
users’ charging satisfaction rates. Table II portrays the user
satisfaction rate for both random and vulnerable bus attack
scenarios during attacks and subsequent to detection. During
no-attack scenario with all allocated CSs, the user satisfaction
rate is 89.36%. As interpreted from the table, during attack
conditions the user satisfaction rate drops to 56.55-71.97%.
During post-implementation, the satisfaction rate becomes
80.71-87.29% which signifies a 20-25% improvement in user
satisfaction rate in comparison to the adversarial scenario.
Such exceptional capability stems from its ability to generalize
across various attack conditions.

TABLE II. S(%) during attack and after detection using GAE.

During attack After detection
System 2000-bus 30-bus 2000-bus 30-bus
Additive 71.97 70.57 87.29 86.20
%: Deductive 70.63 68.91 84.92 84.33
Combined 59.63 59.47 81.79 80.09
Additive 68.53 67.71 86.16 85.79
% Deductive 67.21 65.88 84.48 84.07
Combined 56.55 55.29 80.71 78.81

VII. CONCLUSIONS

This paper presented a GAE-based FDIA detection frame-
work specifically built for coupled power and transportation
networks. Through extensive simulation studies, we evaluated
the model’s performance across various attack types and sys-
tem topologies. The proposed detector exhibited high accuracy,
reaching up to 98%, while substantially improving EV user
satisfaction rates by 10-33%. Comparative performance anal-
ysis against benchmark detectors revealed a notable average
improvement in detection rates for both situations: the case of
random node attacks as well as the situation when the attacks
are deployed on the most vulnerable nodes. The key aspect that
ensured the success of the proposed detection framework is its
ability to extract spatial-temporal features from the measure-
ment data through the Chebyshev graph convolution filters. In
addition, the proposed detector was trained on multiple system
topologies that help to extend its generalization capabilities
across multiple different networks. Future research directions
may involve further optimization to reduce implementation
complexity for real-time deployment and addressing dynamic
changes and errors in network environments.
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